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Abstract.  We present an ontology of objects, functions, and generic shape 
representation that supports form-function reasoning.  By reasoning from the 
mechanical and other functions of objects to their geometric shape 
requirements, we deduce the generic shape representation of objects, which we 
represent as a partial boundary representation composed of primitive geometric 
shape elements and their spatial and other relations.  We use this ontology to 
model a knowledge base of everyday objects, including their generic shapes.  
This ontology can support applications such as product design and object 
recognition. 
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1 Introduction 

There is an emerging interest in automated reasoning support for product design 
applications, combining knowledge of functions, objects, generic shapes, and their 
interrelations, in a machine-understandable representation.  In this paper, we present 
an ontology to represent everyday objects intended for interaction with humans or 
with other objects.  An object’s usage is achieved through functions conducted by the 
object’s detailed shape.  While objects may have many differences at the detailed 
shape level, their functions could be described at a more generic level, using a 
common set of generic functions.  By reasoning about an object’s generic function 
decomposition, we could deduce its geometric shape requirements.  We embed these 
generic shape representations into the ontology, so that each object model carries its 
own generic shape data.  This ontology supports diverse applications including 
product design and object recognition. 

2 Related Works 

To support function-based design, a function decomposition method and 
vocabularies for describing the functions of mechanical components has been 
developed [9][11].  In this method, the overall function of a product is recursively 
decomposed into sub-functions until a primitive level is reached, where all functions 



have input and output in forms of energy, material, or information.  Each primitive 
sub-function is then mapped to a concept or mechanical component to obtain a 
product design. 

Through more systematic treatment, function-based taxonomies for design [6][10] 
have been proposed, including assembly-related and control-related functions of 
mechanical objects.  These taxonomies define a hierarchical structure among groups 
of functions, and propose a generic phrase structure that describes many functions 
across different domains.  However, they lack the completeness of an ontology in 
defining relations between the phrase elements used in function definitions, and their 
semantics.  For example, Kirschman & Fadel [6] define a sentence form to represent a 
function’s parameters, but forbid certain combinations of keywords from occurring 
together.  Without a way to encode semantic meaning, this knowledge cannot be 
represented in the taxonomy itself, and must be stated as a meta-level comment. 

Kitamura et al.’s Function and Behavior Representation Language (FBRL) 
includes an ontology of functions of artifacts.  They use this to model a coffee 
maker’s functionality and intended use, and anticipate unintended user behaviors [12].  
They have also applied this ontology to the design of a power plant [7] and 
manufacturing processes of industrial products [8]. 

Other works have explored the process of obtaining form from function.  Welch & 
Dixon describe the use of behavior graphs to map the function of subsystems of a part 
into specific forms [14].  Kim & Feng consider the synthesis of configuration shape of 
a mechanical part from its functional requirements at the early design stage [5].  
Camelo et al. [1] proposes a knowledge representation model to support synthesis in 
design based on four levels of abstraction: purpose function for the designer’s intent, 
action function as an abstraction of behavior, behavior as an abstraction of physical 
states, and structure as an abstraction of geometry. 

3 Object Ontology Modeling 

We have developed an ontology of objects with a generic shape representation 
[13], and used this to instantiate models for several dozen everyday objects, with an 
early emphasis on office furniture.  We use UML and Protégé for ontology modeling.  
We have converted a subset of this ontology (related to chairs) to Jess to support a 
prototype reasoning application that performs object classification for chairs at a 
symbolic level. 

3.1 Function Ontology 

We incorporate a function ontology based on existing function-based design 
research, shown in Fig. 1.  It is primarily based on Kirschman & Fadel’s function 
taxonomy [6], with some contribution from Stone & Wood [10].  
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Fig. 1. Function ontology (after Kirschman & Fadel 98, Stone & Wood 99) 

3.2 Part-Whole Representation of Objects and Features 

Manufactured objects are typically assembled from multiple components, where 
each component contributes some specific functionality.  We adopt a part-whole 
representation based on decomposing an object into a set of features and their spatial 
relationships, where a feature is a functionally significant subset of an object or 
another feature.  Each feature is characterized by its intended functions and usage 
information.  This feature-based decomposition can be carried out to any level of 
detail, although for real objects it necessarily halts at a finite depth. 

