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Abstract
We consider the scenario of machines that receive
human advice in natural language to revise their
object-level knowledge for a domain of interest.
Although techniques exist to translate such natural
language advice into a symbolic form that is appro-
priate for machine reasoning, the translation pro-
cess itself is typically pre-programmed and, thus, it
is not amenable to dynamic and gradual improve-
ment, nor can it be adjusted to the linguistic partic-
ularities of the advice giver. We seek to examine
whether these limitations can be overcome through
the use of a knowledge-based translation process.
In this position paper we take a first step in this in-
vestigation by demonstrating how such meta-level
translation knowledge can be engineered to support
the interpretation of object-level advice. While, ad-
mittedly, our engineering of the meta-level knowl-
edge amounts to pre-programming, it nonetheless
pushes towards the automated acquisition of this
meta-level knowledge through advice-taking by
demonstrating a key prerequisite: that it can be ex-
pressed, and reasoned with, under the same syntax
and semantics as the object-level knowledge.

1 Introduction
An oft-quoted lesson from the early days of Artificial Intel-
ligence is the importance of endowing machines with com-
monsense knowledge [McCarthy, 1989]. Equally oft-quoted
is the realization that such commonsense knowledge cannot
be directly pre-programmed into a machine, but can, more
realistically, be acquired through some form of learning or,
more specifically, through some form of advice-taking from
a human [McCarthy, 1959]. But, most of the times, the re-
quirement for pre-programming machines has not been com-
pletely side-stepped, but rather pushed up a level. Instead
of pre-programming the object-level (domain) knowledge of
machines, the majority of relevant AI research now effec-
tively deals with the task of pre-programming machines at
a meta-level (in the design of learning algorithms or archi-
tectures) that instructs machines how to acquire the object-
level knowledge [Valiant, 2006; Michael and Valiant, 2008;
Michael, 2016; Sap et al., 2019]. Hence, one may ask: (Q1)

Can this meta-level knowledge also be acquired by means
analogous to how the object-level knowledge is acquired?

In the case of interest to our work, the meta-level knowl-
edge represents a translation process (of object-level knowl-
edge) from natural language into symbolic form. One could
argue that question (Q1) is inconsequential in this case, since
the meta-knowledge needed for translation purposes is pre-
determined and fixed, and comprises mostly generic rules ap-
plicable across advice givers. We agree only partly! Groups
of people in different parts of the world or different individu-
als may use the same language differently. Therefore, being
able to acquire meta-level knowledge by means analogous to
how the object-level knowledge is acquired would allow the
former knowledge to be treated as a policy of interpreting
verbal commands. Individuals would be able to expand the
policy to support interpreting additional sentence types, and
customize it to incorporate omitted but implied meanings or
different contexts when interpreting known sentence types.

Consequently, our sought goal is to design a process that
will allow users to explain how to translate a sentence. For
this reason, even though the translation process of natural lan-
guage is user-agnostic in its most part, the amendment of this
process should be supported. A translation process providing
a dynamic and cognitively-light amendment procedure would
also help decrease the needed amount of cognitively-heavy,
batch-mode, offline pre-programming of meta-knowledge,
making an affirmative answer to question (Q1) important.

The line of research that we pursue, and the initial results of
which we present in this position paper, seek to provide some
kind of response to (Q1), in the particular setting of build-
ing a cognitive assistant able to help a human with a certain
task [Leviathan and Matias, 2018]. Such a cognitive assis-
tant cannot be pre-programmed, as it is expected to abide by
its user’s preferences when taking actions, which effectively
necessitates the assistant to acquire its user-specific (object-
level) knowledge through learning or advice-taking from the
user [Bernard and Arnold, 2019]. For concreteness, in this
paper we focus on knowledge acquisition through a process
of advice-taking as originally proposed by McCarthy [1959]
and further elaborated recently [Michael, 2017; MacLellan
et al., 2018] towards the development of the human-machine
interaction protocol of Machine Coaching [Michael, 2019].

According to Machine Coaching, then, a cognitive assis-
tant observes the state of the world and reasons using its cur-
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Figure 1: Architecture for a Cognitive Call Assistant.

rent object-level knowledge on how to act. A human coach
observes the assistant and can inquire as to the reasons behind
the assistant’s choices. If the explanation is unconvincing or
otherwise insufficient or unacceptable to the human, then the
latter can offer advice back to the assistant on how to improve
its knowledge towards better future decision-making. Impor-
tantly, we focus on the case where the interaction happens in
natural language, and we are interested, more specifically, in
understanding how the natural language advice offered by the
human to the assistant can be translated into some symbolic
form that can be used for reasoning by the assistant.

