
Placing FaaS in the Fog, Securely
Alessandro Bocci1, Stefano Forti1, Gian-Luigi Ferrari1 and Antonio Brogi1

1University of Pisa, Pisa, Italy

Abstract
Placing FaaS applications onto Fog infrastructures is an open problem presenting various challenges.
It requires considering hardware and software requirements of single functions as well as Quality of
Service requirements of the overall application. In this article, we propose a declarative methodology to
address the placement of FaaS applications onto Fog infrastructures, supported by a running prototype.
Our methodology considers hardware and software requirements, and latency constraints on function-
function and function-service interactions. Particular attention is given to information flow security
constraints and trust relations among the involved stakeholders, to rank eligible output placements. A
lifelike motivating example from augmented reality is used to showcase the prototype.

Keywords
Information-Flow Security, Function-as-a-Service, FaaS, Fog

1. Introduction
The Function-as-a-Service (FaaS) model, started up by Amazon with AWS Lambda [1] in 2015,
was primarily intended for Cloud settings. This brought an evolution in how software is
organised and deployed in the Cloud [2]. Meanwhile, Fog computing [3, 4] emerged to exploit
processing, storage and networking along the Cloud-IoT continuum – from personal devices,
through network switches, to Cloud datacentres. The Fog is designed to support the stringent
Quality of Service (QoS) requirements (e.g. on latency, security) of next-gen IoT applications as
well as to improve the Quality of Experience (QoE) of the existing ones [5, 6, 7]. Indeed, Fog
Computing permits processing – where it is best-suited along the Cloud-IoT continuum – the
huge amounts of data that the Internet of Things (IoT) is producing daily so to enable prompter
and insightful responses to sensed events.

The FaaS paradigm supports the orchestration of stateless, event-triggered functions, ab-
stracting from the target deployment stack, and possibly interacting with external services (e.g.
databases, ML engines, geo-localisation engines) [8, 9]. Event-based serverless functions are
naturally suited to define computation on IoT data, containerisation technologies are lightweight
and seamlessly deployable on Fog nodes, and on-demand execution of functions can lead to
improved usage of resource-constrained devices [10, 11, 12]. The natural combination of FaaS
and Fog computing brings with it various challenges of both foundational and technological
nature. In particular, a key issue concerns the definition of novel and effective strategies to
place serverless functions over the pervasive Fog computing nodes. The placement problem, i.e.

ITASEC21: Italian Conference on Cybersecurity, April 07–9, 2021
Envelope-Open alessandro.bocci@phd.unipi.it (A. Bocci); stefano.forti@di.unipi.it (S. Forti); gian-luigi.ferrari@unipi.it
(G. Ferrari); antonio.brogi@unipi.it (A. Brogi)
Orcid 0000-0002-7000-2103 (A. Bocci); 0000-0002-4159-8761 (S. Forti); 0000-0003-3548-5514 (G. Ferrari);
0000-0003-2048-2468 (A. Brogi)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:alessandro.bocci@phd.unipi.it
mailto:stefano.forti@di.unipi.it
mailto:gian-luigi.ferrari@unipi.it
mailto:antonio.brogi@unipi.it
https://orcid.org/0000-0002-7000-2103
https://orcid.org/0000-0002-4159-8761
https://orcid.org/0000-0003-3548-5514
https://orcid.org/0000-0003-2048-2468
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


finding the mappings from functions to Fog nodes, requires to consider hardware, software and
QoS requirements of single functions as well as their composition into complex applications,
and requirements on function bindings with external services. As other application placement
problems in the Fog, deciding on the above is NP-hard, thus worst-case exp-time [13].

Speaking of QoS, FaaS placement requires constraining the function-function and function-
service latencies, which are crucial to support latency-sensitive applications [14]. Furthermore,
guaranteeing a high level of security is an important QoS aspect to consider [15, 16, 17] as a
security flaw in a single function (or in its interactions with external services) may induce an
overall security flaw of the function composition. Placing FaaS to Fog nodes therefore needs to
consider different security contexts, the security level of data flowing between functions, and
trust relations among application operators, and infrastructure and external service providers.
All these are utterly important to avoid data leaks, e.g. by placing functions handling sensitive
data onto insecure or untrusted nodes, or by binding a function to a service managed by an
untrusted provider [18].

This article builds over our previous work on secure and trust-aware multiservice application
placement in the Fog [17]. Our approach permits to express security requirements of IoT
applications, as well as infrastructure security capabilities taking into account a trust model of the
involved entities. An explainable assessment of the security level of the possible deployments is
automatically derived.In this article, we showcase an extension of [17] over a lifelike motivating
example. The extension includes three main directions:
(𝑎) The definition of a declarative model to represent function requirements including security

policies, and trust relations,
(𝑏) The (formal) logical definition of the function placement problem, which exploits information-

flow security [19] to determine functions’ security contexts, and commutative semirings
to model and propagate trust [20], and

(𝑐) A prototype1 of the above, FaaS2Fog, implemented by relying upon an algebraic extension
of Prolog, to determine eligible placements (i.e. mappings from functions to Fog nodes)
and function-service bindings (i.e. mappings from functions’ service requirements to
actual service instances).

We consider a simple orchestration mechanism where FaaS services are chained together
as sequences of functions. We call it FaaS chains, and they represent a first step towards
placing more complex FaaS orchestrations (e.g. those of OpenWhisk [21]). FaaS2Fog employs
information-flow security [19] to avoid information leaks to untrusted/insecure nodes or services,
and checks all hardware, software and latency chains requirements.

