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Abstract
This paper provides an overview of SpRadIE, the Multilingual Information Extraction Task of CLEF
eHealth 2021 evaluation lab. The challenge targets information extraction from Spanish radiology re-
ports, and aims at providing a standard evaluation framework to contribute to the advancement in the
field of clinical natural language processing in Spanish.

Overall seven different teams participated, trying to detect seven named entities and hedge cues. In-
formation extraction from radiology reports has particular challenges, such as domain specific language,
telegraphic style, abundance of non-standard abbreviations and a large number of discontinuous, as well
as overlapping entities. Participants addressed these challenges using a variety of different classifiers
and introduced multiple solutions. The most successful approaches rely on multiple neural classifiers
in order to deal with overlapping entities.

As a result of the challenge, a manually annotated dataset of radiology reports in Spanish has been
made available. To our knowledge this is the first public challenge for named entity recognition and
hedge cue detection for radiology reports in Spanish.
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1. Introduction and Motivation

In the last years, the volume of digitally available information of the medical domain has been
in constant growth. This is due especially to the widespread adoption of clinical information
systems and electronic health records (EHRs). Consequently, this is leading to the progressive
adoption of natural language processing applications in healthcare because of its recognized
potential to search, analyze and interpret patient datasets. Physicians spend a lot of time
inputting patients data into EHR systems, most of it stored as narratives of free text. The
extraction of information contained in these texts is useful for many purposes from which
some of the most relevant are: diagnostic surveillance through automated detection of critical
observations; query based case retrieval; quality assessment of radiologic practice; automatic
content analysis of report databases; and clinical support services integrated in the clinical
workflow [1].

There are many types of medical reports within an electronic health record, such as chart
notes, case notes, progress notes, radiology reports and discharge reports. Some of them are
written in highly specialized and local vocabulary and in the special case of radiology reports,
they may have non-standard abbreviations, typos and ill-formed sentences. Because of the
particularities of the medical domain, clinical corpora are difficult to obtain. Clinical records
are of sensitive nature, so they are usually not published, and, if done so, they have to be
anonymized. Moreover, the highly specialized and local vocabulary makes the annotation a
difficult and expensive task.

Most of the currently available resources on clinical report processing are for English. For
Spanish, the availability of resources is much more limited, despite being one of the languages
with more native speakers in the world. In particular, there are very few available annotated
corpora (see Section 2).

In this context, we publish a novel corpus through the organization of the SpRadIE challenge,
a task proposed in the context of the CLEF eHealth 2021 evaluation lab [2]1. This corpus is a
reviewed version of a previously annotated and anonymized corpus of Spanish radiology reports
[3, 4]. With SpRadIE we intend to collaborate to the advancement in the automatic processing
of medical texts in Spanish, while offering participants the opportunity to submit novel systems
and compare their results using the same dataset and a standard evaluation framework. To our
knowledge, SpRadIE is the first information extraction challenge on Spanish radiology reports.

More concretely, the SpRadIE challenge dataset consists of a corpus of pediatric ultrasound
reports from an Argentinian public hospital. These reports are generally written within a hospital
information system by direct typing into a computer a single section of plain text, where the
most relevant findings are described. The reports are written using standard boilerplate that
guide physicians on the structuring when there are no anomalous findings. However, most of
the times they are written in free text to be able to describe the findings discovered in anomalous
studies. The fact that input is free text and that anomalies are often found and reported results
in great variations in the content of the reports and in their size, ranging from 8 to 193 words.

SpRadIE offers multiple challenges that need to be addressed with creative solutions:

Low resources: The availability of linguistic resources in Spanish is greatly limited in com-
1https://sites.google.com/view/spradie-2020/
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parison to high-resource languages such as English. In particular, there are no specific
terminologies for the radiology domain in Spanish.

Domain-specific language: The vocabulary used in radiology reports is specific to the ra-
diology domain. The Radiological Society of North America (RSNA) produced Radlex
(Radiology Lexicon)2 an extensive, dedicated and comprehensive set of radiology terms
in English, for use in radiology reporting, decision support, data mining, data registries,
education and research. Besides, SNOMED CT (Systematized Nomenclature of Medicine,
Clinical Terms)3 is considered to be the most comprehensive, multilingual clinical health-
care terminology (it includes Spanish) for medicine and has mappings to Radlex.