Some features could themselves be objects if considered separately.  Hence, we use 
a recursive data structure in which Object and Feature both derive from a Descriptor 
base class, and inherit the same data attributes from it, as shown in Fig. 2. 

 

Fig. 2. Part-whole representation of Object and Feature classes 



 

Fig. 3. PropertyNode hierarchy for part-whole data attributes 

A primary goal of this object ontology is to instantiate a hierarchical knowledge 
base of object models, representing classes of real everyday objects.  This presents us 
with a challenge in organizing objects’ data attributes.  We have identified that it is 
useful to (a) manage a set of properties as if they were a single individual, (b) specify 
the existence of a property separately from its value, (c) compose sets of properties 
from other sets of properties, and (d) override property values in other features of the 
same object, based on the part-whole containment hierarchy within a single object 
model, rather than on the object-feature class hierarchy in the ontology.  The 
traditional ontological approach of modeling data using properties (binary relations) 
proves to be too limiting, as it provides attribute inheritance only within the ontology 
class hierarchy, and doesn’t support composition.  We reify the notion of data 
attribute as a concrete PropertyNode class, shown in Fig. 3, with support for 
unspecified (deferred) values, and data value overriding.  Data value overriding is 
useful both within the object class hierarchy (e.g. a Table base class may establish the 
existence of an area attribute, but leave its value range unspecified, while each 
subclass of Table provides its own override), and within the part-whole model of a 
single object class (e.g. a StandardTable class of typical business desks could impose 
specific value constraints on the height and angle of its Supporter leg features). 

3.3 Generic Shape Representation 

A key consideration in our object ontology is a generic representation of shape, 
which can flexibly describe a family of objects.  We first model primitive geometric 



shape elements as shown in Fig. 4; an example of a geometric shape element is 
horizontal planar surface.  Each shape element comprises a geometric datum element 
that specifies the relevant subset of the object or feature’s geometry, geometric 
constraint such as horizontal or planar, and zero or more modifiers, which provide 
qualitative (discretized) measures of variations from the nominal constraint. 

 

Fig. 4. ShapeElement hierarchy for generic shape representation 

Shape elements are one of the data attributes associated to every object and feature 
(as can be seen in Fig. 2).  We then represent generic shapes of objects by composing 
shape elements and their spatial and other constraints, including constraints between 
features of the same object. 

To tolerate wide variations in specific geometry, we adopt a partial boundary 
representation (B-rep) interpretation, in which only the relevant subset of an object or 
feature’s boundary is fully specified, representing the critical geometric and 
topological relations only.  That is, the set of all of a feature’s shape elements are 
together taken to comprise a partial B-rep.  Unspecified portions of the boundary are 
abstracted away.  In their place, we provide a generalized bounding volume, e.g. 
bounding box or sphere, to enforce the principle that all real solid objects are 
bounded. 

4 Form-Function Reasoning 

We apply form-function reasoning, from the functions of objects to their generic 
shapes, to deduce the functional elements, called organs [3], which are the active 
elements that carry the functions of the features, and their geometric shape 
requirements, as well as any geometric relations and constraints that exist between 
features.  The result of form-function reasoning is a set of geometric shape elements, 
which describe the minimum necessary elements for an object or feature to achieve 
the desired function. 



This is a complex kind of reasoning, involving many different reasoning 
techniques, and intelligent (human-like) understanding and insight.  Currently, the 
authors perform this reasoning manually, and only the results thereof are embedded 
into the object ontology.  In this section, we present three cases of function-to-shape 
reasoning, and document the techniques used. 