Translating natural language into symbolic form is, admit-
tedly, a well-studied problem, and numerous relevant parsing
tools are available [Kamath and Das, 2019]. To our knowl-
edge, systems built upon such parsing tools are effectively
pre-programming the translation (meta-level) knowledge of
the cognitive assistant on how to interpret the (object-level)
advice from a human. Our aim, then, is to examine whether
an alternative to pre-programming is feasible and effective.
Can this meta-level knowledge be learned? Or more specif-
ically: (Q2) Can meta-level knowledge (of how to interpret
object-level advice) be acquired through Machine Coaching?

Question (Q2) is our main long-term research question. We
take a first step towards answering this question by demon-
strating how the meta-level knowledge can be engineered to
achieve its goal of interpreting object-level advice. Although
engineering the meta-level knowledge does, in fact, amount
to pre-programming, it nonetheless pushes towards the auto-
mated acquisition of this meta-level knowledge through Ma-
chine Coaching by demonstrating the key prerequisite that it
can be expressed, and reasoned with, under the same syntax
and semantics as the object-level knowledge, which itself is
amenable to acquisition through Machine Coaching.

2 A Machine Coaching Example
As our running example, we consider a Cognitive Call Assis-
tant (CCA) installed on a smart phone that takes actions upon
receiving incoming calls, with an architecture as in Figure 1.

Upon receiving an incoming call, the CCA uses its current
(object-level) knowledge to decide on how to act. The user

can interact with the CCA to help it improve its knowledge, so
that future incoming call events can be handled more appro-
priately (according to the user’s personal preferences). The
interaction may have the form of verbal advice, handled by
the Verbal Coaching Interface, or non-verbal commands han-
dled by the Non-Verbal Coaching Interface (which includes
applications that any standard smart phone has, like calen-
dars, maps, etc.). The dialogue below demonstrates this:

1. Event: Incoming call from some caller.

2. User: Declines. “Decline calls when busy.”

3. CCA: “When do you consider yourself to be busy?”

4. User: Uses calendar and map applications and perhaps
verbal commands to instruct that she considers herself
busy when being in a meeting at work.

5. Event: (Later in the week. . . ) Incoming call from John
while user is in a work meeting.

6. CCA: Declines the call.

7. User: “Why did you decline this call?”

8. CCA: “Because you are at work and at a meeting, so I
conclude that you are busy.”

9. User: “Send SMS saying ‘Busy! Will call back later.’ to
the caller when the call is important. If John is the caller
then the call is important.”

The example above is an instance of a Machine Coaching
interaction used to improve the object-level (domain) knowl-
edge of the CCA. The Verbal Coaching Interface is responsi-
ble for the translation of natural language into symbolic form.
We consider this module’s policy to be implemented through
meta-level knowledge expressed and reasoned with under the
same syntax and semantics as the object-level knowledge,
and, thus, amenable to the same means of acquisition.

We assume that the Verbal Coaching Interface ships with
an initial version of the meta-level (translation) knowledge.
Compared to the CCA’s object-level (domain) knowledge, the
training of which is primarily the responsibility of the user,
the initial version of the meta-level knowledge is engineered
by experts to support some minimal level of translation. If
the end user is unsatisfied with the translation process (i.e., if
the translated symbolic form of a natural language sentence is
wrong or unexpected, or a natural language feature is unsup-
ported), the end user should be able to advise and revise the
meta-level knowledge as done for the object-level knowledge.

Apparently, the initial version of the meta-level knowledge
might not be rich enough to allow the user to explain and cor-
rect all errors or handle all unknown advice sentences. Since
we do not expect the user to be fluent in the symbolic form
or to be a natural language expert, she must be able to ask an
expert for help, who will advise, in her stead, the translator
module using logic-based communication and the Machine
Coaching protocol to improve the translation process and/or
adjust it to her needs. We illustrate this type of interaction by
extending the conversation of our running example.

Suppose that the Verbal Coaching Interface fails to trans-
late the last advice sentence from the user to the CCA during
their last interaction from above. The dialogue continues:
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10. CCA: “I am unable to interpret the advice ‘If John is the
caller then the call is important’? Do you want to consult
an expert to help improve the translation policy?”

