
Detecting Covert Channels Through Code
Augmentation
Marco Zuppelli1, Luca Caviglione1 and Matteo Repetto1

1IMATI - Institute for Applied Mathematics and Information Technologies, Via de Marini, 6 (Torre di Francia) - 16149
Genova, Italy

Abstract
Modern malware increasingly exploits information hiding or steganography to elude security frameworks
and remain unnoticed for long periods. To this aim, a prime technique relies upon the ability of creating
covert channels to bypass the limits imposed by a sandbox or to exfiltrate data towards a remote server.
Unfortunately, detecting a covert channel is not a trivial task and often requires to inspect a composite
set of information, e.g., the behavior of a software or statistical indicators of network traffic. Therefore,
in this paper we investigate the adoption of code augmentation features offered by the Linux kernel
to gather data useful to reveal the presence of covert communications. To prove the effectiveness of
the approach, we tested a lightweight program to detect covert channels targeting IPv6 conversations.
Results indicate that technologies like the extended Berkeley Packet Filter can offer a foundation to
frameworks for spotting and mitigating covert communications.

Keywords
Covert channels, code augmentation, eBPF, network security

1. Introduction

Improvements in network defense and the increasing sophistication of modern software and
services have caused the proliferation of advanced techniques allowing a malware to remain
unnoticed or to bypass secure execution enclaves. Until recently, main approaches used by
attackers exploited code obfuscation, multi-stage loading, file-less implementations to prevent
detection from antivirus, encryption as well as anti-forensics methods to evade code and
memory analysis [1]. A recent trend exploits information hiding and steganography, which
allow malicious software to remain undetected, covertly communicate with a remote command
& control facility, or evade execution perimeters enforced via virtualization, containerization and
sandboxing [2]. For instance, steganography can be used to conceal the presence of malicious
code or an additional payload within an innocent-looking image. Even if several techniques
exist, the main use of information hiding to enhance malware concerns the creation of covert
channels, i.e., hidden communication paths between two software or hardware endpoints [3].

The general concept of covert channel has been introduced by Lampson in 1973. According to
[4], covert channels are “[channels] not intended for information transfer at all”. Malware observed

ITASEC’21: Italian Conference on CyberSecurity
Envelope-Open marco.zuppelli@ge.imati.cnr.it (M. Zuppelli); luca.caviglione@ge.imati.cnr.it (L. Caviglione);
matteo.repetto@ge.imati.cnr.it (M. Repetto)
Orcid 0000-0001-6932-3199 (M. Zuppelli); 0000-0001-6466-3354 (L. Caviglione); 0000-0001-8478-2633 (M. Repetto)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:marco.zuppelli@ge.imati.cnr.it
mailto:luca.caviglione@ge.imati.cnr.it
mailto:matteo.repetto@ge.imati.cnr.it
https://orcid.org/0000-0001-6932-3199
https://orcid.org/0000-0001-6466-3354
https://orcid.org/0000-0001-8478-2633
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


“in the wild” typically exploits covert channels to implement two main attack mechanisms. The
first aims at endowing two malicious processes with the capability of communicating to bypass
local security policies enforced within a given host or device. The second is devoted to support
Internet-wide communications, for instance to exfiltrate sensitive information, orchestrate a
botnet or configure/activate a backdoor [3, 5, 6].
During the years, both researchers and cybercriminals developed a variety of mechanisms

to create hidden communication paths in a wide array of scenarios, such as, virtualized envi-
ronments, cloud datacenters, network infrastructures, and multi-processor frameworks [5, 6].
As a consequence of such heterogeneity, the data hiding used to create the channel is highly
specialized and tightly coupled with the targeted hardware/software entity. Thus, the detection
is a poorly generalizable task and the main defense pattern requires to inspect several digital
artifacts (often having incompatible structures or exploiting different technologies) to spot the
presence of hidden data [5]. To give an idea of the composite surface that can be targeted by
information-hiding-capable threats, attackers can conceal their activity or implement an abusive
communication service within: digital images, network packets, file permissions, the sequence
of operations offered to a CPU/GPU, HTTP cookies, DNS queries, locks applied to Unix/network
sockets, as well as the temporal evolution of the state values of hardware components like the
volume or vibration settings of mobile phones [2, 5, 6].