Our approach features two desirable properties to support the placement of FaaS in the
Fog. First, it is declarative, hence more concise, easier to understand and maintain compared
with procedural solutions, and it offers high flexibility and extensibility, to accommodate the
ever-changing needs of Fog scenarios. Second, it is intrinsically explainable as it derives proofs
for input queries by relying on Prolog resolution engines, and it can be easily extended to justify
why a certain placement decision was made, in the spirit of explainable AI [22].

The rest of this article is organised as follows. After describing a lifelike motivating example
from augmented reality (Sect. 2), we illustrate FaaS2Fog methodology (Sect. 3), used to solve

1Open sourced and freely available at: https://github.com/di-unipi-socc/FaaS2Fog.

 https://github.com/di-unipi-socc/FaaS2Fog


and discuss the motivating example (Sect. 4). After presenting closely related work (Sect. 5),
we conclude by pointing to some directions for future work (Sect. 6).

2. Motivating Example
This section illustrates a lifelike motivating example to highlight the challenges related to the
FaaS chain placement problem. Consider an Augmented Reality (AR) application trying to
avoid people gatherings in commercial areas of a city centre, so to contrast the spreading of
Covid-19, by load-balancing people presence across similar shops. When users point with their
smartphones the entrance of a shop they are about to enter, the application renders over the
video 3D information about the number of people inside and its overall capacity. If a high risk
of gathering is detected, the application suggests alternative similar locations to the users by
giving them 3D AR directions, along with incentives (e.g. discounts, special offers) to move
away from the gathering area. Such an application is implemented by a FaaS chain (Fig. 1):

1. 𝑓𝐿𝑜𝑔𝑖𝑛, which authenticates the user into the service,
2. 𝑓𝑆ℎ𝑜𝑝, which recognises the shop entrance in the framed images, so to discriminate among

physically close activities,
3. 𝑓𝐺𝑒𝑜, which identifies the shop by its image and coordinates via an external map service,

also retrieving all shop information,
4. 𝑓𝐺𝑎𝑡ℎ𝑒𝑟, which computes the risk of gathering (based on crowd-sensed information),

individuates alternative shops and incentives to move there,
5. 𝑓𝐴𝑅, which renders AR information over the framed video footage and sends it back to

the mobile client.
For each function in the chain, Fig. 1 lists the software requirements in terms of required
runtime support, and the hardware requirements. For instance, function 𝑓𝑆ℎ𝑜𝑝 needs Python3
and NumPy to be available on the deployment node, along with 2 GB of RAM, and 4 vCPUs at
1.5 GHz at least.

[py3,numPy]
2GB RAM
4vCPUs
1.2GHz

[py3,numPy]
2GB RAM
4vCPUs
1.5GHz

[py3]
1GB RAM
2vCPUs
0.5GHz

[js]
1GB RAM
2vCPUs
0.4GHz

[js]
1GB RAM
2vCPUs
0.5GHz

UserInfo,
Screenshot,
Coordinates,
SensorsInfo

Screenshot,
Coordinates,
SensorsInfo

Screenshot,
CroppedShop,
Coordinates,
SensorsInfo

Screenshot,
CroppedShop,

ShopInfo

Screenshot,
InfoToDraw

10 ms12 ms 13 ms

13 ms

fLogin
10 ms 15 ms

UserInfo
Coordinates,

ShopInfo
ShopInfo,
GahterInfo

FLoginfShop fGeo

30 ms

fGather

12 ms

fAR
[py3,numPy]

2GB RAM
4vCPUs
1.5GHz

[py3]
1GB RAM
2vCPUs
0.5GHz

[js]
1GB RAM
2vCPUs
0.4GHz

[py3,numPy]
2GB RAM
4vCPUs
1.2GHz

[js]
1GB RAM
2vCPUs
0.5GHz

[py3,numPy]
2GB RAM
4vCPUs
1.5GHz

[py3]
1GB RAM
2vCPUs
0.5GHz

[js]
1GB RAM
2vCPUs
0.4GHz

[py3]
1GB RAM
2vCPUs
0.5GHz

[js]
1GB RAM
2vCPUs
0.5GHz

[py3,numPy]
2GB RAM
4vCPUs
1.5GHz

[js]
1GB RAM
2vCPUs
0.4GHz

[py3]
1GB RAM
2vCPUs
0.5GHz

Figure 1: Example FaaS chain.

Each function connects to the type of external service(s) it will need to bind with at runtime
(represented as dashed circles). As an example, function 𝑓𝐿𝑜𝑔𝑖𝑛 needs to bind to an instance of the
userDB service. Function-function and function-service interactions (represented as arrows) are
annotated with the parameters they exchange and with the maximum end-to-end latency they
tolerate between their deployment nodes. For instance, 𝑓𝐿𝑜𝑔𝑖𝑛 passes to 𝑓𝑆ℎ𝑜𝑝 a Screenshot of the
framed shop, with its geographical Coordinates, and SensorsInfo from the client smartphone.
Such interaction tolerates a latency of at most 10 ms.



To prevent sensible data from leaking, chain input parameters are labelled with suitable
security types, as those in the lattice of Fig. 2, modelling the security level pertaining to certain
sensible data from top (i.e. secret) to low (i.e. public).

top

medium

low

Figure 2: Example security lattice.

Those security labels propagate with data along the
function chain (and across external services), determining
a security context for each function (and service), based
on the data it will process. For instance, 𝑓𝐿𝑜𝑔𝑖𝑛 inputs
UserInfo, Screenshot, Coordinates, SensorsInfo can be
labelled by the tuple (top, low, low, low), assigning to
such function the highest type among those, i.e. top. Se-
curity types propagate to the outputs (Screenshot, Coordinates, SensorsInfo) with the labels
(low, low, low), which will be used in turn to determine the (low) security context of 𝑓𝑆ℎ𝑜𝑝.
Finally, we assume that chain triggers come from event generators – invoking suitable orches-
trator API – that are connected to infrastructure nodes. In our example, the event generator is
the client application, which we assume to connect to the closest available node. Functions in
each chain are executed sequentially, and the final result of the computation is returned to the
client application.