11. User: “Yes, please!”

12. CCA: “Please provide additional information that you
wish to pass on to the expert.”

13. User: “By this sentence I mean that I wish all calls com-
ing from John to be labeled as important. This, in turn,
will trigger a different treatment by the CCA.”

14. Event: The advice that could not be interpreted, along
with the additional information provided by the user are
sent to an expert. The expert machine coaches the CCA
to improve its meta-level knowledge.

15. CCA: “Expert advice has been received and the transla-
tion policy has been amended. Please continue!”

Thus, using Machine Coaching (albeit communicating di-
rectly in the symbolic form of the meta-knowledge), the ex-
pert can dynamically and gradually incorporate additional
features of natural language (e.g., word synonyms, sentence
types, etc.) and user-specific adjustments (e.g., personalized
phrase disambiguation, local dialect, etc.) that might have not
been part of the initial version of the meta-level knowledge.

3 Overview of Related Work
Our primary focus is on translating natural language advice
or questions into symbolic form. A lot of work has been done
in information and rule extraction from natural text, using on-
tologies or other scope-related information [Delannoy et al.,
1993; Dragoni et al., 2016; Hassanpour et al., 2011]. Unlike
that work, our methodology does not seek to find important
words / phrases based on the scope of the application, and
no ontologies are used. Instead, we investigate the structure
and relations within natural language sentences without tak-
ing the context into account, which has the advantage that
our methodology is application-oblivious. Although not us-
ing ontologies or scope-related annotations might lead to vital
information being unavailable when rules are extracted, this
can be gradually remedied through Machine Coaching.

Other work has also been done in symbolic analysis of nat-
ural language text with the use of Controlled Natural Lan-
guages (CNL) [Kuhn, 2014]. In our approach, although sim-
ilar in some ways with CNL approaches [Kain and Tompits,
2019], we do not strictly define a controlled natural language,
but instead we start by considering a basic subset of natural
language that we can then gradually and iteratively expand.

Our proposed architecture starts by extracting dependency
relations between words, along with Part of Speech (POS)
and Named Entity Recognition (NER) annotations [Grish-
man, 1997]. This information is subsequently used to iden-
tify patterns in the semantic relations that hold in a sentence,
which support the construction of a rule capturing what a user
wishes to communicate through that sentence. The key de-
parture of our work from past works [Akbik and Broß, 2009;
Gerber and Ngomo, 2012; Bos, 2015] is that the translation
process itself is encoded as a collection of meta-rules, consti-
tuting the meta-level knowledge of a cognitive assistant.

As we have argued, this is a first step towards being able
to acquire this knowledge gradually and dynamically, with-
out the need of a pre-specified ontology, and in a manner that
allows the meta-level knowledge (and hence the translation
process of the object-level advice) to be amenable to adjust-
ment to the linguistic particularities of each human.

4 Architecture and Methodology
The pipeline design of the CCA’s Verbal Coaching Interface
responsible for the interpretation of a piece of advice given
by the user is shown in Figure 2. According to the pipeline,
a piece of advice given verbally by the user is parsed (in
Module 1) into a collection of predicates that describe the
dependencies in the sentence of the advice. These predicates
act as input to the meta-level knowledge of the CCA, with
which the CCA reasons (in Module 2) to turn the piece of
advice into an object-level rule, thus interpreting the advice.
This object-level rule is then used to revise, through Machine
Coaching, the CCA’s object-level knowledge, and it is this
object-level knowledge that is utilized by the CCA when de-
ciding how to handle future incoming calls. The details of the
Machine Coaching revision mechanism are inconsequential
for this work, and can be found elsewhere [Michael, 2019].

In the remainder of this section we discuss in more detail
the key components of the architecture described above.

4.1 User Language for Advice-Giving
For the purposes of this work, we restrict the types of sen-
tences in which object-level advice can be expressed to the
ones below [Huddleston and Pullum, 2002]. The numbers in
brackets after each sentence type are references to the respec-
tive sentence examples that are provided in Appendix A:

1. Simple Declarative Sentences (SDS)
1.1. Simple Declarative To-Be Sentences
1.1.1. with Adjective or Noun Predicate [1–3]
1.1.2. with Verb Predicate [4–5]