Therefore, an important requirement to fully assess the security of modern devices and digital
infrastructures deals with the ability of detecting covert channels. To cope with the composite
nature of hardware and software components that can be used to conceal secret information,
we take advantage of code augmentation techniques made available by the Linux kernel. In
more detail, we showcase the use of the extended Berkeley Packet Filter (eBPF), which supports
the monitoring of a rich set of behaviors, such as system calls, page faults, memory occupation
and network packets (see, e.g., [7] and the references therein). Specifically, we propose to
create ad-hoc, lightweight programs to gather suitable information that can reveal the presence
of a covert channel. At the best of our knowledge, code augmentation has never been used
for the specific task of detecting malware endowed with steganographic capabilities, except
for our previous work [8], which focused on spotting channels with a single-host scope via
anomalous distributions in the invocation of __x64_sys_chmod syscalls. Instead, in this work,
we focus on how code augmentation can be used to inspect network packets and reveal covert
communications laying within traffic flows. To test our idea in a realistic scenario, we apply
code augmentation to spot the presence of a malware trying to exfiltrate data via IPv6, which is
expected to become a major target in next years [2, 3, 9].
The contributions of this paper are: i) a discussion on the main attack models exploiting

covert channels, which are often neglected when addressing security of a digital infrastructure,
ii) a framework leveraging code augmentation able to provide a technological foundation against
information-hiding-capable threats, and iii) a preliminary performance evaluation campaign
considering threats targeting IPv6 traffic.

The rest of the paper is structured as follows. Section 2 briefly introduces covert channels and
how they can be used to attack computing and networking scenarios. Section 3 deals with code
augmentation and how it can support the detection of network covert channels, while Section
4 showcases numerical results. Lastly, Section 5 concludes the paper and portraits potential
future developments.



2. Covert Channels: Background and Attack Model

Even if covert channels can also enforce privacy of users, e.g., to preserve the anonymity of a
source in investigative journalism or to prevent censorship in regimes, they are primarily used
to develop offensive techniques [10]. In general, a covert channel is a hidden communication
path established by two secret endpoints (often defined as the covert sender and the covert
receiver) embedding data into a suited container, denoted as the carrier. Covert communications
can be described via three different performance metrics: the steganographic bandwidth (i.e.,
the amount of secret information sent per time unit), the detectatability (i.e., how much is
difficult to spot the channel), and the robustness (i.e., how many alterations or manipulations
the hidden information can withstand). Such parameters are coupled: for instance, a high
volume of secret information could require several manipulations of the carrier, thus making
the channel more visible due to the presence of many alterations [6]. From the viewpoint
of empowering a malware, there are two main types of channels: local covert channels and
network covert channels. In the following, we will review the main attack models leveraging the
aforementioned approaches.

2.1. The “Colluding Applications” Threat

In this attack model, the hidden communication happens among entities that reside on the same
host/device, e.g., processes, virtual machines, and containers able to communicate by exploiting
resources of the host. Some examples of techniques for creating a local covert channel include
the modulation of the usage of resources such as the CPU and RAM or the manipulation of the
underlying file system [11]. Figure 1 depicts the reference scenario where two entities (e.g.,
virtual machines, containers or processes) run independently within their sandboxes. Usually,
this mechanism is sufficient to guarantee that two processes cannot communicate or share
information. The colluding applications threat attempts to find a way to elude such a security
architecture. For instance, let us consider that the process confined in Sandbox A, i.e., the covert
sender, is able to read sensitive information. Thus, the security framework of the host prevents
the process to communicate remotely (e.g., the sandbox blocks the access to the TCP/IP protocol
stack). Instead, the process running in Sandbox B, i.e., the covert receiver, is considered safe,
thus it can access network services. The applications can then collude by setting up a local
covert channel to bypass their respective sandboxes. As a possible example, the sender process
can encode the secret within usage patterns of the CPU (e.g., by increasing the load to signal a
1 or by putting itself in a sleep state to signal a 0) in order to leak information to the receiving
process.

