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Abstract
The following system description presents our approach to the detection of fake news in texts. The given
task has been framed as a multi-class classification problem. The multi-class classification problem is
one in which a target variable such as the given class label is associated with every input chunk.

In order to assign class labels to the given documents, we opted for RoBERTa (A Robustly Optimized
BERT Pretraining Approach) as a neural network architecture for sequence classification. Starting off
with a pre-trained model for language representation we fine-tuned this model on the given classifica-
tion task with the provided annotated data in supervised training steps.
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1. Introduction

The proliferation of disinformation online, has given rise to a lot of research on automatic fake
news detection. CLEF 2021 - CheckThat! Lab [1, 20] considers disinformation as a communica-
tion phenomenon. By detecting the use of various linguistic features in communication, it takes
into account not only the content but also how a subject matter is communicated.

The shared task [2] defines the following subtasks:

Subtask A Given the “textual content” of an article, specify a credibility level for the content
ranging between “true” and “false” including “other”.

Subtask B Given the “textual content” of an article, specify a tpical domain covered by the
content.

In this work, we covered our approach on both multi-class classification tasks by detecting
fake news in the former and assigning a topical domain in the latter task. To build our models,
both subtasks only textual content is given as input. Below, we describe the systems built for
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these two subtasks. At the core of our systems is RoBERTa [3], a pre-trained model based on
the Transformer architecture [4].

2. Related Work

The goal of the shared task is to investigate automatic techniques for identifying various
rhetorical and psychological features of disinformation campaigns. A comprehensive survey
on fake news has been presented by Zhou and Zafarani [5]. Based on the structure of data
reflecting different aspects of communication, they identified four different perspectives on fake
news: (1) the false knowledge it carries, (2) its writing style, (3) its propagation patterns, and (4)
the credibility of its creators and spreaders.

The shared task emphasizes communicative styles that systematically co-occur with per-
suasive intentions of (political) media actors. Similar to de Vreese et al. [6], propaganda and
persuasion is considered as an expression of political communication content and style. Hence,
beyond the actual subject of communication, the way it is communicated is gaining importance.

We build our work on top of this foundation by first investigating content-based approaches
for information discovery. Traditional information discovery methods are based on content:
documents, terms, and the relationships between them [7]. They can be considered as general
Information Extraction (IE) methods, automatically deriving structured information from un-
structured and/or semi-structured machine-readable documents. Communities of researchers
contributed various techniques from machine learning, information retrieval, and computational
linguistics to the different aspects of the information extraction problem. From a computer
science perspective, existing approaches can be roughly divided into the following categories:
rule-based, supervised, and semi-supervised. In our case, we followed the supervised approach
by reframing the complex language understanding task as a simple classification problem. Text
classification also known as text tagging or text categorization is the process of categorizing
text into organized groups. By using Natural Language Processing (NLP), text classifiers can
automatically analyze human language texts and then assign a set of predefined tags or cate-
gories based on their content. Historically, the evolution of text classifiers can be divided into
three stages: (1) simple lexicon- or keyword-based classifiers, (2) classifiers using distributed
semantics, and (3) deep learning classifiers with advanced linguistic features.

2.1. Deep Learning for Information Extraction

Recent work on text classification uses neural networks, particularly Deep Learning (DL).
Badjatiya et al. [8] demonstrated that these architectures, including variants of recurrent neural
networks (RNN) [9, 10, 11], convolutional neural networks (CNN) Zhang et al. [12], or their
combination (CharCNN, WordCNN, and HybridCNN), produce state-of-the-art results and
outperform baseline methods (character n-grams, TF-IDF or bag-of-words representations).

2.2. Deep Learning architectures

Until recently, the dominant paradigm in approaching NLP tasks has been focused on the
design of neural architectures, using only task-specific data and word embeddings such as



those mentioned above. This led to the development of models, such as Long Short Term
Memory (LSTM) networks or Convolution Neural Networks (CNN), that achieve significantly
better results in a range of NLP tasks than less complex classifiers, such as Support Vector
Machines, Logistic Regression or Decision Tree Models. Badjatiya et al. [8] demonstrated that
these approaches outperform models based on character and word n-gram representations. In
the same paradigm of pre-trained models, methods like BERT [13] and XLNet [14] have been
shown to achieve state-of-the-art performance in a variety of tasks.

2.3. Pre-trained Deep Language Representation Model

Indeed, the usage of a pre-trained word embedding layer to map the text into vector space which
is then passed through a neural network, marked a significant step forward in text classification.
The potential of pre-trained language models, as e.g. Word2Vec [15], GloVe [16], fastText [17],
or ELMo [18] to capture the local patterns of features to benefit text classification, has been
described by Castelle [19]. Modern pre-trained language models use unsupervised learning
techniques such as creating RNNs embeddings on large texts corpora to gain some primal
“knowledge” of the language structures before a more specific supervised training steps in.