4.1 Geometric Concepts 

We make use of the following geometric notions. 
Gravity.  All objects are affected by the force of gravity.  Over typical distance 

scales, we assume that gravity exerts a vertical downward force everywhere. 
Static behavior of objects.  We will consider objects whose intended usage is 

mostly static, i.e. they do not change their shape over time in the course of normal 
usage.  We ignore specialized or transient physical effects such as acceleration, 
friction, texture, surface tension, vibrations, etc.  

Degrees of freedom (DOF).   All motions in 3D space can be characterized by 3 
translational and 3 rotational DOFs.  We consider two kinds of restrictions on each 
DOF.  A half-open restriction limits a DOF to a half-open interval.  That is, it blocks 
motion along one half-axis, but doesn’t restrict motion in the opposite direction.  
(This applies even to rotational DOFs, e.g. in the case of a ratchet component.)  A 
finite restriction limits a DOF to a finite closed interval, i.e. it blocks motion in both 
directions along a single axis. 

Polar set.  The polar set [1] of a 3D point set P is another point set Q such that for 
all pairs of points p ∈ P and q ∈ Q, (p ⋅ q) ≤ 1.  Since the dot product operation is 
symmetric, it follows that P is also the polar set of Q, i.e. P and Q are geometric duals 
of each other.  This provides a natural way to convert from a direction of motion to a 
point set that would block that motion, and vice versa. 

Normal cone and accessibility cone.  The normal cone of an object is the convex 
hull of the normal vectors of its faces [4].  The accessibility cone is then defined as 
the polar dual of the normal cone.  This succinctly characterizes the set of 
accessibility directions of an object. 

Interaction with human.  Objects, particularly furniture, that are intended to 
contact or interact closely with a human, require sufficient clearance for the human’s 
body parts, as well as accessibility directions that allow the human to approach and 
leave.  We model clearance as negative (empty) volumes bounded by the faces of one 
or more objects, and represent accessibility directions using accessibility cones 
derived from sets of relevant faces of the object.  Modeling of the human’s body itself 
is currently handled implicitly on a case-by-case basis, rather than explicitly 
representing human body shape in the ontology. 

4.2 Form-Function Reasoning for Container 

We consider a generic Container class that contains liquids.  We elaborate its 
functions as follows. 



Limit all motions in the lower halfspace.  Freely flowing liquid moves in every 
direction that has any downward component and any horizontal component.  Hence, a 
Container must limit all such motions simultaneously.  More specifically, it suffices 
to limit vertical downward motion to a half-open interval, but all horizontal motions 
orthogonal to gravity must be limited to finite intervals.  The set of limited motions 
thus comprises the normal cone of a pocket form feature [4], oriented upward with 
respect to gravity, as shown in Fig. 5.  Hence, we deduce a geometric shape 
requirement of an upward pocket with respect to gravity. 

 

Fig. 5. Upward pocket feature 

Contain a liquid.    The material properties of a liquid are that its molecules flow 
freely, but maintain a constant volume.  It follows that a liquid can escape by flowing 
through a hole of any size.  Hence, we deduce a geometric shape requirement of no 
through holes. 

Hence, we deduce that a Container must be an upward pocket without holes.  By 
observation, the converse also holds: any upward pocket without holes can function as 
a Container of liquids.  This can be observed after any rainfall by seeing rain water 
collecting in every depression in rocks and other surfaces. 

4.3 Form-Function Reasoning for Table 

We identify a generic table’s function as follows: to support multiple general solid 
objects without motion, at some constant elevation (height above the ground), so as to 
make them conveniently accessible to a human.  We decompose the Table class into 
two feature types, (1) a Counter feature that contacts the objects, and (2) one or more 
Supporter features that fulfill the role of maintaining the Counter’s constant elevation. 

Focusing our attention on the Counter, we elaborate its functions as follows: 
Contact multiple general solid objects.  To support another object without 

motion implies that the supported object is stable.  Hence, to stably support many 
objects of arbitrary shapes, with arbitrary positioning, implies a multitude of contact 
points.  From this, we deduce a geometric requirement of a surface.  Note that this is a 
fairly universal line of reasoning, which applies to most contact relations between 
solids.  It is known that most mechanical assemblies and contact-related functions are 
characterized by their mating surfaces. 