2.2. Exfiltration and Remote Command & Control

Network covert channels enable remote peers to secretly communicate by manipulating proto-
cols or injecting data in network traffic, [5]. Due to their effectiveness in exfiltrating data and
eluding de-facto standard security frameworks, network covert channels raised the attention of
the scientific community, thus many works reviewing the literature and proposing taxonomies
have been done. For instance, the authors of the work [12] proposed a possible classification



Figure 1: Reference scenario for the colluding applications threat.

Figure 2: Reference scenario for the usage of a network covert channel.

of the types of network covert channels, distinguishing among various information-hiding
patterns. Two primary groups of methods are outlined: timing methods and storage methods.
The first type allows to inject the secret information by modifying the timing characteristics of
the network flow, e.g., the alteration of the inter-packet time. The second type allows to inject
the secret information directly in the traffic stream, e.g., in the payload of a packet or in some
unused fields within the protocol header. Typically, malware exploits network covert channels
to implement a wide range of attacks, such as, to implement command & control infrastructures,
to send commands to a botnet, to exfiltrate secret data or to bypass the security framework of
the guest operating system.
Figure 2 depicts the reference attack model. In more detail, the covert sender wants to

transmit an information to a remote peer, for instance a sensitive information exfiltrated by a
third-party malicious routine. To this aim, it gathers incoming packets belonging to an overt,
licit flow (denoted as P1 in the figure) and, according to the used injection method, it performs
suitable modifications. As a possible example, the covert sender can encode a secret by adding
a predefined delay or by directly injecting data within some fields of the header. As a result, an
“altered” packet containing the secret information (denoted as P1’ in the figure) is sent through
the network. The covert receiver can then retrieve the information by knowing in advance the
feature of the traffic flow that has been used as the carrier. However, discrepancies between P1
and P1’ can reveal the presence of the covert channel. To reduce the chance of detection, the
covert receiver should restore the traffic flow in such a way to not arise suspects.



Even if the majority of covert channels targets the IPv4 protocol [5, 6], the increasing popu-
larity of IPv6 makes it attractive for attackers and malware developers [9]. In fact, exploiting
emerging technologies or protocols still not widely deployed or understood may give to at-
tackers an advantage. Therefore, in the rest of this work, we will consider that the network
covert channel depicted in Figure 2 has been implemented within an IPv6 conversation. In this
vein, the literature proposed several techniques to inject secret information in the IPv6 protocol
(see, e.g., [13] for a comprehensive analysis). However, many of them appear to be unsuitable
when deployed in realistic use-cases, especially when in the presence of v6/v4 transitional
mechanisms [9]. Therefore, in the following, we will focus on network covert channels built by
storing data within the Flow Label field (i.e., a 20 bit long value supporting intermediate nodes
in routing operations) and in the Traffic Class field (i.e., a 8 bit long value describing the type
of service delivered by the network). For the sake of completeness, we will also consider a
channel injecting the secret information via a modulation of the value of the Hop Limit field
(i.e., a 8 bit long counter limiting the number of nodes that a datagram can traverse). In this
case, the secret information is encoded by increasing or decreasing the value of the Hop Limit
for two consecutive datagrams, e.g., bits 1 and 0 are encoded by increasing or decreasing the
field by a fixed value.

3. Visibility Through Code Augmentation

Due to the different nature of the models outlined in Section 2, each attack could require a
specific detection technique. For instance, colluding applications can be revealed via correlation
metrics, e.g., processes wanting to communicate become active in an overlapped manner to
alter/read the used carrier before it is disrupted by other competing entities or the OS [11]. In
the case of network covert channels, the prime approach leverages traffic monitoring, e.g., deep
packet inspection frameworks to reveal anomalous patterns or to spot information injected in
the header.

Given the broad range of potential methodologies for creating covert channels, a promising
idea to perform their detection concerns the use flexible and easily extensible frameworks. In fact,
being able to collect threat-independent measurements using the same technology is desirable
since the carrier exploited by the attacker is usually not known in advance. However, the ability
of generalizing the detection process should not be considered the only objective: another
desired goal deals with performances and the detection process must limit the consumption of
processing, memory, and networking resources. In this respect, code augmentation stands out
as the best approach to gain visibility over multiple functions and processes within a host and
its operating system [8]. Put briefly, code augmentation is a technique that pushes additional
bytecode into a running application, in order to dynamically extend its functionality. One
fundamental advantage of code augmentation is that multiple complementary “hooks” can be
developed to monitor and trace different subsystems, without requiring major changes to the
whole design. However, it is important to verify the code before the insertion, and to avoid
creating instability or new vulnerabilities.
In this section, we briefly introduce the used code augmentation framework. Then, we

present how data can be organized to guarantee performances and mitigate the consumption of



resources.