Fig. 3 sketches the target (city centre) Fog infrastructure, upon which the chains described
above will be placed and run. Nodes are owned and managed by different providers, the
information we need are their software and hardware capabilities, the services they host, and
their security countermeasures, expressed as per the taxonomy of Fig. 4 (as in [17]). The
countermeasures will be used to specify (i) the security policies in force and (ii) to assign
security labels to nodes.

[all]
∞GB,∞CPUs,∞GHz

[all]

[py3,js,numPy]
4GB,4vCPUs,2GHz

[antiTamp,pubKeyE]

ispRouter
(telco)

80 ms

5 ms 7 ms

[py3]
1GB,2vCPUs,1GHz

[]

officeServer
(university)

[py3,js,numPy]
4GB,4vCPUs,2GHz

[antiTamp,pubKeyE]

labServer
(university)

[py3,js]
2GB,2vCPUs,2GHz

[pubKeyE]

switch 
(university)

7 ms

[py3]
0.5GB,1vCPUs,1GHz

[pubKeyE]

[py3,numPy]
2GB,4vCPUs,1.5GHz

[pubKeyE]

southAntenna
(telco)

[js]
2GB,2vCPUs,1.5GHz 
[antiTamp,pubKeyE]

northAntenna
(telco)

[js]
1GB,2vCPUs,2.5GHz

[]

private1
(privateCitizen1)

private2 
(privateCitizen2)

6 ms
7 ms 8 ms

12 ms

5 ms

30 ms

7 ms

cloudNode
(cloudProvider)

Service 
Id

Service 
Type

Service 
Provider

myUsers userDB appOp

cMaps maps cloudProvider

openM maps openS

myShop shops. appOp

Figure 3: Example Fog infrastructure.

As an example, node switch, owned by university, supports Python and Javascript code, and



features 2 GB of RAM, 2 vCPUs at 2 GHz, and public key encryption as security countermeasure.
Services instances are managed by their providers that detail information about service types
and deployment nodes. For instance, service cMaps provided by cloudProvider is of type maps

and is deployed to node cloudNode. Links between nodes are annotated with their end-to-end
latency, e.g. the latency between ispRouter and northAntenna is 8 ms.

FOG
SECURITY

Virtualisation Communication Data Physical Other

Access Logs

Authentication

Host IDS

Process Isolation

Permission Model

Resource Usage
Monitoring

Restore Points

User Data Isola-
tion

Certificates

Firewall

IoT Data Encryp-
tion

Node Isolation
Mechanims

Network IDS

Public Key Cryp-
tography

Wireless Security

Backup

Encrypted Storage

Obfuscated Stor-
age

Access Control

Anti-tampering
Capabilities

Audit

Figure 4: Security capabilities for Fog computing.

Deploying the chain in Fig. 1 onto infrastructure of Fig. 3 requires satisfying all functions’
software, hardware and latency requirements, and determining a suitable binding from functions
to the service instances they need. Furthermore, function labels and node labels should be
compatible, i.e. a node can host a function only if it features an equal or higher security label.
As an example, the application operator can establish that a node featuring public key encryption
without anti-tampering is labelled as medium security. This means that the node can only support
functions labelled either low or medium. Note that this is required to avoid leaking data from a
higher to a lower security context.
The problem we aim at solving in the above scenario is as follows:

Is there any eligible placement and service binding of chainGath over the available
Fog infrastructure, such that all software, hardware, latency, external service, security
requirements are met, and data leaks are avoided? Can trust relations among involved
stakeholders help in evaluating the quality of eligible placements?

In Sect. 4 we will show how our methodology and prototype FaaS2Fog can be used to answer
the above questions.

3. Methodology
In this section, we describe our methodology to place FaaS chains to Fog infrastructure. We
illustrate both the modelling (Sect. 3.1) and the declarative solution (Sect. 3.2) of the problem,



showing the main Prolog2 facts where clarifications are needed.

3.1. Modelling Applications, Infrastructures and Trust

Declaring FaaS Chains. Application operators declare the requirements of a function F they
will chain into FaaS applications using

functionReqs(F, SoftwareRequirements, HardwareRequirements, ServiceTypeRequirements).

Such requirements include SoftwareRequirements and HardwareRequirements, as well as Service-
TypeRequirements used to bind at run time service instances to be invoked by the function.

The function behaviour of a function F is defined by a relation between security types of
input data (Inputs), output data (Outputs) and data exchanged with external services (Service-
Interactions). The declaration of function behaviours is

functionBehaviour(F, Inputs, ServiceInteractions, Outputs):- ...

We assume that such information can be defined manually, or obtained by exploiting static
analyses and type systems (see e.g. [23, 24]).

A Function chain FChain managed by Operator is declared as

functionChain(FChain, Operator, EventTrigger, Functions, Latencies).

where are included the list of Functions forming the chain, the FaaS Operator, the EventTrig-

ger associated with the chain, and the maximum tolerated Latencies from the trigger to the
first chain function, and between consecutive chained functions. Chain triggers are denoted
by pairs containing the trigger source and the list of security labels of its parameters (e.g.
[top,low,low,low]). Those security labels will match the input types of the first function and
propagate along the chain according to declared function behaviours. Chained functions are
denoted by pairs containing a function identifier and a list of actual service instances each
function will bind to. Bindings either specify a certain service instance identifier or are left
unbound, meaning that any service of the required type can satisfy the requirement.