2.4. About BERT and RoBERTa

BERT stands for Bidirectional Encoder Representations from Transformers. It is based on the
Transformer model architectures introduced by Vaswani et al. [4]. The general approach consists
of two stages: first, BERT is pre-trained on vast amounts of text, with an unsupervised objective
of masked language modeling and next-sentence prediction. Second, this pre-trained network is
then fine-tuned on task specific, labeled data. The Transformer architecture is composed of two
parts, an Encoder and a Decoder, for each of the two stages. The Encoder used in BERT is an
attention-based architecture for NLP. It works by performing a small, constant number of steps.
In each step, it applies an attention mechanism to understand relationships between all words
in a sentence, regardless of their respective position. By pre-training language representations,
the Encoder yields models that can either be used to extract high quality language features from
text data, or fine-tune these models on specific NLP tasks (classification, entity recognition,
question answering, etc.). We rely on RoBERTa [3], a pre-trained Encoder model which builds
on BERT’s language masking strategy. However, it modifies key hyperparameters in BERT such
as removing BERT’s next-sentence pre-training objective, and training with much larger mini-
batches and learning rates. Furthermore, RoBERTa was also trained on an order of magnitude
more data than BERT, for a longer amount of time. This allows RoBERTa representations to
generalize even better to downstream tasks compared to BERT. In this study, RoBERTa is at the
core of each solution of the given subtasks.

3. Dataset

The data for the task was developed during the CLEF-2021 CheckThat! campaign [1, 20, 2]
and provided by Shahi et al. [21]. The AMUSED framework presented by Shahi [22] was used
for data collection. Both subtasked were framed as multi-class classification problem. Class
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Figure 1: Label distribution - training set

label were provided as credibility levels {false, partially false, true, other} and topical categories
{health, economy, crime, climate, elections, and education} for each subtask, respectively. The
content parts are distributed between title and body of messages. Both field were concatenated
to serve as the input for training.

4. Exploratory data analysis

Unbalanced class distribution Imbalance in data can exert a major impact on the value
and meaning of accuracy and on certain other well-known performance metrics of an analyt-
ical model. Figure 1 depicts a clear skew towards false information and health information,
respectively, in the respective subtask.

Token count Transformer-based models are unable to process long sequences due to their
self-attention mechanism, which scales quadratically with the sequence length. BERT-based
models enforce a hard limit of 512 tokens, which is usually enough to process the majority of
sequences in most benchmark datasets. Statistical summary of token counts in Table 1, however,
suggests that most of the sequences of the training set exceed this limit. Thus, anything beyond
this limitation will be truncated.

5. Our approach

In this section, we provide a general overview of our approach to both subtasks.

5.1. Experimental setup

Model Architecture Subtasks A and B are both given as a multi-class classification problem.
Our model for this subtask is based on RoBERTa. For the classification task, fine-tuning is



Table 1
Statistical summary of token counts on the training set.

fake news corpus topic domain corpus
doc count 738 260
mean 729.94 879.42
std 769.98 878.23
min 14 91
25% 305.25 353.75
50% 536.00 670.00
75% 859.75 965.25
max 5828 5655

performed using RobertaForSequenceClassification[23] – roberta-base – as the pre-trained model.
RobertaForSequenceClassification optimizes for Binary Cross Entropy Loss using an AdamW
optimizer with an initial learning rate set to 2e-5. Fine-tuning is done on NVIDIA TESLA P100
GPU using the Pytorch [24] framework with a vocabulary size of 50265 and an input size of 512.
The model is trained to optimize the objective for 3 epochs. To estimate the performance of the
resulting models we have chosen a ratio of 82/18 to split the data into training and validation
set.

Input Embeddings The input embedding layer converts the inputs into sequences of features:
word-level sentence embeddings. These embedding features will be further processed by the
latter encoding layers.

Word-Level Sentence Embeddings A sentence is split into words 𝑤1, ..., 𝑤𝑛 with length
of n by the WordPiece tokenizer [25]. The word 𝑤𝑖 and its index 𝑖 (𝑤𝑖’s absolute position in the
sentence) are projected to vectors by embedding sub-layers, and then added to the index-aware
word embeddings:

�̂�𝑖 = 𝑊𝑜𝑟𝑑𝐸𝑚𝑏𝑒𝑑(𝑤𝑖)

�̂�𝑖 = 𝐼𝑑𝑥𝐸𝑚𝑏𝑒𝑑(𝑖)

ℎ𝑖 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(�̂�𝑖 + �̂�𝑖)