3.1. Code Augmentation via eBPF

Originally developed as an efficient mechanism for packet monitoring and filtering, the eBPF has
been recently extended into a more complex framework. For example, it can be used to inspect
network packets, to trace specific kernel functions or to monitor the CPU or the memory usage.
In this extent, eBPF can provide a basic mechanism to collect threat-independent measurements
for detecting stegomalware. To this aim, eBPF provides a wide set of functionalities, including
key/value maps to store data, supporting routines to allow kernel to user-space communications
and mechanisms to concatenate multiple programs. The eBPF programs may be executed on the
reception of packets in raw sockets, queues, xdp driver or can be attached to kprobes, tracepoints
and perf events. To enforce security, eBPF provides a dedicated virtual machine within the
Linux kernel, with a limited access to system resources. Thus, eBPF is intrinsically safer and
more robust than other mechanisms (e.g., kernel modules) even if executed in kernel mode.
Due to performance and security constraints, the only way to interact with an eBPF program
is through maps, which are shared-memory regions. For this reason, the typical development
pattern includes both the eBPF program and a user-space utility for its loading and to exchange
data through maps. An in-kernel verifier validates the code to avoid kernel deadlocks.
So far, the primary usage of eBPF has been tracing and monitoring the Linux kernel for

investigating performance issues. As an example, the toolkit (e)BPF Compiler Collection (BCC)1

contains several working tools to do such operations. The tools are based on a user-friendly
Python class for compiling, loading and attaching eBPF programs to several hooks.

Owing to is flexibility, the eBPF framework can collect a wide range of data, addressing both
local covert channels and network covert channels.

3.2. Data Collection

Since the range of techniques for creating covert channels is very broad and the used carrier
could be not known a priori, anomaly detection approaches appear suitable to spot the presence
of stegomalware. For the case of colluding applications, anomalies can be searched for by evalu-
ating usage patterns of kernel functions. As a possible example, a kernel function can be traced
to spot the presence of colluding applications exchanging data through a local covert channel
manipulating file permissions. Thus, eBPF can monitor the kernel function __x64_sys_chmod to
identify anomalies in its distribution and evolution [8]. For the case of network covert channels,
a similar approach can be used for counting the possible values assumed by fields in the header
of the various network flows. The gathered data can be then compared with expected usage
patterns, to identify anomalies. For instance, when this approach is applied to the Flow Label
field, it can provide a rough estimation of active flows in the network. An anomaly is then
raised when the number of different Flow Label values seen in a given period is different from
the number of active flows, which can be provided by a third-party security tool. Counting
the various values can be straightforward when in the presence of fields with a limited range
(e.g., the Traffic Class and Hop Limit are characterized by 256 different values) but can pose

1https://github.com/iovisor/bcc.

https://github.com/iovisor/bcc


(Flow Label)

Bins

n bits
b bits

B bins

Index the

array of bins

+1

IPv6 header

Figure 3: Mapping field values to bins.

some challenges for the case of Flow Label , which generates a space of 220 different values. To
overcome performance issues, we split the whole range values into a smaller number of groups
(called “bins”), and used a counter for each group.

The implementation of this mechanism within an eBPF program is depicted in Figure 3, with
the Flow Label as an example. For each incoming packet, the value of the Flow Label is placed in
the corresponding bin, and the associated counter is incremented. To make the implementation
more efficient, the number of bins is always a power of 2, so that the association of a field value
to the corresponding bin is a simple bitwise operation to match the prefix.

The bin-based structure reduces the memory usage of the eBPF program, but at the expense
of coarser-grained granularity of the collected statistics. The proper number of bins must
be selected according to the specific use case, seeking an optimal balance between resource
consumption and precision of the detection. In this case, the anomaly could be searched for
by evaluating how the volume of changing bins evolves during time. To have a condensed
indicator, our user-space utility periodically collects the values for all bins and considers the
number of bins that change between two consecutive reads.