Application operators also declare a lattice of the security types to define their functions and
function chains, as the one in Fig. 2, using

g_lattice_higherThan(Higher, Lower).

to represent each ordered pair of the lattice with the Higher and the Lower security types.
Declaring Fog Infrastructures. Infrastructure node are declared as

node(NodeId, ProvId, SecCaps, SWCaps, HWCaps).

including the NodeId (e.g. its IP address) and the security, software and hardware capabilities
featured by the node (viz. SecCaps, SWCaps and HWCaps), which enable FaaS2Fog to check the latter
against function requirements. Security capabilities are lists of literals from Fig. 4.

End-to-end links between nodes (NId1 and NId2) are associated with the average Latency in
milliseconds experienced between the nodes, declared as

2A Prolog program is a finite set of clauses of the form: a :- b1, ... , bn. stating that a holds when b1 ∧ ⋯ ∧
bn holds, where n≥0 and a, b1, ..., bn are atomic literals. Clauses with empty condition are also called facts. Prolog
variables begin with upper-case letters, lists are denoted by square brackets, and negation by \+. Conventionally, a
Prolog predicate pred with N arguments is indicated as pred/N.



g_link(NId1, NId2, Latency).

External services, running on available nodes, are declared by service providers as

service(ServiceId, ServiceProvider, ServiceType, NodeId).

where are specified the ServiceId, the identifier of the ServiceProvider, the ServiceType, and the
NodeId of the service host node.

The declaration of an event generator EG is

eventGenerator(EG, EventType, NodeId).

and it includes the EventType of generated triggers it can generate as well as the NodeId of the
node with which it is connected. It is worth noting that data about infrastructure capabilities,
services and event generators can be obtained by exploiting available monitoring tools targeting
Fog settings (e.g. FogMon [25], or one of the tools surveyed in [26]).

Declaring Security Policies. The security context of nodes and external services is determined
according to the security policies specified by application operators. Node and service labelling
is performed as per the same security types of functions parameters to guarantee that types
can be checked against each other and to enforce that functions are placed onto nodes and
interacts with services that feature at least their security type. Node labelling is specified by
the declaration

assignNodeLabel(Node, SecurityContextLabel) :- ...

meaning that the SecurityContextLabel is assigned to the Node if all conditions of the right
hand-side of the rule hold. For example, a node is labelled top only if such node features both
anti-tampering and public key encryption among its security capabilities. Analogously, external
services are labelled by defining the security policies based on the available service information.

Declaring Trust Opinions. All involved stakeholders (i.e. application operators, infrastructure
providers, service providers) can declare trust opinions towards each other. Following [20],
trust relations are modelled as pairs (𝑇 , 𝐶) ∈ [0, 1] × [0, 1] where 𝑇 represents a level of trust
(the higher the better) and 𝐶 the confidence in (i.e. the quality of) such value 𝑇, based on trust
monitoring data. By employing a dialect of Prolog, viz. 𝛼-Problog [27], trust opinions are
declared as facts annotated with (𝑇 , 𝐶), in the form

(T,C)::trustOpinion(Stakeholder1, Stakeholder2).

where Stakeholder1 declares her trust level and confidence toward Stakeholder2.

3.2. Placing FaaS Chains onto Fog Infrastructures
In this section, we briefly illustrate how FaaS2Fog determines FaaS application placements, based
on the modelling described in the previous section. Fig. 5 lists the faas2fog/2 predicate, giving
an overview of the overall functioning of our prototype. After retrieving a function chain by
its identifier CId (line 2), faas2fog/2 retrieves also an event generator associated to the chain,
if any (line 3). Then, after propagating security types along the FaaS chain to determine the
security contexts needed by each function (line 4), faas2fog/2 determines an eligible FaaS chain
Placement satisfying all set requirements (line 5).



1 faas2fog(CId, Placement):-

2 functionChain(CId, AppOp, (GeneratorId,TriggerTypes), FList, LatReqs),

3 eventGenerator(GeneratorId, GeneratorNode),

4 typePropagation(TriggerTypes, FList, TFList),

5 mapping(AppOp, TFList, LatReqs, GeneratorNode, Placement).

Figure 5: The faas2fog/2 predicate.
FaaS2Fog carries out three main steps to determine eligible placement of FaaS application:
1. Propagating Security Types. First, the typePropagation/3 predicate listed in Fig. 6 performs
security type propagation along the chain to be placed. By recursively scanning the list of
chained functions, typePropagation/3 instantiates the security types of all (input, output, exter-
nal) parameters using the functionBehaviour/4 predicate, declared by the application operator
for each function (line 3). The current function F is then assigned the highest security type FType

among the security labels of the parameters it handles determined by highestType/2 (lines 4–6).
The third argument of typePropagation/3 accumulates this new information for all functions.
Newly determined output types are used as input types for the next function in the chain, and
so on so forth.

1 typePropagation(_, [], []).

2 typePropagation(InTypes,[(F,FServices)|FunctionList],

[(F,FServices,FType)|TypedFunctionList]):-

3 functionBehaviour(F, InTypes, InteractionsTypes, OutTypes),

4 append(InTypes, InteractionsTypes, TempTypes),

append(TempTypes, OutTypes, AllTypes), sort(AllTypes, AllTypesSorted),

5 highestType(AllTypesSorted,FType),

6 typePropagation(OutTypes, FunctionList, TypedFunctionList).

Figure 6: The typePropagation/3 predicate.