Ill-formed texts: Reports usually present ill-formed sentences, misspellings, inconsistencies
in the usage of abbreviations, and lack of punctuation and line breaks, as can be seen in
Figure 3.

Semantic Split: Training, development and test sets cover different semantic fields, so that
various topics and their corresponding entities that occur in the test dataset have not
been previously seen in the training dataset.

Small data: To approach realistic deployment conditions, only a small amount of annotated
reports has been available during training, and the rest has been used for evaluation.

Complex entities: The linguistic form of entities presents some particular difficulties: length-
ier entities with inner structure, embedded entities and discontinuities. Examples can be
found in Section 3.

In the past, some challenges have been organized for information extraction in the medical
domain in Spanish (see Section 2). However, our proposal covers a part of the domain spectrum
that was not covered by previous work: actual short reports written in haste with mistakes and
variability.

In this article we present the SpRadIE challenge and its results. The challenge aims at the
detection of seven different named entities as well as hedge cues from ultrasounds reports. Tar-
geted entities include anatomical entities and findings that describe a pathological or anomalous
event. Also negations and indicators of probability or future outcomes are to be detected. We
provide training, development and test datasets, and evaluate the participating systems using
metrics based on lenient and exact match.

Overall seven different teams participated in the task, with participants from Spain, Italy,
United Kingdom, and Colombia. In more than 70% of them, there is at least one Spanish native
speaker. Most teams experimented with different variations of neural networks, particularly
BERT-based approaches. However, there were also submissions based on Conditional Random
Fields (CRFs) and pattern rules. The presence of overlapping and discontinuous entities was
one of the biggest challenges of the task. In order to overcome this problem, several teams
developed multiple classifiers running in parallel, together with pre and post-processing steps
for the input/output of the classifiers.

2RadLex http://radlex.org/
3SNOMED CT https://www.snomed.org/
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The remainder of the paper is structured as follows. In the following Section we present
previous work for Spanish medical information extraction and Spanish corpora in the medical
domain. In Section 3 we describe the target of the annotation, detailing types of entities, their
distribution in the annotated dataset, some of their most prominent features and the difficulty
of the task as measured by human inter-annotator agreement. Then, Section 4 presents the
Evaluation setting. Participating systems and baselines are described in Section 5, while results
are discussed in Section 6. We finish with some conclusions and a hope for the advancement in
the automatic treatment of medical text in Spanish.

2. Previous work

In clinical care, many important patient related information is stored in textual format, sup-
plementing the structured information of electronic health records. To automatically access
and make use of this valuable information, methods of natural language processing (NLP),
like named entity recognition, relation extraction and negation detection, can be applied. In
order to train such methods, domain-related corpora have to be available. Medicine has many
sub-domains, such as radiology. The availability of specific corpora for handling them is of
utmost importance for the advancement of the BioNLP area.

Given the sensitive nature of medical data and the difficulty of its annotation process, only
very few corpora are available, and most of them are in English (e.g., CheXpert [5] and MIMIC-
CXR [6]). Moreover, most existing tools to process clinical text are also developed for English.
Nevertheless, in recent years the interest and need for processing non-English clinical text has
been increasing. In particular for Spanish, one of the languages with more native speakers in
the world.

Annotation of medical texts is a difficult task, particularly for clinical records. Wilbur et al. [7]
defined annotation guidelines to categorize segments of scientific sentences in research articles
of the biomedical domain. The first published guideline for the annotation of radiology reports
that we are aware of [3] has been reviewed and enhanced for the annotation of the dataset
provided in this challenge. Besides, there are some corpora of negations in Spanish clinical
reports [8, 9]. Finally, recently, PadChest, a corpora of 27,593 Spanish annotated radiology
reports has been published [10].