1.2. Simple Declarative Verb Sentences
1.2.1. with Object [6]
1.2.2. without Object [7–9]

2. Simple Imperative Sentences (SIS) [10]
3. Conditional Sentences (zero conditional)

Below SDC stands for Simple Declarative Clause
and SIC stands for Simple Imperative Clause.
3.1. Imperative Conditional Sentences (ICS)
3.1.1. If/When SDC, SIC [11–12]
3.1.2. If SDC, then SIC [13]
3.1.3. SIC if/when SDC [14]
3.1.4. all above with Implied Subject in SDC [15–16]

3.2. Declarative Conditional Sentences (DCS)
3.2.1. If/When SDC, SDC [17–19]
3.2.2. If SDC, then SDC [20]
3.2.3. SDC if/when SDC [21–22]
3.2.4. all above with Implied Subject in SDC [23]

For the purposes of simplicity, sentences with negation are
not considered in this initial set of supported sentence types.
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Figure 2: Implementation pipeline for a Verbal Coaching Interface.

4.2 Syntax of the Meta-Level Knowledge
Given an object-level advice sentence, we apply Natural Lan-
guage Processing (NLP) tools to get dependency, part of
speech, and named entity recognition data (in the form of a set
of meta-predicates) and apply dependency analysis to manu-
ally identify patterns across these sets, which we later use
to engineer meta-rules. We have defined and consider three
types of meta-predicates for use in the body of meta-rules:

< Dependency > (
Parent Word, Parent Word Position,
Child Word, Child Word Position)

pos(< POS Tag >, Word, Word Position)

ner(< NER Tag >, Word, Word Position)

where < Dependency >, < POS Tag >, and < NER Tag >
are placeholders for the dependency relation between two
words, for the Part of Speech of a word, and for the Named
Entity Recognition tag of a word, respectively, as identified
by NLP. In addition to the above meta-predicates, a special
meta-predicate is used in the head of meta-rules to represent
predicates and variables of the generated object-level rule:

ruleterms(
Head Terms, Head Vars,
Body Terms, Body Vars)

where Head Terms and Body Terms are lists of lists that rep-
resent object-level predicates for the head and the body of the
generated rule, respectively. Each sub-list represents a single
predicate, and each sub-list member represents a part of the
predicate (in case a predicate is a multi-word concatenation).
Head Vars and Body Vars are also lists of lists and represent
the corresponding variables of the object-level predicates.

Each advice sentence is assumed, in this work, to contain
a single conditional, corresponding, thus, to a single object-
level rule. This single rule, however, might involve the ap-
plication of multiple meta-rules on the given advice sentence,
with each meta-rule contributing part of the generated object-
level rule; see, e.g., Example Sentence 2 in Section 4.3.

4.3 Engineering the Meta-Level Rules
For each of the sentence types considered in Section 4.1, we
have engineered one or more associated meta-rules, which
are presented in Appendix B. Three meta-rules are discussed
below as part of two examples that demonstrate the key ideas.

Each example comprises an input sentence and its type,
the intuitively expected formal rule corresponding to that sen-
tence, the dependency parse tree for that sentence, the appli-
cable meta-rules that are triggered by that sentence type, the
inferences drawn from the meta-rules, and ultimately the gen-
erated object-level rule. Within each dependency parse tree,
the bounding boxes of the respective figures highlight the pat-
terns that trigger the meta-rules. Each variable W and P in
the meta-rules corresponds, respectively, to an arbitrary word
in the sentence and the word’s position in that sentence.

Example Sentence 1: A call is important.
Type: 1.1.1. Simple Declarative To-Be Sentence with Adjec-
tive Predicate.
Expected Rule: call(X) implies important(X);
Dependency Parse Tree: see Figure 3 (left).
Applicable Meta-Rules:

root(root, 0, W1, P1), cop(W1, P1, be, ), nsubj(W1, P1, W2, )
implies ruleterms([[W1]], [[X1]], [[W2]], [[X1]]);

Meta-Inferences:
ruleterms([[important]], [[X1]], [[call]], [[X1]])

Generated Rule:
call(X1) implies important(X1);

Example Sentence 2: Send SMS when call is important.
Type: 3.1.3. Imperative Conditional Sentence (SIC when
SDC).
Expected Rule:

call(X), important(X), SMS(Y) implies send(Y);

Dependency Parse Tree: see Figure 3 (right).
Applicable Meta-Rules:

advcl( , , W1, P1), cop(W1, P1, be, ), nsubj(W1, P1, W2, )
implies ruleterms([[]], [[]], [[W2], [W1]], [[X1], [X1]]);

root(root, 0, W1, P1), pos(verb, W1, P1), dobj(W1, P1, W2, )
implies ruleterms([[W1]], [[X2]], [[W2]], [[X2]]);

Meta-Inferences:
ruleterms([[]], [[]], [[call], [important]], [[X1], [X1]])

ruleterms([[send]], [[X2]], [[SMS]], [[X2]])

Generated Rule:
call(X1), important(X1), SMS(X2)
implies send(X2);
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Figure 3: Dependency parse trees for Example Sentence 1 (left) and Example Sentence 2 (right).