2. Resource- & QoS-aware Placement. After this step, the mapping/7 (Fig. 7) scans the list of
typed functions TFList and determines an eligible placement for each of them, until the list
is empty (line 1). For each function F to be placed, mapping/7 non-deterministically selects a
candidate node N (line 3) and checks the latency constraint between N and the node of the
previously allocated function3 (line 4). Then, software and hardware requirements of F are
checked against N capabilities (lines 5–6). Notably, the predicate hwReqsOK/5 also checks whether
cumulative hardware requirements allow placing F onto N, i.e. whether, due to the allocation
of previous functions OldAllocHW, the current capacity of N can still host F as well. If this
is possible, the hardware allocation is updated by summing the hardware required by F to
the allocated hardware at N into AllocHW. Consequently, the compatibleNodeType/2 predicate
checks whether the security context of N (determined by the assignNodeLabel/2 provided by the
application operator) is compatible with the security context required by the function. Finally,
the bindServices/6 predicate determines if bindings to external services comply to security and
latency constraints of the function to be placed. Note that when a binding requirement is left
unbound, bindServices/6 can determine eligible services (if any) that satisfy the requirements.
Each placement and binding for F is accumulated in the last parameter of mapping/7, in tuples
like on(F,N,FBinding). Such result will be returned by faas2fog/2.

3. Trust Propagation. FaaS2Fog also considers trust relations by using the semiring-based

3In case of the first function, mapping/7 checks the latency from the event generator.



1 mapping(_, [], [], _, AllocHW, AllocHW, []).

2 mapping(AppOp, [(F,FServices,FType)|TFList], [ReqLatency|LatReqs],

PreviousNode, OldAllocHW, NewAllocHW, [on(F,N,FBinding)|P]):-

3 getNode(N, SWCaps, HWCaps),

4 link(PreviousNode, N, FeatLatency), FeatLatency =< ReqLatency,

5 functionReqs(F, SWReqs, HWReqs, FServicesReqs),

6 swReqsOK(SWReqs, SWCaps),

7 hwReqsOK(HWReqs, HWCaps, N, OldAllocHW, AllocHW),

8 compatibleNodeType(FType,N),

9 bindServices(AppOp, N, FServices, FType, FServicesReqs, FBinding),

10 mapping(AppOp, TFList, LatReqs, N, AllocHW, NewAllocHW, P).

Figure 7: The mapping/7 predicate.

modelling of [20] to aggregate opinions from different stakeholders. Trust propagation is
conditioned to a maximum radius of 3 hops in the trust graph, assuming that each stakeholder
trusts herself with a (1, 1) opinion. Following the model of [20], we propagate trust from 𝐴
to 𝐵 as follows: opinions along paths from 𝐴 to 𝐵 are multiplied, while opinions across paths
from 𝐴 to 𝐵 are summed. We employ the multiplication (⊗) and sum (⊕) operations of Fig. 8,
implemented as in [17] via 𝛼-Problog.

⟨𝑇 , 𝐶⟩ ⊗ ⟨𝑇 ′, 𝐶′⟩ = ⟨𝑇𝑇 ′, 𝐶𝐶′⟩

⟨𝑇 , 𝐶⟩ ⊕ ⟨𝑇 ′, 𝐶′⟩ =
⎧

⎨
⎩

⟨𝑇 , 𝐶⟩ if 𝐶 > 𝐶′

⟨𝑇 ′, 𝐶′⟩ if 𝐶′ > 𝐶
⟨max{𝑇 , 𝑇 ′}, 𝐶⟩, if 𝐶 = 𝐶′

Figure 8: Semiring ⊗ and ⊕ operations.

Trust relations are checked between the appli-
cation operator and the node operator where
functions are placed. Analogously, trust re-
lations are checked between the application
operator and external service providers. Re-
lying on 𝛼-Problog, FaaS2Fog annotates each
output eligible placement with its overall trust
assessment computed as described above.

4. Motivating Example Revisited
In this section, we solve the motivating example4 of Sect. 2 by answering the questions raised
therein. Security policies to label services specify that all the services provided by appOp are
labelled top, the maps services provided by cloudProvider are labelled medium, and all the other
services are labelled low. We assume that input parameters generated by userDevices triggering
the chain are labelled [top,low,low,low], only considering user’s data as sensitive information.

Given these ingredients, we simply query the main predicate of FaaS2Fog, faas2fog(chainGath,
Placement), to determine eligible placements for the FaaS chain. FaaS2Fog matches trigger types
with the input labels of function 𝑓𝐿𝑜𝑔𝑖𝑛 (UserInfo, Screenshot, Coordinates, SensorsInfo) and,
by propagation, it determines the labelling of functions5 as: (𝑓𝐿𝑜𝑔𝑖𝑛, top), (𝑓𝑆ℎ𝑜𝑝𝑠, low), (𝑓𝐺𝑒𝑜, low),
(𝑓𝐺𝑎𝑡ℎ𝑒𝑟, medium), and (𝑓𝐴𝑅, medium). Afterwards, eligible placements and service bindings meeting
all software, hardware, latency, and security requirements of the chain of Fig. 1 are looked for
by the placement phase. Table 1 summarises all obtained results. They are 9 eligible placements

4Full example code at: https://github.com/di-unipi-socc/FaaS2Fog/tree/main/examples/ITASEC21
5Note that, labelling Coordinates as medium, we would obtain a different labelling, i.e. (𝑓𝐿𝑜𝑔𝑖𝑛, top), (𝑓𝑆ℎ𝑜𝑝𝑠,

medium), (𝑓𝐺𝑒𝑜, medium), (𝑓𝐺𝑎𝑡ℎ𝑒𝑟, medium), and (𝑓𝐴𝑅, medium).

https://github.com/di-unipi-socc/FaaS2Fog/tree/main/examples/ITASEC21


and bindings – 𝑃1-𝑃9, one per row – that satisfy all set requirements. Each column in the table
corresponds to a chain function and lists the placement node and the service bindings. It is
worth mentioning that while service bindings are already specified for 𝑓𝐿𝑜𝑔𝑖𝑛 (with the service
myUserDB) and for 𝑓𝐺𝑎𝑡ℎ𝑒𝑟 (with the service myGatherS), the binding of 𝑓𝐺𝑒𝑜 was left unbound and
is determined by FaaS2Fog so to meet the required low security context. As a consequence,
depending also on function-service latency considerations, such requirement is bound either to
the openM (e.g. 𝑃1) or to the cMaps instance (e.g. 𝑃2).