In the past, several challenges have been organized for information extraction in the medical
domain in Spanish. The CodiEsp shared task in CLEF-2020 [11] addressed clinical cases (longer
sentences and paragrahps, more consistent use of vocabulary and less typos than radiology
reports). The target of CodiEsp was to assign tags at a document level, and to identify text
spans that support the assignation of the tags. The eHealth-KD challenge4 and the CANTEMIST
shared task ,5 both part of IberLEF-SEPLN 2020, targeted the identification of named entities
and relations (at different levels of granularity in the types of entities) but in medical research
papers instead of clinical reports. Other challenges that targeted information extraction from
Spanish biomedical texts were PharmaCoNER [12] (detection of drug and chemical entities)
MEDDOCAN [13] (anonymization), TASS eHealth-KD 2018 Task 3 [14] and IberLEF eHealth-KD

4eHealth-KD: https://knowledge-learning.github.io/ehealthkd-2020/
5CANTEMIST: https://temu.bsc.es/cantemist/
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2019 and 2020 [15, 16].
Spanish negation detection in the biomedical domain is also a current subject of interest (see

NEGES 2018 Workshop on Negation in Spanish)6, that has some works for the medical domain
and [17, 18, 19, 20, 21].

Besides the approaches used in previously mentioned challenges, not much work has been
done for NER in Spanish clinical reports so far. Focusing in the radiology domain, only a few
publications target NER in the context of Spanish radiology reports [22, 23]. General overviews
about NLP in radiology can be seen in [1, 24].

3. Target of the challenge

The target of the task is Named Entity Recognition and Classification. As mentioned above,
these entities present several challenges. We describe the types of entities we are targeting and
then exemplify some of the challenges.

3.1. Classes of entities

Seven different classes of concepts in the radiology domain are distinguished. Since these
entities refer to very precise, complex concepts, they are realized by correspondingly complex
textual forms. Entities may be very long, sometimes even spanning over sentence boundaries,
embedded within other entities of different types and may be discontinuous. Moreover, different
text strings may be used to refer to the same entity, including abbreviations and typos.

Entities are formed by a word or a sequence of words, not necessarily continuous, and entities
can be embedded within other entities. The following entities are distinguished: Anatomical
Entity, Finding, Location, Measure, Type of Measure, Degree, and Abbreviation. Hedge cues are
also identified, distinguishing: Negation, Uncertainty, and Conditional-Temporal. Examples can
be seen in Figure 1.

As mentioned before, these entities present several challenges. Examples of longer, discontin-
uous and overlapping entities can be found in Figure 2.

3.2. Annotated dataset

The data consists of 513 ultrasonography reports provided by a public pediatric hospital in
Argentina. Reports are semi-structured and have orthographic and grammatical errors. They
have been anonymized in order to remove patient IDs, names and the enrollment numbers of
the physicians [3]. An example of a report can be seen in Figure 3. The annotated training and
development partitions of the dataset, and the unannotated test partition are available at the
webpage of the SpRadIE challenge https://sites.google.com/view/spradie-2020/.

Reports were annotated by clinical experts and then revised by linguists, using the brat
annotation tool [25]. Annotation guidelines and training were provided for both rounds of
annotations (see [3] for the first round). An example of an annotated excerpt can be seen in
Figure 4.

6NEGES 2018: https://aclweb.org/portal/content/neges-2018-workshop-negation-spanish
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Anatomical Entity Entities correspond-
ing to an anatomical part, for example "breast"
(pecho), "liver" (hígado), "right thyroid lobe"
(lóbulo tiroideo derecho).

Anatomical Entity⏞  ⏟  
vejiga llena
full bladder

Finding A pathological finding or diagno-
sis, for example: "cyst", "cyanosis".

No se detectaron

Finding⏞  ⏟  
adenomegalias

No adenomegalies were detected

Location It refers to a location in the body.
The location could by itself indicate of which
part of the body it is being talked about or it
could have a relation to an anatomical entity.
Examples of locations are: "walls", "cavity".

quistes en

Location⏞  ⏟  
región biliar

cysts in biliary region

Measure Expression of measure.

Diametro longitudinal:

Measure⏞  ⏟  
8.1 cm .

Longitudinal diameter: 8.1 cm.

Type of measure Expression indicating a
kind of measure.