4. Numerical Results

To prove the effectiveness of the proposed approach based on code augmentation, we prepared a
testbed composed of two virtual machines running Debian GNU/Linux 10 (kernel 4.20.9), which
communicate through a third virtual machine. The latter, with the same technical specifications,
is in charge both of routing traffic and running the eBPF program to gather information about
the traffic exchanged between the two peers. To test our idea in realistic network conditions,
we replayed legitimate IPv6 traffic conversations collected on a OC192 link between Sao Paulo
and New York on January 17, 2019 from 14:00 to 15:00 CET, made available by the Center for
Applied Internet Data Analysis. Specifically, for this work we used the CAIDA Anonymized
Internet Traces Dataset collected in the April 2008 - January 2019 period2. Traffic traces has
been replied with the tcpreplay tool and resulting flows represented the bulk overt traffic. To
have a suitable degree of freedom, we generated via the iPerf3 tool an additional conversation
between the two endpoints wanting to secretly communicate with a bandwidth of 500 kbps.
The covert channel has been implemented via an ad-hoc Python script using Scapy 2.4.3 and

2Used traces: CAIDA dataset, Jan. 17th 2019.
Available online: https://www.caida.org/data/monitors/passive-equinix-nyc.xml [Last Accessed: March 2021].



Figure 4: Reference testbed used in this work.

NetfilterQueue 0.8.1. Figure 4 depicts the resulting testbed.
In the first set of trials, we wanted to evaluate the effectiveness of the eBPF-based approach

in gathering statistical information on the traffic useful to spot the presence of a network covert
channel. To this aim, we run a script able to capture, on a per-packet basis, the value of the Flow
Label , Traffic Class , and Hop Limit fields and populate the data structure described in Section
3.2. The sampling time used to gather information obtained from the traffic, i.e., the timeframe
between two different measurements, was set to 1 second. In other words, the user-space
programs retrieve from the eBPF counterparts the collected values for the bins every second.
The number of bins used in the case of Flow Label was set to 215, while for the remaining fields
the value was set to 28.

Figure 5 depicts the obtained results. For the sake of clarity, we limited traces to 15 minutes
of traffic. In more details, the figure shows the ability of our lightweight code augmentation
framework to capture the temporal evolution of the values characterizing a specific field of
the IPv6 header. Recalling that to have a “condensed” metric we inspect the number of bins
changed between two consecutive measurements provided by the eBPF filter, the depicted
trends offer several insights on the observed IPv6 traffic. As an example, if an attacker exploits
the Traffic Class field to contain secrets, the evolution of the number of bins changed will
differ significantly from the expected behavior. In fact, as it is possible to notice from Figure 5(b),
the number of different Traffic Class observed is always limited to only few values. Therefore,
the presence of a hidden communication could reflect into a sort of “signature” in the number
of changing bins and allow to spot the covert communication. A similar consideration can be
done for the Flow Label , even if Figure 5(a) depicts a greater variety in terms of observed values.
In this case, additional inputs from the network could be needed. For instance, this trace could
be checked against the number of active flows present at a given time step. Since each flow
is characterized by a unique value for the Flow Label , discrepancies between the number of
active conversations and the volume of changing bins could reveal the presence of the hidden
channel. Instead, for the case of Hop Limit , a more sophisticated approach could be needed as
the information-modulating nature of the embedding methods makes the covert communication



0 100 200 300 400 500 600 700 800 900
time [s]

0

100

200

300

400

500

600

no
. o

f b
in

s c
ha

ng
ed

Flow Label

(a) Evolution of the Flow Label

0 100 200 300 400 500 600 700 800 900
time [s]

0

1

2

3

4

5

6

no
. o

f b
in

s c
ha

ng
ed

Traffic Class

(b) Evolution of the Traffic Class

0 100 200 300 400 500 600 700 800 900
time [s]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

no
. o

f b
in

s c
ha

ng
ed

Hop Limit

(c) Evolution of the Hop Limit

Figure 5: Number of changing bins of the observed traffic when gathering data for different fields.