Node Bindings Node Bindings Node Bindings Node Bindings Node Bindings
P1 ispRouter myUserDB labServer - ispRouter openM switch myGathS southAntenna -
P2 ispRouter myUserDB labServer - ispRouter cMaps switch myGathS southAntenna -
P3 ispRouter myUserDB labServer - switch openM ispRouter myGathS southAntenna -
P4 ispRouter myUserDB southAntenna - ispRouter cMaps switch myGathS labServer -
P5 ispRouter myUserDB southAntenna - ispRouter openM switch myGathS labServer -
P6 ispRouter myUserDB southAntenna - northAntenna openM ispRouter myGathS labServer -
P7 ispRouter myUserDB southAntenna - private1 openM ispRouter myGathS labServer -
P8 ispRouter myUserDB southAntenna - switch openM ispRouter myGathS labServer -
P9 labServer myUserDB ispRouter - labServer openM switch myGathS southAntenna -

f Login f Shop f Gather f ARf Geo

Table 1
Eligible placements for the example.

We now also consider the trust network of Fig. 9, where links are annotated with (Trust,

Confidence) values. For instance, appOp has a trust level of 0.99 with confidence 0.9 toward the
telco provider, and a trust level of 0.9 with confidence 0.9 toward the cloudProvider provider.
Table 2 lists the trust and confidence values associated to the found placements 𝑃1–𝑃9, listed in
Table 1. Trust assessment allows application operators to select one (or more) best candidate
placement(s), as well as to set a minimum trust level to meet. For instance, blindly choosing
the first result 𝑃1 of Table 1 actually leads to selecting one of the placements which can be
trusted less (viz. (0.27, 0.23)) among the eligible ones. By considering trust assessment, the
application operator will instead likely choose 𝑃4, with the best trust level (viz. (0.77, 0.48)).

appOp

university

private1

cloudProvider

openS

telco

private20.9,0.9

0.99,0.9

0.9,0.9

0.5,0.9

0.8,0.85 0.9,0.9

0.6,1

0.8,1

0.8,0.9

0.9,0.9

0.89,0.9

Figure 9
Example trust network.

Trust
P1 (0.27, 0.23)

P2 (0.61, 0.31)

P3 (0.27, 0.23)

P4 (0.77, 0.48)

P5 (0.34, 0.35)

P6 (0.34, 0.31)

P7 (0.17, 0.28)

P8 (0.30, 0.28)

P9 (0.24, 0.21)

Table 2
Ranking of eligible placements.

.

5. Related Work
In this section, we survey some closely related work proposing declarative solutions to resource
management in Cloud or Fog scenarios and techniques to assist the placement of orchestrated
serverless functions in the Fog.



Speaking of declarative approaches to resource management, some have been proposed to
manage Cloud resources (e.g. [28]) and to improve network usage (e.g. [29]). We employed
𝛼-Problog prototypes to assess the security and trust levels of different multiservice application
placements [17], and to securely place VNF chains and steer traffic across them [30]. The
taxonomy of Fig. 4 to express security policies was introduced in [17], where trust relations
modelled via semirings were introduced. Differently from FaaS2Fog, it determines placements
of multiservice applications (i.e. not FaaS-based) without considering information flow security,
external service interactions, nor hardware and software requirements of services to be placed.
Similarly, focussing on Software-defined Networking (SDN) domains, [30] considers neither
trust relations nor information flow security, but only security requirements as AND-OR
combinations of the taxonomy elements. Closely related to these, [31] devises a (non-declarative)
solution to the problem of placing multiservice applications over multiple nodes, configuring
hardware/software security controls without considering information-flow nor trust.

Targeting FaaS architectures, Pinto et al. [32] dynamically decide whether to run a serverless
function within the local Edge network or in the Cloud, based on monitored data. An Edge proxy
is in charge of making such a decision, also considering network failures. On the same line, Das
et al. [33] present an edge-based framework to dynamically decide whether to execute a function
in the Cloud or locally, by estimating operational costs and improving end-to-end latencies.
Similarly, Aske and Zhao [34] present a serverless monitoring and scheduling system to select
FaaS providers, based on average execution time, affinity constraints, and costs – possibly
considering user-defined scheduling policies. Cho et al. [35] discuss a solution to distribute
FaaS tasks over hierarchical Fog infrastructures, by employing a token bucket algorithm and
einforcement learning to optimise workload distribution and response times.

Cicconetti et al. [36] propose an architecture to realise serverless computing SDN scenarios
where network routers assign function execution to edge devices based on arbitrary costs (e.g.
latency, bandwidth, energy). The infrastructure is monitored and updated by SDN controllers,
and different strategies try to optimise operational costs and load-balancing. More recently,
based on their model to annotate function requirements [37], Rausch et al. [38] discuss a
Kubernetes-based scheduler to optimise the placement of FaaS in the Fog based on a linear
combination of proximity to image registries and to data producers, available node resources
and Edge or Cloud locality. Bermbach et al. [39] take an infrastructure provider’s perspective to
FaaS placement in the Fog, using distributed auctions. Programmers submit functions to target
nodes along with a resource bid, based on which nodes decide whether to run functions.