Limit vertical downward motion.  Gravity induces a vertical downward force on 
all objects; hence, the Counter feature must limit the resulting motion to a half-open 
interval.  The polar dual of a vertical downward vector is a horizontal planar halfspace 
that faces upward with respect to gravity.  From this, we deduce a geometric 
requirement of planarity, i.e. a planar surface. 

gravity  



While the polar dual technique also suggests a horizontalness property, this alone 
isn’t sufficient to establish it.  For example, the union of many small Counters at 
different elevations could still satisfy both of the above functions, but isn’t a typical 
table.  We introduce additional factors to rule out this possibility. 

Minimize forces and energy.  A secondary characteristic of a table’s usage is to 
minimize the forces acting on its supported objects.  This rules out the case of an 
inclined Counter, as this would cause objects to tend to slide off (ignoring friction).  
Also, a table should minimize the energy cost of repositioning objects on it, which 
argues against having an inclination, or many sub-Counters with different elevations.  
From these considerations, we deduce stronger support for a geometric requirement of 
horizontalness. 

Accessible from upper halfspace.  The purpose of a table is to make objects 
conveniently accessible to a human, i.e. graspable at a moment’s notice.  This implies 
that a Counter’s elevation shall be attuned to the human’s expected posture, and its 
area shall be appropriate for a human’s arm’s reach.  It also implies that an object on 
the table should be accessible from any direction in the upper halfspace induced by 
the Counter’s top surface, with respect to the gravity direction.  This further supports 
having a uniform elevation everywhere on the Counter, which also supports the 
geometric requirement of horizontalness. 

 

Fig. 6. Trace of form-function reasoning for a Table’s Counter feature 

Hence, from the functions of the Counter feature, we deduce a geometric shape 
element of a horizontal planar surface.  This agrees with the intuitive notion of a 
countertop or tabletop.  We explicitly represent the above chain of reasoning in our 
ontology, as shown in Fig. 6. 



4.4 Form-Function Reasoning for Chair 

A chair’s primary function is to support one human in a seated posture, at a 
constant elevation.  We decompose the Chair class into two feature types, (1) a Seat 
feature that contacts the human, and (2) one or more Supporter features that maintain 
the Seat’s constant elevation.  We note that a chair’s Seat feature has similar functions 
as a table’s Counter feature, namely to contact another object, and to limit its vertical 
downward motion.  Hence, by applying similar reasoning, the geometric shape 
element of a horizontal planar surface can also be applicable to a Seat.  By 
observation, this is, indeed, a valid shape for some real chairs. 

However, since the Seat is meant to directly contact a human, additional issues 
such as ergonomics must be taken into account. 

Ergonomics.  When a rigid object is intended to contact a human for an extended 
period of time, the human’s comfort becomes a significant consideration.  One 
solution is to add padding to soften the contact, but this entails some shape 
deformation during usage (in fact, this deformation is precisely the function of the 
padding!), which we do not yet model in our ontology.  An alternative mechanism 
that maintains rigidity is to contour the surface to better fit the intended body part.  
Hence, a Seat could have various non-planar deviations, so long as it remains 
approximately planar to fulfill its primary function. 