Type of Measure⏞  ⏟  
Diametro longitudinal : 8.1 cm.
Longitudinal diameter: 8.1 cm.

Degree It indicates the degree of a finding
or some other property of an entity, for ex-
ample, “leve”, “levemente” (slight), “mínimo”
(minimal).

Degree⏞  ⏟  
ligera esplenomegalia
slight splenomegaly

Three subtypes of hedge cues are identified:

Negation

Negation⏞ ⏟ 
No se detectaron adenomegalias

No adenomegalies were detected

Conditional - Temporal Hedge cues in-
dicating that something occurred in the past
or may occur in the future. Also indicating a
conditional form.

Conditional-Temporal⏞  ⏟  
antecedentes de atresia

history of atresia

Uncertainty Hedge cues indicating a prob-
ability (not a certainty) that some finding may
be present in a given patient.

Uncertainty⏞  ⏟  
compatible con hipertrofia pilórica

compatible with pyloric hypertrophy

Figure 1: Classes of entities distinguished in radiological reports.

3.2.1. Distribution of entities

The distribution of entities is shown in Figure 5. The most frequent type, Anatomical Entity, has
more than 2,000 occurrences, and there are almost 1,500 Findings, but there are only 163 hedges,
and only 15 Conditional-Temporal hedges. It can be expected that performance of automatic
systems is poor in types of entities with such few examples.



Figure 2: Examples of longer, discontinuous and overlapping entities.

2a.
HIGADO de forma, tamano y ecoestructura normal.
VIA BILIAR intra y extrahepatica: no dilatada.
VESICULA BILIAR: de paredes finas sin imagenes endoluminales.
BAZO: tamano y ecoestructura normal.
Diametro longitudinal: 6.89 ( cm ) RETROPERITONEO VASCULAR: sin alteraciones.
No se detectaron adenomegalias.
Ambos rinones de formsa, tamano y situacion habitual.
Adecuada diferenciacion cortico-medular.
RD Diam Long: 5.8 cm RI Diam long: 6.1 cm Vejiga de caracteristicas normales.
No se observo liquido libre en cavidad abdomino-pelviana.

2y.
LIVER of regular form, size and echostructure.
Intra and extrahepatic BILE DUCT: non-dilated.
GALLBLADDER: thin walls and no endoluminal images.
SPLEEN: regular size and echostructure.
Longitudinal diameter: 6.89 ( cm ) VASCULAR RETROPERITONEAL: no alterations.
No adenomegalies were found.
Both kidneys of regular form, size and location.
Adequate corticomedullary differentiation.
RK Long diam: 5.8 cm LK Long diam: 6.1 cm Bladder of regular characteristics.
No free liquid was observed within the abdomino-pelvian cavity.

Figure 3: A sample report, with its translation to English. It shows abbreviations (“RD” for right kidney,
“RI” for left kidney, “Diam” for diameter), typos (“formsa” for “forma”), and inconsistencies (capitaliza-
tion of “Vejiga” because of start of sentence without a full stop.)

Moreover, the different types of entities differ a lot among themselves. While entities of the
Finding type have an average length of 2.35 words and Anatomical Entities are in average 1.9
words long, which is not a big difference. However, we can see a big difference in the number
of times words are repeated within each type of entity. In Figure 6 we can see that most of the
words in Type of Measure and Negation occur at least 10 times, as is shown by the long box,
meaning that the majority of words occur up to 10 times or even more. With quite a tall box,
we can see that words in Anatomical Entities also tend to occur a high number of times. In
contrast, most of the words in Findings or Locations occur less than 2 or 3 times. If entities are
more repetitive in their wording, it is easier for an automatic classifier to identify them.



Figure 4: A snippet of the report in Figure 1, with manual annotations. Abbreviations: AE — Anatomical
Entity, ABR — Abbreviation, MType — Type of Measure.

Figure 5: Distribution of entities by type in the annotated dataset.

3.2.2. Inter-annotator Agreement

Automatic classifiers will be expected to perform well in those cases where human annotators
have strong agreement, and worse in cases that are difficult for human annotators to identify
consistently.