harder to spot.
Concerning the resources consumption, we measured the CPU usage and the amount of

memory needed by both the eBPF program and the user-space utility. Since the eBPF program
is executed only when a packet is processed, defining the amount of CPU used is not straight-
forward, whereas the memory occupation strictly depends on the size of the used kernel map.
Owing to the proposed bin-counting architecture, it remains bounded to few megabytes. As
regards the CPU usage for the user-space utility, measurements indicate that, for the Traffic
Class and Hop Limit cases, it is ∼3%, while for the Flow Label the consumption increases to
∼12%. We point out that these values may change according to the selected sampling interval
(1 second, in our tests). Summing up, the eBPF-based approach demonstrated to introduce
only minimal overheads especially in terms of delays added to the network traffic. Thus it
has to be considered a suitable technology for the development of countermeasures to be
deployed in realistic scenarios (see, e.g., [14] for a work considering its deployment through
containerization).
To assess the real capacity of using bin-based behaviors as effective indicators to spot the

presence of a channel, we conducted an additional round of tests. To this aim, we hold the same
traffic conditions described above and we added a covert channel exfiltrating data within an



0 100 200 300 400 500 600 700 800 900
time [s]

0

10

20

30

40

50

60

70

80

no
. o

f b
in

s c
ha

ng
ed

Traffic Class, 1024 bits

Figure 6: Evolution of Traffic Class when a covert communication is present.

0 100 200 300 400 500 600 700 800 900
time [s]

0

5

10

15

20

no
. o

f b
in

s c
ha

ng
ed

Traffic Class, 1024 bits, l=10, p=50
Traffic Class, 1024 bits, l=10, p=100
Traffic Class, 1024 bits, l=10, p=300

Figure 7: Evolution of Traffic Class when a covert communication is present with different injection
policies.

IPv6 conversation. We considered a hidden transmission targeting the Traffic Class , which has
been used to exfiltrate a secret message of 1, 024 random bits. This can represent the exfiltration
of a cryptographic key or of a sensitive information [2, 5, 6]. Figure 6 depicts the results. As
shown, the attacker utilizes all the packets composing the overt stream, thus creating a channel
with the maximum steganographic bandwidth achievable. The secret message is then sent in
few seconds but at the expense of a poor undetectability. Figure 6 clearly shows that our metric
can spot the hidden communication attempt. In fact, the “spike” in the number of changed bins
clearly appears as an anomaly.

In order to make the covert communication more difficult to spot, an attacker can choose, for
example, to limit the steganographic bandwidth of the hidden channel. To prove this idea, we
conducted an additional round of tests. Specifically, we considered an attacker able to reduce
the bandwidth of the hidden channel by alternating the amount of consecutive stego-packets
(i.e., packets that are injected with the secret, denoted with 𝑙 in the following) with the amount
of legitimate packets (denoted with 𝑝 in the following). In this vein, we conducted trials with
𝑙 = 10 and 𝑝 = 50, 100, and 300 packets.

Figure 7 depicts the outcome when different patterns of injection are applied. As the stegano-



graphic bandwidth decreases, i.e., 𝑝 increases, the time needed by the attacker to transmit the
secret in its entirety rises. As regards detectability of the covert channel, when the attacker uses
a value for 𝑝 = 50 (i.e., the blue line in Figure 7), the rate of hidden data is still not adequate
compared to the rest of the traffic, thus making the channel more detectable. This is due to
the superimposition of two causes: the few different values for the Traffic Class character-
izing the overt traffic, and a too aggressive injection procedure. To mitigate such effect, the
attacker can apply some form of encoding, e.g., map the secret into a reduced number of values,
possibly observed in the overt bulk of data [9]. As hinted, another idea concerns slowing the
steganographic bandwidth by interleaving stego-packets with a greater amount of unmodified
data units. In this case, the values of the “spikes” are closer to the rest of the evolution of
the Traffic Class , which lead to less detectable covert channels (see, Figure 7). However, the
resulting steganographic communications will last longer (141 seconds compared to 23 seconds),
potentially causing more visible alterations of the overt traffic flow. Similar considerations can
be done also for the case of Flow Label . Instead, for the case of the Hop Limit , the number of
changing bins can not be employed “out of the box” and needs further investigations: this is
part of our ongoing research.