In addition to the example meta-rules that are presented
above, there are versions of those meta-rules that cope with
the case of sentences with a named entity subject, since the
resulting object-level rules need to be different in such cases.

In terms of the methodology followed in engineering meta-
rules, we note that this involved the manual analysis of multi-
ple sentences of each of the considered types, and the identifi-
cation and clustering of dependency patterns. In a sense, then,
we have manually-induced these meta-rules from a training
set of sentences, having in mind that the engineered meta-
rules are expected to apply and work well also with sentences
(of the same types) that were not part of the training set.

5 Preliminary Empirical Evaluation
Towards empirically evaluating whether the engineered meta-
level knowledge adequately addresses the task of interpreting
user advice, we have implemented in Java the pipeline out-
lined in Section 4. Natural language is parsed using the Stan-
ford CoreNLP Library [Manning et al., 2014], the meta-level
knowledge is implemented, for quick prototyping purposes,
in SWI-Prolog, and the Java Prolog Library (JPL) is used
to interface with the meta-level knowledge. The meta-level
knowledge can be invoked to translate advice from natural
language into symbolic form through a desktop application
or a web-service call (http://cognition.ouc.ac.cy/nestor/).

This position paper does not provide a full-fleshed quan-
titative empirical evaluation, which is part of our ongoing
work. However, as part of a preliminary evaluation, we cre-
ated a custom data-set that includes at least one sentence of
each type considered, along with its variants, and applied our
engineered meta-level knowledge on that data-set. The list of
the generated object-level rules can be found in Appendix A.
That outcome was evaluated by the authors qualitatively, and
below we present some early findings from this evaluation:

• The generated object-level rules reasonably capture the
meaning of their associated natural language sentences.

• In some cases, slightly altering the syntax of a sentence
(e.g., removing the comma from the sentence “If John is
busy, send SMS”), alters the produced dependency tree.

• Simple sentences with omitted words and implied mean-
ings cannot be handled appropriately.

• NLP sometimes labels incorrectly words with multiple
meanings, resulting in incorrect dependency trees.

6 Conclusion and Future Work
We have presented our progress in developing a translation
process from natural language into symbolic form that is, it-
self, expressible in the same symbolic form. Even though
the meta-level knowledge developed in the context of this pa-
per was engineered, our initial results provide some confi-
dence that the meta-level knowledge itself could be acquired
through a process of Machine Coaching, as is the case with
the object-level knowledge. This, in turn, suggests an affir-
mative answer to the two questions posed in this paper, pro-
viding for a translation process that is amenable to dynamic
change in an elaboration tolerant manner [McCarthy, 1998].

Towards solidifying our initial work and findings, we are
currently in the process of porting the meta-level knowledge
from SWI-Prolog to Prudens, a first-order logic language and
framework (http://cognition.ouc.ac.cy/prudens/) with seman-
tics that supports directly the paradigm of Machine Coaching.
This will be followed by the undertaking of a quantitative em-
pirical study to evaluate the efficiency, effectiveness, and ex-
plainability of a machine-coachable translation process.

More specific goals to be pursued in future work include:

• demonstrating the feasibility of machine coaching for the
object-level task by utilizing engineered meta-rules;

• evaluating more thoroughly the ability of our engineered
meta-level knowledge to cope with a varied collection of
advice sentences of the types already supported;

• examining how the sentence types that are supported can be
extended (e.g., by supporting negation, logical connectors,
implied meanings, pronoun disambiguation, textual entail-
ment [Levesque et al., 2012; Korman et al., 2018]);

• supporting other natural languages, and quantifying the ex-
tent to which meta-level knowledge developed for one nat-
ural language can be transferred (even partially) to another;
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• experimenting with the use of machine learning techniques
for the acquisition of meta-level knowledge;

• acquiring meta-level knowledge through a Verbal Coaching
Interface, analogously to the acquisition method of object-
level knowledge that is described in this paper.
The last direction from above raises, in fact, certain inter-

esting theoretical questions: Is there a meta-language rich
enough to support its own verbal-coachability without the
need for the involvement of experts? Is there a way to decide
or to prove this claim? Or is there a need for an infinite hierar-
chy of meta-languages needed to support the verbal-coaching
of knowledge at lower levels of the meta-language hierarchy?