We carried out a small study of inter-annotator agreement to assess the difficulty of the
task for trained human experts. Three trained linguists independently annotated 20 reports
(totalling 2,000 words and over 1,700 annotated entities) after reading the annotation guidelines
and sharing the annotations for two reports. The mean inter-annotator agreement was 𝜅 = .85.

In Figure 7 it can be seen that, among the frequent entities, Location is the one with lowest
agreement and variation in agreement. Degree also has low agreement, and the Uncertainty
hedge. No figures for Conditional-Temporal were obtained because there were few cases in the



Figure 6: Number of times that words are repeated within each type of entity.

dataset.
Thus, it can be expected that automatic classifiers perform worse in these categories than in

other that are more easily identified by humans, like Abbreviation, Anatomical Entity of Finding.

4. Evaluation setting

4.1. Dataset Partitions

Since reports are highly repetitive, almost half of the annotated corpus (207 reports) was used
as test set for evaluation. The test set was created by identifying terms belonging to a given
semantic field within the reports, and selecting all reports containing those terms. Thus, the
test set was guaranteed to contain words not in the training corpus, which was useful to assess



Figure 7: Variations in inter-annotator agreement across different types of entities, using Cohen’s
kappa coefficient. In the graphics, boxes range from the mean minus standard deviation to the mean
plus standard deviation, whiskers range from minimum to maximum.

Table 1
Words occurring only in test and development partitions.

test
ovario utero endometrio premicc postmicc pielocalicial ureter pielica
hepatopeto vci hepatofug suprahepatic peristaltismo ganglio tiroid
maxil lobul parotid traquea glandula cervical

development hipertension epiplon portal cardiac aorta corona

portability to (slightly) different domains. An additional development partition (45 reports)
was created with reports containing terms not in the training set or in the test set. The words
occurring only in development and test partitions can be seen in Table 1.

The remaining part of the dataset consisted of a training partition (175 reports), a development
partition (47 reports) and a test partition (45 reports).

4.2. Metrics

Submissions were evaluated using precision, recall and F1 scores, using both an exact and a
lenient matching scheme. Metrics were computed separately for each entity type. Therefore,
no credit is given for predictions with correct span but incorrect type. Global results were
obtained by micro-averaging. This way, the influence of each entity type in the global results is
proportional to its frequency in the test corpus.

We believe that small variations in the span of named entities do not severely affect the
quality of the results. Minor differences in the spans still provide useful information for possible
applications. Lenient matching can be used to give credit to partial matches in named entities.



For this challenge, we used as the main metric a micro-averaged F1 based on lenient match. We
also computed scores based on exact match as secondary metrics.

The lenient scores are calculated using the Jaccard index and based on the metrics used in
the Bacteria Biotope task of BioNLP 2013 [26]. The Jaccard index is used as a similarity measure
between a reference and a predicted entity. It is defined as the ratio of intersection over union
as follows:

𝐽(𝑟𝑒𝑓, 𝑝𝑟𝑒𝑑) =
𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑟𝑒𝑓, 𝑝𝑟𝑒𝑑)

𝑙𝑒𝑛𝑔𝑡ℎ(𝑟𝑒𝑓) + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑝𝑟𝑒𝑑)− 𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑟𝑒𝑓, 𝑝𝑟𝑒𝑑)

where 𝑟𝑒𝑓 represents the reference string of the gold standard and 𝑝𝑟𝑒𝑑 the corresponding
string which was predicted. Both, overlap and length are measured in characters. An exact
match has a value of 1.

To compute the lenient metrics, we first match reference and predicted entities pairwise. The
Jaccard index is used as the point-wise similarity to be optimized in the matching process. To
guarantee a global optimal matching in the general case, a bipartite graph matching algorithm
would be required. Instead, for simplicity, we implemented a greedy matching algorithm that
iterates over the ordered predicted entities and chooses the best matching reference entity. This
approach was tested using hand-crafted test cases specifically designed for complex situations,
and it always gave the expected matchings.