5. Conclusions and Future Work

In this work, we presented a lightweight approach based on a “counting” scheme designed to
detect network covert channels targeting IPv6 traffic. The approach take advantage of the code
augmentation mechanism based on eBPF and can help to reveal the presence of covert channels.
Results have indicated the effectiveness of the approach.
Future work aims at refining the idea and carry out a thorough performance evaluation

campaign. A relevant part of our effort is devoted to understand the feasibility of using code
augmentation to implement an “active warden”, i.e., an intermediate node able to disrupt the
covert channel. For the case of network covert channels, this can be a middlebox overwriting
suitable fields in the header of packets. Instead, for the case of colluding applications, this
approach is less obvious and requires further investigations. Another part of our ongoing
research concerns the design of a threat-independent metric able to reveal the presence of both
local and network covert channels as well as an effective mechanism to automatically raise an
alarm when detecting the hidden communication attempt.

6. Acknowledgments

This work has been supported by the EU Project GUARD, Grant Agreement No 833456, and by
the EU Project SIMARGL, Grant Agreement No 833042.



References

[1] A. Qamar, A. Karim, V. Chang, Mobile malware attacks: Review, taxonomy & future
directions, Future Generation Computer Systems 97 (2019) 887–909.

[2] W. Mazurczyk, L. Caviglione, Information hiding as a challenge for malware detection,
IEEE Security & Privacy 13 (2015) 89–93.

[3] K. Cabaj, L. Caviglione, W. Mazurczyk, S. Wendzel, A. Woodward, S. Zander, The new
threats of information hiding: The road ahead, IT Professional 20 (2018) 31–39.

[4] B. W. Lampson, A note on the confinement problem, Communications of the ACM 16
(1973) 613–615.

[5] S. Zander, G. Armitage, P. Branch, A survey of covert channels and countermeasures in
computer network protocols, IEEE Communications Surveys & Tutorials 9 (2007) 44–57.

[6] W. Mazurczyk, L. Caviglione, Steganography in modern smartphones and mitigation
techniques, IEEE Communications Surveys & Tutorials 17 (2014) 334–357.

[7] S. Miano, M. Bertrone, F. Risso, M. Tumolo, M. V. Bernal, Creating complex network
services with eBPF: Experience and lessons learned, in: 2018 IEEE 19th International
Conference on High Performance Switching and Routing (HPSR), IEEE, 2018, pp. 1–8.

[8] A. Carrega, L. Caviglione, M. Repetto, M. Zuppelli, Programmable data gathering for
detecting stegomalware, in: Proceedings of the 2nd International Workshop on Cyber-
Security Threats, Trust and Privacy Management in Software-defined and Virtualized
Infrastructures (SecSoft), IEEE, 2020.

[9] W.Mazurczyk, K. Powójski, L. Caviglione, IPv6 covert channels in the wild, in: Proceedings
of the 3rd Central European Cybersecurity Conference, 2019, pp. 1–6.

[10] J. Saenger, W. Mazurczyk, J. Keller, L. Caviglione, VoIP network covert channels to enhance
privacy and information sharing, Future Generation Computer Systems 111 (2020) 96–106.

[11] M. Urbanski, W. Mazurczyk, J.-F.-. Lalande, L. Caviglione, Detecting Local Covert Channels
Using Process Activity Correlation on Android Smartphones, International Journal of
Computer Systems Science and Engineering 32 (2017) 71–80.

[12] S. Wendzel, S. Zander, B. Fechner, C. Herdin, Pattern-based Survey and Categorization of
Network Covert Channel Techniques, ACM Computing Surveys (CSUR) 47 (2015) 1–26.

[13] N. Lucena, G. Lewandowski, S. Chapin, Covert channels in IPv6, in: Int. Workshop on
Privacy Enhancing Technologies, Springer, 2005, pp. 147–166.

[14] C. Liu, Z. Cai, B. Wang, Z. Tang, J. Liu, A protocol-independent container network
observability analysis system based on eBPF, in: 2020 IEEE 26th International Conference
on Parallel and Distributed Systems, IEEE, 2020, pp. 697–702.


	1 Introduction
	2 Covert Channels: Background and Attack Model
	2.1 The ``Colluding Applications" Threat
	2.2 Exfiltration and Remote Command & Control

	3 Visibility Through Code Augmentation
	3.1 Code Augmentation via eBPF
	3.2 Data Collection

	4 Numerical Results
	5 Conclusions and Future Work
	6 Acknowledgments