Even without concrete answers to these theoretical ques-
tions, central in our future work is to include a knowledge-
based translation process in a cognitive assistant that can be
verbally-coached, and which will also support the machine-
coaching (even if not the verbal-coaching) of the translation
process itself, so that the latter can improve over time and
adapt to the linguistic particularities of its current user.
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A Evaluation Data and Results

Sentence 1: Students are smart.
Type: 1.1.1. Simple Declarative To-Be Sentences with Ad-
jective or Noun Predicate.
Generated Rule:

student(X1) implies smart(X1);

Sentence 2: Eagle is a bird.
Type: 1.1.1. Simple Declarative To-Be Sentences with Ad-
jective or Noun Predicate.
Generated Rule:

bird(eagle);

Sentence 3: Gifts from my wife are precious.
Type: 1.1.1. Simple Declarative To-Be Sentences with Ad-
jective or Noun Predicate (as part of a complex sentence).
Generated Rule:

gift(X1) implies precious(X1);

Sentence 4: John is working.
Type: 1.1.2. Simple Declarative To-Be Sentences with Verb
Predicate.
Generated Rule:

work(john);

Sentence 5: Students are studying.
Type: 1.1.2. Simple Declarative To-Be Sentences with Verb
Predicate.
Generated Rule:

student(X1) implies study(X1);

Sentence 6: Birds have wings.
Type: 1.2.1. Simple Declarative Verb Sentences with Object.
Generated Rule:

birds(X2), wing(X1) implies have(X2, X1);

Sentence 7: A man cries.
Type: 1.2.2. Simple Declarative Verb Sentences without Ob-
ject.
Generated Rule:

man(X1) implies cry(X1);

Sentence 8: John speaks.
Type: 1.2.2. Simple Declarative Verb Sentences without Ob-
ject.
Generated Rule:

speak(john);

Sentence 9: Eagles fly high.
Type: 1.2.2. Simple Declarative Verb Sentences without Ob-
ject (as part of a complex sentence).
Generated Rule:

eagles(X1) implies fly(X1);

Sentence 10: Answer the phone.
Type: 2. Simple Imperative Sentences.
Generated Rule:

phone(X1) implies answer(X1);

Sentence 11: If John is busy, send SMS.
Type: 3.1.1. Imperative Conditional Sentences (If/When
SDC 1.1.1, SIC).
Generated Rule:

busy(john), sms(X1) implies send(X1);

Sentence 12: If John is working, send SMS.
Type: 3.1.1. Imperative Conditional Sentences (If/When
SDC 1.1.2, SIC).
Generated Rule:
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work(john), sms(X1) implies send(X1);

Sentence 13: If John has a phone, then send SMS.
Type: 3.1.2. Imperative Conditional Sentences (If SDC 1.2.1,
then SIC).
Generated Rule:

phone(X3), have(john, X3), sms(X1) implies send(X1);

Sentence 14: Send SMS when John is busy.
Type: 3.1.3. Imperative Conditional Sentences (SIC if/when
SDC 1.1.1).
Generated Rule:

busy(john), sms(X1) implies send(X1);

Sentence 15: Send SMS if busy.
Type: 3.1.4. Imperative Conditional Sentences (SIC if/when
SDC with implied Subject).
Generated Rule:

busy, sms(X1) implies send(X1);

Sentence 16: If tired, play the guitar.
Type: 3.1.4. Imperative Conditional Sentences (If/When
SDC with implied Subject, SIC).
Generated Rule:

tired, guitar(X1) implies play(X1);

Sentence 17: If John is clever, Anna is happy.
Type: 3.2.1. Declarative Conditional Sentences (If/When
SDC 1.1.1, SDC 1.1.1).
Generated Rule:

clever(john) implies happy(anna);

Sentence 18: When John is bad, Anna is crying.
Type: 3.2.1. Declarative Conditional Sentences (If/When
SDC 1.1.1, SDC 1.1.2).
Generated Rule:

bad(john) implies cry(anna);

Sentence 19: When boss pays well, employees are happy.
Type: 3.2.1. Declarative Conditional Sentences (If/When
SDC 1.2.2 as part of a complex sentence, SDC 1.1.1).
Generated Rule:

pay(boss), employee(X1) implies happy(X1);