Thus, the horizontal planar property is taken not as a firm requirement, but as one 
allowed extreme within some range of variations.  We abstract away these variations 
in a seat’s shape by defining a qualitative condition of seat_quasi_planar, which 
spans a range of surface curvatures from perfectly planar to contoured so as to fit a 
human’s bottom.  At this level of abstraction, we do not commit to any analytic 
characterization of such contouring 

4.4.1 Form-Function Reasoning for BackedChair 
As the Chair superclass represents all possible chairs, it does not commit to any 

other, more specialized, features.  Such commitments are deferred to the numerous 
subclasses of Chair in our object ontology.  BackedChair is a subclass of Chair that 
includes a Back feature that also contacts the human, whose function is to limit the 
human’s reclining motion (rotation of the torso about the hip joint).  The human 
contact function is similar to that of a Seat, so we deduce an analogous geometric 
shape requirement of a quasi-planar surface, which may be contoured to fit a 
human’s back.  We expand its other functions as follows: 

Limit approximately horizontal motion.  A human’s reclining motion can be 
decomposed into a rotational force, or torque, around the human’s hip joint.  As the 
human’s torso is initially upright, the tangential component of this torque is 
approximately horizontal.  Hence, a Back feature must limit an approximately 
horizontal motion.  From the polar set technique, we deduce an approximately 
vertical halfspace.  While some real chairs do exhibit a perfectly vertical back, 
ergonomic considerations allow for a slight inclination for added comfort, such that 
the external dihedral angle between the seat and the back is slightly greater than 90°. 

Accessibility.  We deduce that the key characteristic of a BackedChair is that the 
seat and the back together shall define a step form feature [4], represented by an 



accessibility cone consisting of a 2D sector spanned by the normal vectors of the 
seat’s top face and the back’s inner face. 

Geometric variations.  Note that the Seat and Back features can be disjoint, and 
may be separated by horizontal or vertical gaps, without violating the step form 
feature requirement.  We characterize these allowable variations in geometry by two 
numeric parameters, extent and separation.  The extent is the length of the usable 
portion of the seat’s top face, i.e. in the positive halfspace induced by the back’s inner 
face.  The extent must be within a finite interval – if it is too short, then the seat 
cannot function as a seat, and if it is too long, then the back no longer functions as a 
back.  The separation is the horizontal gap, if any, between the seat and the back, and 
this must be below a threshold value, else the object can’t function as a backed chair. 

BackedChair Back
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SC-vertical OC-vertical

hasGeometricConstraint
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hasShapeElements hasDatum

GD-surface
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Fig. 7. Shape model for BackedChair 

Based on the above reasoning, we instantiate a shape model for the BackedChair 
subclass, shown in Fig. 7.  The Chair superclass (in light blue) defines a Seat feature 
having a shape element of horizontal planar surface.  The BackedChair subclass (in 
yellow) inherits the Seat feature, and adds a Back feature with a shape element of 
vertical planar surface. 

5 Discussion and Future Work 

We have developed an object ontology that includes a generic representation of 
shape, and generic functions of objects from established function taxonomies.  Our 
ontology supports a kind of form-function reasoning, where we first identify the key 
functions that characterize an everyday object, identify attributes and values that 
parameterize these functions, and then deduce geometric shape elements implied by 



these functions.  We have found that this reasoning process is complex and 
challenging, and draws on a vast array of different knowledge sources: physics, 
mechanics, material properties, ergonomics, etc.  In this paper, we have presented 
several techniques that we have found useful in performing form-function reasoning., 
but our list is by no means complete.  Presently, the form-function reasoning can’t be 
automated, so we perform it manually, relying on our human expertise.  The 
outcomes of this reasoning is represented in our ontology, both in the form of explicit 
justification graphs, and in the set of geometric shape requirements for a given set of 
functions, which are encoded into the relevant object class in the ontology. 

This ontology could support designers by serving as a library of cases that link 
functions to forms.  For a given parameterized function that matches a known case, it 
could quickly return the associated shape information.  For a given function or feature 
of an object, it could enumerate successful previous designs that achieved those 
functions or incorporated those features, to broaden a human designer’s horizons. 

A major future extension of this ontology is to support automated form-function 
reasoning.  This generally entails that we extend the ontology to represent knowledge 
sources, means of justifications, and proof steps, and combine it with a reasoning 
engine, possibly using an approach similar to theorem-proving.  In addition, it would 
require a substantial knowledge base that covers a wide range of “common-sense” 
knowledge. 
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