Attention Layers Attention layers [26, 27] aim to retrieve information from a set of context
vectors 𝑦𝑗 related to a query vector 𝑥. An attention layer first calculates the matching score 𝑎𝑗
between the query vector 𝑥 and each context vector 𝑦𝑗 . Scores are then normalized by softmax:

𝑎𝑗 = 𝑠𝑐𝑜𝑟𝑒(𝑥, 𝑦𝑗)

𝛼𝑗 = 𝑒𝑥𝑝(𝑎𝑗)/Σ𝑘𝑒𝑥𝑝(𝑎𝑘)

The output of an attention layer is the weighted sum of the context vectors w.r.t. the softmax
normalized score: 𝐴𝑡𝑡𝑋→𝑌 (𝑥, {𝑦𝑗}) = Σ𝑗𝛼𝑗𝑦𝑗 . An attention layer is called self-attention
when the query vector 𝑥 is in the set of context vectors 𝑦𝑗 . Specifically, we use the multi-head
attention following Transformer [4].



fake news corpus topic domain corpus
accuracy 0.60 0.83
F1 0.43 0.76
accuracy_and_F1 0.52 0.79

Table 2
Evaluation measures on the best performing model checkpoint on the validation set.

Rank Team F1-macro
1 sushmakumari 0.8376451772
2 Saud 0.514230825
3 kannanrrk 0.5034290158
4 jmartinez595 0.4680478564
5 hariharanrl 0.448832841
6 cipriancus 0.4463072939
7 Huertas97 0.4142550112
8 pHartl 0.4041478353
9 boby024 0.4013434521
10 nomanashraf712 0.3892308335
11 SaifuddinSohan 0.3822517154
12 NLytics 0.386246366
13 Ninko 0.3579356596

Table 3
Results on subtask A

Rank Team F1-macro
1 hariharanrl 0.8813840965
2 sushmakumari 0.8552061398
3 Ninko 0.8410300885
4 kannanrrk 0.817812671
5 nomanashraf712 0.7896621462
6 architap 0.786037089
7 NLytics 0.7310895828
8 Huertas97 0.676509793
9 ep 0.4791621206
10 boby024 0.4484680905
11 ashik2580 0.1450648056
12 fazlfrs 0.1450648056
13 azaharudue 0.1282925881

Table 4
Results on subtask B

Target Encoding We encode the target labels using a multi-label binarizer as an analog of
one-hot aka one-of-K scheme to multiple labels.

5.2. Results and Discussion

We participated in both text classification subtasks. Official evaluation results on the test set
are presented in Table 3 and Table 4 for each subtask, respectively. We focused on suitable
combinations of deep learning methods as well as their hyperparameter settings. Finetuning
pre-trained language models like RoBERTa on downstream tasks has become ubiquitous in
NLP research and applied NLP. Even without extensive pre-processing of the training data,
we already achieve competitive results and can serve as strong baseline models which, when
fine-tuned, significantly outperform training models from scratch. The submission for each
subtask is based on the best performing model checkpoint on the validation set as shown in
Table 2.

When improving on the pretrained baseline models, class imabalance appears to be a primary
challenge. This is clearly reflected in Figure 2, in particular, for the fake news detection subtask.
The poor performance especially for the categories true and other, correlates with distribution
of training data across these categories.

A commonly used tactic to deal with imbalanced datasets is to assign weights to each label.
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(b) topic domain identification

Figure 2: Confusion matrix for each subtask on the validation set.

Alternative solutions for coping with unbalanced datasets for supervised machine learning are
undersampling or oversampling. Undersampling only considers a subset of an overpopulated
class to end up with a balanced dataset. With the same goal oversampling creates copies of the
unbalanced classes. Overfitting poses the most difficult challenge in this experiment, reducing
its generalizability.

With the above findings, we achieve state of the art performance on the text classification
datasets. RoBERTa has proven to be powerful language representation model for various natural
language processing tasks. As the results of this study show, RoBERTa is also an effective tool
for multi-class text classification. In the future, we will probe more insight of BERT on how it
works and how to counteract its tendency to overfitting.

To further improve our the trained baseline model, we suggest to use Longformer[28] as a
base model. Trained from RoBERTa[3], it addresses the problem of long sequences by replacing
the attention matrices by sparse matrices, thus, allowing up to 4096 position embeddings.

6. Conclusion and Future work

In future work, we plan to investigate more recent neural architectures for language representa-
tion such as T5 [29] and GPT-3 [30].

Furthermore, we expect great opportunities for transfer learning from the areas such as
argumentation mining [31] and offensive language detection [32]. To deal with data scarcity as
a general challenge in natural language processing, we examine the application of concepts
such as active learning, semi-supervised learning [33] as well as weak supervision [34].
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