Sentence 20: If John is rich, then Anna has money.
Type: 3.2.2. Declarative Conditional Sentences (If SDC
1.1.1, then SDC 1.2.1).
Generated Rule:

rich(john), money(X1) implies have(anna, X1);

Sentence 21: Dad is happy when paint shines.
Type: 3.2.3. Declarative Conditional Sentences (SDC 1.1.1
if/when SDC 1.2.2).
Generated Rule:

paint(X3), shine(X3), dad(X1) implies happy(X1);

Sentence 22: Dad washes the car when the sun shines.
Type: 3.2.3. Declarative Conditional Sentences (SDC 1.2.1
if/when SDC 1.2.2).
Generated Rule:

sun(X3), shine(X3), car(X1), dad(X2)
implies wash(X2, X1);

Sentence 23: When tired, head is aching.
Type: 3.2.4. Declarative Conditional Sentences (If/When
SDC with implied Subject, SDC 1.1.2).
Generated Rule:

tired, head(X1) implies ache(X1);

B Engineered Meta-Level Knowledge

:- dynamic pos/3. :- dynamic ne/3.
:- dynamic root/4. :- dynamic det/4.
:- dynamic dobj/4. :- dynamic advmod/4.
:- dynamic advcl/4. :- dynamic punct/4.
:- dynamic nsubj/4. :- dynamic cop/4.
:- dynamic mark/4. :- dynamic case/4.
:- dynamic nmod/4. :- dynamic amod/4.
:- dynamic nmod_poss/4. :- dynamic aux/4.
:- dynamic ccomp/4. :- dynamic ner/3.

%Utilities %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% addvarlist - Add indexed var list
addvarlist(0, _, []).

addvarlist(N, OFFSET, [[VARNAME]|BASEVLL]) :-
N > 0,
VARINDEX is OFFSET + N,
string_concat(‘X’, VARINDEX, VARNAME),
PREVN is N - 1,
addvarlist(PREVN, OFFSET, BASEVLL).

% addvar - Add indexed var
addvar(0, _, []).

addvar(N, OFFSET, [VARNAME|BASEVL]) :-
N > 0,
VARINDEX is OFFSET + N,
string_concat(‘X’, VARINDEX, VARNAME),
PREVN is N - 1,
addvar(PREVN, OFFSET, BASEVL).

% Meta-Level Knowledge Definition %%%%%%%%%%%
% Simple TO BE Clauses w. adj. or noun pred.
sdc(_, W1, [[W1]], [[W2]], [[]], [[]]) :-
cop(W1, P1, be, _),
nsubj(W1, P1, W2, P2), ner(_, W2, P2), !.
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sdc(OFFSET, W1, [[W1]], HVL, [[W2]], BVL) :-
cop(W1, P1, be, _), nsubj(W1, P1, W2, _),
addvarlist(1, OFFSET, HVL),
addvarlist(1, OFFSET, BVL).

% Simple TO BE Clauses with verb Predicate
sdc(_, W1, [[W1]], [[W2]], [[]], [[]]) :-
aux(W1, P1, be, _),
nsubj(W1, P1, W2, P2), ner(_, W2, P2), !.

sdc(OFFSET, W1, [[W1]], HVL, [[W2]], BVL) :-
aux(W1, P1, be, _), nsubj(W1, P1, W2, _),
addvarlist(1, OFFSET, HVL),
addvarlist(1, OFFSET, BVL), !.

% Simple Transitive Verb Clauses
sdvc( _, W1,

[[W1]], [[W2, W3]], [[]], [[]]) :-
pos(TAG, W1, P1),
sub_string(TAG, 0, _, _, ‘vb’ ),
nsubj(W1, P1, W2, P2), ner(_, W2, P2),
dobj(W1, P1, W3, P3), ner(_, W3, P3), !.

sdvc( OFFSET, W1,
[[W1]], [[W2|HVL]], [[W3]], BVL) :-

pos(TAG, W1, P1),
sub_string(TAG, 0, _, _, ‘vb’),
nsubj(W1, P1, W2, P2), ner(_, W2, P2),
dobj(W1, P1, W3, _), addvar(1, OFFSET, HVL),
addvarlist(1, OFFSET, BVL), !.