Only [40] and [41] exploit information flow security to check that no leak is present in FaaS
orchestrations, at runtime. Differently from FaaS2Fog, security types are not exploited to deter-
mine eligible FaaS placements. To the best of our knowledge, none of the previously proposed
approaches considers information-flow security, or infrastructure security countermeasures, or
trust relations when performing latency-aware placement of FaaS orchestrations in the Fog.

6. Concluding Remarks
This article introduced a life-like example concerning the problem of determining eligible
placements of FaaS chains to Fog infrastructures, that is addressed with a declarative method-
ology and its prototype, FaaS2Fog. Our approach considers hardware, software and latency



requirements, and exploits information-flow security policies as well as infrastructure security
capabilities. Eligible placements are ranked by employing semiring-based trust relations among
the involved stakeholders. From the architectural viewpoint, FaaS2Fog employs information
on the application, on its security types and on infrastructure labelling policies (declared by
application operators), data on infrastructure capabilities (collected via distributed monitoring
tools, and declared by infrastructure operators), and trust relations (declared by all involved
providers).

Our approach shows some qualifying strenghts to address FaaS placement in Fog scenarios.
Its declarative nature makes it easier to define FaaS chain requirements and security policies,
infrastructure capabilities, and trust relations. Moreover, it naturally supports a flexible approach
since it allows the definition of new requirements (e.g. bandwidth, availability of specialised
hardware) or security considerations (e.g. provider whitelisting). Finally, placement explanation
can be obtained by taking advantage of proof paths determined via the 𝛼-Problog engine.
Thus, employing explainable placements combined with information-flow and trust assessment
can reduce the possibility of leaking critical data to untrusted or insecure parties during the
deployment of FaaS chains. On the other hand, FaaS2Fog does not yet handle structured FaaS
orchestrations, obtained by combining functions with traditional control mechanisms (e.g.
branches, loops). This needs to be addressed to model more complex use cases, also extending
information flow analyses to the general case. Additionally, human-readable explanations on
why a certain placement was (or was not) output would further improve interactions with
the users and their trust in systems based on the proposed methodology. Finally, FaaS2Fog
incurs in worst-case exp-time to determine valid placements. As serverless functions are usually
on-demand and short-lived, it is crucial to assess execution times over larger examples, and to
improve on those via heuristics or continuous reasoning [42].

In addition to tackling all aforementioned points, in our future work we plan to extend the
methodology underlying FaaS2Fog by formally defining type judgement rules for a feature-
complete orchestration language, showing how they can be naturally expressed in 𝛼-Problog.
Last, we intend to implement a service based on FaaS2Fog and on the Logic-Programming-as-
a-Service paradigm [43], and to experiment with actual FaaS deployments in Fog settings by
relying on open-source orchestration engines such as OpenWhisk with IBM Composer [21].

Acknowledgments
This work has been partly supported by project “Lightweight Self-adaptive Cloud-IoT Monitoring
across Fed4FIRE+ Testbed” (LiSCIo) funded by Fed4Fire+ and“Continuous QoS-compliant Man-
agement of Software Applications over the Cloud-IoT Continuum” (CONTWARE) funded by the
Conference of Italian University Rectors.

References

[1] AWS Lambda, https://aws.amazon.com/it/lambda/, Accessed: Apr. 2021.
[2] V. Yussupov, J. Soldani, U. Breitenbücher, A. Brogi, F. Leymann, FaaSten your decisions:

A classification framework and technology review of Function-as-a-Service platforms,
Journal of Systems and Software 175 (2021) 110906.

https://aws.amazon.com/it/lambda/


[3] F. Bonomi, R. Milito, P. Natarajan, J. Zhu, Fog computing: A platform for internet of things
and analytics, in: Big data and internet of things, volume 546, 2014, pp. 169–186.

[4] P. Habibi, M. Farhoudi, S. Kazemian, S. Khorsandi, A. Leon-Garcia, Fog Computing: A
Comprehensive Architectural Survey, IEEE Access 8 (2020) 69105–69133.

[5] R. Mahmud, S. N. Srirama, K. Ramamohanarao, R. Buyya, Quality of Experience (QoE)-
aware placement of applications in Fog computing environments, J. Parallel Distributed
Comput. 132 (2019) 190–203.

[6] C. Guerrero, I. Lera, C. Juiz, Evaluation and efficiency comparison of evolutionary algo-
rithms for service placement optimization in fog architectures, Future Gener. Comput.
Syst. 97 (2019) 131–144.

[7] A. Brogi, S. Forti, A. Ibrahim, Optimising QoS-assurance, Resource Usage and Cost of Fog
Application Deployments, in: CLOSER (Selected Papers), CCIS, volume 1073, 2018, pp.
168–189.

[8] I. B. et al., Serverless computing: Current trends and open problems, in: Res. Adv. in
Cloud Comp., 2017, pp. 1–20.

[9] E. Jonas, J. Schleier-Smith, V. Sreekanti, C. Tsai, A. Khandelwal, Q. Pu, V. Shankar, J. Carreira,
K. Krauth, N. J. Yadwadkar, J. E. Gonzalez, R. A. Popa, I. Stoica, D. A. Patterson, Cloud
Programming Simplified: A Berkeley View on Serverless Computing, CoRR abs/1902.03383
(2019).

[10] M. S. Raghavendra, P. Chawla, A review on container-based lightweight virtualization for
fog computing, in: ICRITO, 2018, pp. 378–384.

[11] D. von Leon, L. Miori, J. Sanin, N. El Ioini, S. Helmer, C. Pahl, A lightweight container
middleware for edge cloud architectures, Fog and edge computing (2019) 145–170.