The matching process returns a set 𝑀 of matching pairs of reference and predicted entities.
Then, lenient precision and recall are computed as follows:

𝑃𝑅𝐸𝐶𝑙𝑒𝑛𝑖𝑒𝑛𝑡 =

∑︀
(𝑟𝑒𝑓,𝑝𝑟𝑒𝑑)∈𝑀 𝐽(𝑟𝑒𝑓, 𝑝𝑟𝑒𝑑)

𝑃

𝑅𝐸𝐶𝑙𝑒𝑛𝑖𝑒𝑛𝑡 =

∑︀
(𝑟𝑒𝑓,𝑝𝑟𝑒𝑑)∈𝑀 𝐽(𝑟𝑒𝑓, 𝑝𝑟𝑒𝑑)

𝑅

where 𝑃 and 𝑅 are the total number of predicted and reference entities respectively.
Exact precision and recall are computed using only exact matches, this is, those matches in

𝑀 with a similarity value of 1:

𝑃𝑅𝐸𝐶𝑒𝑥𝑎𝑐𝑡 =
|{(𝑟𝑒𝑓, 𝑝𝑟𝑒𝑑) ∈ 𝑀 : 𝐽(𝑟𝑒𝑓, 𝑝𝑟𝑒𝑑) = 1}|

𝑃

𝑅𝐸𝐶𝑒𝑥𝑎𝑐𝑡 =
|{(𝑟𝑒𝑓, 𝑝𝑟𝑒𝑑) ∈ 𝑀 : 𝐽(𝑟𝑒𝑓, 𝑝𝑟𝑒𝑑) = 1}|

𝑅

Our official scripts to compute the metrics were offered to the participants before evaluation
and are published in a public repository.7

5. Participating systems

Overall seven different teams participated in the shared task, with participants belonging to
institutions from Spain (4), Italy (2), UK (1) and Colombia (1). Most participating teams were

7https://github.com/francolq/spradie.



experimenting with different variations of neural networks, particularly transformer-based
approaches.

Team EdIE [27] (University of Edinburgh and Health Data Research, UK) and SINAI [28]
(Universidad de Jaén, Spain) rely on a pre-trained BERT model for Spanish, namely BETO [29].
EdIE uses an ensemble method, combining multiple BERT classifiers, with a dictionary, while
SINAI uses a single multiclass model for all entities. SWAP [30] (Università di Bari Aldo Moro,
Italy) instead relies on XLM-RoBERTa [31], and CTB [32] (Universidad Politécnica de Madrid,
Spain and Universidad del Valle, Colombia) on a multilingual version of BERT.

As an alternative to transformer-based models, team LSI [33] (Universidad Nacional de
Educación a Distancia and Escuela Nacional de Sanidad, Spain) uses a neural architecture with
a Bi-LSTM followed by a CRF layer.

Aside from neural approaches, a classical CRF approach was used by team HULAT [34]
(Universidad Carlos III de Madrid, Spain), and team IMS [35] (Università di Padova, Italy)
applied a pattern based approach. Moreover, most teams also explored the usage of different
techniques, and different models. Each team was allowed to submit up to four different runs.

Various teams opted for combinations of specialized classifiers instead of a single multiclass
model. This is the case of EdIE, combining multiple BETOs. CTB trained separate instances of
the same model to predict up to three overlapping entity types on the same token. The CRF
layer of the architecture implemented by the LSI team was actually a combination of parallel
CRFs specialized for different entity types. For negation, they used a separate model based on
transfer learning.

Most teams put much effort into pre- and particularly in post-processing, making most of the
differences within the four submissions for a team. Others submitted different architectures
or parameterizations of their neural architectures. This is the case for the SWAP team, which
experimented with architectures that are partially specialized for clinical text, partially optimized
for Spanish, and also multilingual approaches.

More detail on the particulars of each system can be seen in the individual papers in the
proceedings of the challenge.

5.1. Baselines

Two baselines were constructed: an instance-based learner based on string matching and an
off-the-shelf neural learner.

As previously mentioned, the annotated entities in SpRadIE dataset are very repetitive. For
this reason, the first simple baseline is an instance-based learner that relies on a simple string
matching approach. For each entity in the training set, we extract the different annotated strings
with a minimum length of two characters. Whenever a match is found in the test set, it is
classified just as it had been seen during training.