sdvc( OFFSET, W1,
[[W1]], [HVL], [[W2]], BVL) :-

pos(TAG, W1, P1),
sub_string(TAG, 0, _, _, ‘vb’),
nsubj(W1, P1, W2, _),
dobj(W1, P1, W3, P3), ner(_, W3, P3),
addvar(1, OFFSET, PHVL),
append(PHVL, [W3], HVL),
addvarlist(1, OFFSET, BVL), !.

sdvc( OFFSET, W1,
[[W1]], [HVL], [[W2], [W3]], BVL) :-

pos(TAG, W1, P1),
sub_string(TAG, 0, _, _, ‘vb’ ),
nsubj(W1, P1, W2, _), dobj(W1, P1, W3, _),
addvar(2, OFFSET, HVL),
addvarlist(2, OFFSET, BVL), !.

% Simple Verb Clauses
sdvc(_, W1, [[W1]], [[W2]], [[]], [[]]) :-
pos(TAG, W1, P1),
sub_string(TAG, 0, _, _, ‘vb’ ),
nsubj(W1, P1, W2, P2), ner(_, W2, P2), !.

sdvc(OFFSET, W1, [[W1]], HVL, [[W2]], BVL) :-
pos(TAG, W1, P1),
sub_string(TAG, 0, _, _, ‘vb’ ),
nsubj(W1, P1, W2, _),
addvarlist(1, OFFSET, HVL),
addvarlist(1, OFFSET, BVL).

% Simple Imperative Clauses with subject
sic([[W1]], [[‘X1’]], [[W2]], [[‘X1’]]) :-
pos(TAG, W1, P1),

sub_string(TAG, 0, _, _, ‘vb’ ),
dobj(W1, P1, W2, _), !.

% Simple Imperative Clauses without subject
sic([[W1]], [[‘X1’]], [[]], [[]]) :-
pos(TAG, W1, _),
sub_string(TAG, 0, _, _, ‘vb’ ).

% Simple Imperative Sentences
sis(HTL, HVL, BTL, BVL) :-
root(root, 0, W1, _),
sic([[W1]], HVL, BTL, BVL),
append([], [[W1]], HTL).

% Simple Declarative Sentences
sds(HTL, HVL, BTL, BVL) :-
root(root, 0, W1, _),
sdc(0, W1, HTL, HVL, BTL, BVL), !.

sds(HTL, HVL, BTL, BVL) :-
root(root, 0, W1, _),
sdvc(0, W1, HTL, HVL, BTL, BVL).

% Simple IF conditional clause A
scc([[]], [[]], BTL, BVL) :-
mark(W1, P1, ‘if’, _), advcl(_, _, W1, P1),
sdvc(2, W1, [[W1]], CHVL, CBTL, CBVL),
append(CBTL, [[W1]], BTL),
append(CBVL, CHVL, BVL), !.

% Simple WHEN conditional clause A
scc([[]], [[]], BTL, BVL) :-
advmod(W1, P1, when, _), advcl(_, _, W1, P1),
sdvc(2, W1, [[W1]], CHVL, CBTL, CBVL),
append(CBTL, [[W1]], BTL),
append(CBVL, CHVL, BVL), !.

% Simple IF conditional clause B
scc([[]], [[]], BTL, BVL) :-
mark(W1, P1, ‘if’, _), advcl(_, _, W1, P1),
sdc(1, W1, [[W1]], CHVL, CBTL, CBVL),
append(CBTL, [[W1]], BTL),
append(CBVL, CHVL, BVL), !.

% Simple WHEN conditional clause B
scc([[]], [[]], BTL, BVL) :-
advmod(W1, P1, when, _), advcl(_, _, W1, P1),
sdc(1, W1, [[W1]], CHVL, CBTL, CBVL),
append(CBTL, [[W1]], BTL),
append(CBVL, CHVL, BVL), !.

% Simple IF cond. clause w. implied subject
scc([[]], [[]], [[W1]], [[]]) :-
mark(W1, P1, ‘if’, _), advcl(_, _, W1, P1), !.

% Simple WHEN cond. clause w. implied subject
scc([[]], [[]], [[W1]], [[]]) :-
advmod(W1, P1, when, _), advcl(_, _, W1, P1).

ruleterms(HTL, HVL, BTL, BVL) :-
scc(HTL, HVL, BTL, BVL).
ruleterms(HTL, HVL, BTL, BVL) :-
sds(HTL, HVL, BTL, BVL), !.
ruleterms(HTL, HVL, BTL, BVL) :-
sis(HTL, HVL, BTL, BVL).
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