A second baseline system uses the Flair framework [36]. Very limited effort was put into
pre- and post-processing. Only spans of text tagged with overlapping entities were simplified
to a single entity, the most frequent one. The data was fed to a neural sequence tagger with
256 hidden layers and 0.3 locked dropout probability, including a CRF decoder appended at the
end. The model also utilizes a stack of Spanish fastText embeddings as well as contextual string
embeddings [37]. The model trained for a maximum of 20 epochs with a mini-batch size of 40,



Table 2
Overall results for the best performing system for each team on the SpRadIE task, sorted by lenient
micro-averaged F1.

lenient exact
Team PREC REC F1 PREC REC F1

EdIE (UK) – run2 87.24 83.85 85.51 81.88 78.70 80.26
LSI (Spain) – run1 90.28 78.33 83.88 86.17 74.76 80.07
CTB (Spain, Colombia) – run3 78.62 78.32 78.47 73.27 72.99 73.13
HULAT (Spain) – run1 78.38 73.08 75.64 67.28 62.73 64.92
SINAI (Spain) – run2 86.07 64.43 73.70 79.37 59.42 67.96
SWAP (Italy) – run1 70.18 51.14 59.17 56.75 41.35 47.84
IMS (Italy) – run1 9.29 57.62 16.00 5.45 33.77 9.38

String Matching Baseline 38.61 50.66 43.82 27.98 36.71 31.76
Flair Baseline 80.72 55.34 65.66 48.60 33.32 39.53

resulting in a 1,5 GB NER model.

6. Analysis of Results

In this section we present the results obtained by the seven teams in the task, together with
the baselines. Each team could submit up to four runs, however we just report the results of
the best performing run of each team in Table 2. Details for the rest of the runs can be seen
in the individual papers for each learner. Best scores for lenient precision, recall and F1 are
highlighted in bold. Table 3 shows the detail of performance for the 5 most frequent entity
types, which cover more than 80% of all entity mentions.

Baselines The string matching baseline provides a reference for a very naïve approach to the
task, without any kind of generalization. The Flair baseline is a reference of the performance that
can be obtained with a more sophisticated learning architecture but without putting effort into
optimization, pre- or post-processing. This second baseline already shows that for our problem
machine learning quickly outperforms the simple string match approach. While resulting in a
similar recall, the precision of the machine learning approach clearly improves.

Participating Teams Overall, EdIE achieved the best results in the challenge, for both lenient
and exact F1 score and recall. EdIE achieves the best results for all five most frequent entity
types. However, its performance is worse for less frequent concepts, such as Degree (54%),
Uncertainty (34%) or ContionalTemporal (0%).

The overall outcome of LSI is very close to EdIE in terms of F1, particularly for exact match.
In contrast to EdIE, LSI achieves a higher precision. Overall results are solid across entity types.
Similarly to EdIE, LSI has problems dealing with ContionalTemporal, with a performance of 0%.



Table 3
Detail of scores obtained by each team for lenient precision, recall and F1 across the 5 most frequent
types of entities, covering moree than 80% of all entity mentions. Best scores for entity type in bold,
best F1 also shadowed in grey.

Finding Anatomical Entity Location Abbreviation Measure
Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

EdIE 73% 76% 74% 88% 84% 86% 76% 63% 69% 96% 95% 95% 90% 86% 88%
LSI 82% 66% 73% 89% 78% 83% 84% 55% 67% 94% 88% 91% 92% 85% 88%
CTB 65% 74% 69% 84% 84% 84% 68% 64% 66% 85% 81% 83% 74% 76% 75%
HULAT 71% 67% 69% 88% 71% 79% 76% 62% 68% 91% 77% 84% 54% 73% 62%
SINAI 74% 74% 74% 91% 79% 84% 81% 59% 69% 87% 15% 26% 84% 81% 82%
SWAP 64% 52% 57% 78% 56% 65% 36% 46% 41% 78% 40% 53% 81% 55% 66%
IMS 60% 58% 59% 25% 69% 37% 25% 61% 35% 4% 55% 7% 24% 49% 32%

In contrast, CTB, the third ranked system, performs particularly well for ContionalTemporal
(67%), as well as for Anatomical Entities and Location. For the rest of concepts, results tend to
be about 5-10 points below the best system.
HULAT, opposed to the other three systems, uses a CRF instead of a neural architecture. It

achieves very similar results regarding lenient F1 in comparison to CTB, but has a drop in exact
F1. Overall the system performs quite well regarding Location, Finding, Negation, Uncertainty
and ContionalTemporal. In case of Measure, the system has a strong drop of performance in
comparison to the best system. More focus on this concept, would have certainly boosted the
performance further.

The SINAI team, while fifth in overall performance, achieved highest scoring results for two
of the most challenging entity types, namely, Finding and Location. Location was one of the
concepts where human annotators showed less consistency. Conversely, the system has got
a strong drop in performance regarding Abbreviations - about 70 points in comparison to the
lenient F1 of the best system. This might have strongly influenced the overall performance of
the system, as abbreviations occurs very frequently.
SWAP achieved mostly fair performance for all concepts. It performs well above the string

matching baseline and better than the Flair baseline for exact match. IMS provides a simple
pattern based approach, similar to our string matching baseline. It shows how such a simple
approach can easily obtain a lenient recall around 60%, which may be useful for applications
like information retrieval.

Performance across entity types It can be seen that the performance across entity types
has some correlation with repetitiveness of strings within entities of a given type and with the
consistency of human annotators.

Indeed, entities where annotators were less consistent, mainly Location (see Figure 7), overall
performance was lower, with a drop of more than 10% with respect to overall performance
in most cases, and 15% in the best performing systems. We believe this may be due to these
entities having a less defined reference than others, like Anatomical Entities.

The other major entity type with lower performance is Finding. In this case, we believe



less defined semantics may be a cause for difficulty, but also the form of these entities itself;
as described in Figure 6, words in Findings occur much less frequently than in other kinds of
entities.

Discussion Participating systems can be differentiated in three coarse groups with respect to
performance. The first group, consisting of the first two teams, both provide quite similar results
and have got some distance to the group in the middle field, consisting of the next three teams.
The remaining two teams show lower performance. While IMS describes an easy and quick
system to start with, and achieves therefore baseline performance, SWAP might have chosen an
inadequate architecture for the task. The authors finally submitted a run with XLM-RoBERTa,
although other systems performed better during development of their system. However, while
multilingual BERT performed best, BETO might have been a better option, as it is solely trained
on Spanish language data.

With respect to best performing systems, what seems to have the biggest impact in perfor-
mance is an architecture based on multiple classifiers, instead of a single multiclass model. The
only exception to this would be CTB, scoring third with a multiclass model. This seems to be
related to the phenomenon of overlapping entities, which is pervasive in the dataset.

Pre- and post-processing also made slight differences in performance, but less than differences
in the architecture of learners.

7. Conclusions

We have presented the results of the SpRadIE challenge for detection and classification of named
entities and hedge cues in radiology reports in Spanish.

Seven teams participated in the challenge, achieving good performance, with results well
above baselines. Although challenging entity types, like Finding, Location or hedge cues like
Conditional-Temporal barely reach 74% F1, Anatomical Entities, Measure or Abbreviation can
be recognized at almost 90% F1. This shows promising performance for integration within
productive workflows.

Among the different approaches to the problem, we have found that combinations of multiple
classifiers clearly outperform single multiclass models. Neural approaches specifically trained
for Spanish also tend to perform better than generic or multilingual approaches. Also pre- and
post-processing have a positive impact in performance.

Although Spanish has hundreds of millions of native speakers worldwide, not much work
has been done in information extraction from Spanish medical reports. It is important to note
that at least five of the seven participating teams have at least a Spanish native speaker. With
this challenge, we provided a standard evaluation framework for a domain of Spanish medical
text processing, namely radiology reports, that had not been previously addressed in this kind
of effort.

We hope that this challenge and the promising results obtained by participating systems
encourage other institutions to make resources publicly available, and thus contribute to the
advancement in the automatic processing of medical texts, specially in Spanish.
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