[12] T. Pfandzelter, D. Bermbach, tinyfaas: A lightweight faas platform for edge environments,
in: ICFC, 2020, pp. 17–24.

[13] A. Brogi, S. Forti, QoS-Aware Deployment of IoT Applications Through the Fog, IEEE
Internet Things J. 4 (2017) 1185–1192.

[14] M. Großmann, C. Ioannidis, D. T. Le, Applicability of serverless computing in fog computing
environments for iot scenarios, in: UCC Companion, 2019, pp. 29–34.

[15] J. Ni, K. Zhang, X. Lin, X. Shen, Securing fog computing for internet of things applications:
Challenges and solutions, IEEE Comm. Surveys & Tutorials 20 (2017) 601–628.

[16] L. M. Vaquero, F. Cuadrado, Y. Elkhatib, J. Bernal-Bernabe, S. N. Srirama, M. F. Zhani,
Research challenges in nextgen service orchestration, Future Gener. Comput. Syst. 90
(2019) 20–38.

[17] S. Forti, G. L. Ferrari, A. Brogi, Secure cloud-edge deployments, with trust, Future Gener.
Comput. Syst. 102 (2020) 775–788.

[18] A. Bocci, S. Forti, G.-L. Ferrari, A. Brogi, Secure FaaS orchestration in the fog: how far are
we?, Computing (2021) 1–32.

[19] A. Sabelfeld, A. C. Myers, Language-based information-flow security, IEEE J. Sel. Areas
Commun. 21 (2003) 5–19.

[20] S. Bistarelli, S. N. Foley, B. O’Sullivan, F. Santini, Semiring-based frameworks for trust
propagation in small-world networks and coalition formation criteria, SCN 3 (2010)
595–610.

[21] IBM OpenWhisk, https://cloud.ibm.com/docs/openwhisk, Accessed: Apr. 2021.

https://cloud.ibm.com/docs/openwhisk


[22] H. Hagras, Toward human-understandable, explainable AI, Computer 51 (2018) 28–36.
[23] F. Pottier, C. Skalka, S. F. Smith, A systematic approach to static access control, ACM

Trans. Program. Lang. Syst. 27 (2005) 344–382.
[24] M. Bartoletti, P. Degano, G. L. Ferrari, R. Zunino, Semantics-based design for secure web

services, IEEE Trans. Software Eng. 34 (2008) 33–49.
[25] S. Forti, M. Gaglianese, A. Brogi, Lightweight self-organising distributed monitoring of

Fog infrastructures, Future Gener. Comput. Syst. 114 (2021) 605–618.
[26] S. Taherizadeh, A. C. Jones, I. Taylor, Z. Zhao, V. Stankovski, Monitoring self-adaptive

applications within edge computing frameworks: A state-of-the-art review, J. Syst. Softw.
136 (2018) 19–38.

[27] A. Kimmig, G. Van den Broeck, L. De Raedt, An algebraic Prolog for reasoning about
possible worlds, in: AAAI, 2011.

[28] S. Kadioglu, M. Colena, S. Sebbah, Heterogeneous resource allocation in Cloud Manage-
ment, in: NCA 2016, 2016, pp. 35–38.

[29] T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell, S. Shenker, Practical declarative
network management, in: WREN, 2009, pp. 1–10.

[30] S. Forti, F. Paganelli, A. Brogi, Probabilistic QoS-aware Placement of VNF chains at the
Edge, Theory Pract. Log. Program. (2021). In press.

[31] Z. Á. Mann, Secure software placement and configuration, Future Gener. Comput. Syst.
110 (2020) 243–253.

[32] D. Pinto, J. P. Dias, H. S. Ferreira, Dynamic allocation of serverless functions in iot
environments, in: EUC, 2018, pp. 1–8.

[33] A. Das, S. Imai, S. Patterson, M. P. Wittie, Performance Optimization for Edge-Cloud
Serverless Platforms via Dynamic Task Placement, in: CCGRID, 2020, pp. 41–50.

[34] A. Aske, X. Zhao, Supporting multi-provider serverless computing on the edge, in: ICPP,
2018, pp. 20:1–20:6.

[35] C. Cho, S. Shin, H. Jeon, S. Yoon, Qos-aware workload distribution in hierarchical edge
clouds: A reinforcement learning approach, IEEE Access 8 (2020) 193297–193313.

[36] C. Cicconetti, M. Conti, A. Passarella, A decentralized framework for serverless edge
computing in the internet of things, IEEE Trans. Netw. Serv. Manag. (2020) 1–14.

[37] T. Rausch, W. Hummer, V. Muthusamy, A. Rashed, S. Dustdar, Towards a serverless
platform for edge AI, in: HotEdge, 2019.

[38] T. Rausch, A. Rashed, S. Dustdar, Optimized container scheduling for data-intensive
serverless edge computing, FGCS 114 (2021) 259–271.

[39] D. Bermbach, S. Maghsudi, J. Hasenburg, T. Pfandzelter, Towards auction-based function
placement in serverless fog platforms, in: ICFC, 2020, pp. 25–31.

[40] K. Alpernas, C. Flanagan, S. Fouladi, L. Ryzhyk, M. Sagiv, T. Schmitz, K. Winstein, Secure
serverless computing using dynamic information flow control, OOPSLA 2 (2018) 1–26.

[41] P. Datta, P. Kumar, T. Morris, M. Grace, A. Rahmati, A. Bates, Valve: Securing function
workflows on serverless computing platforms, in: WWW, 2020, pp. 939–950.

[42] S. Forti, A. Brogi, Continuous Reasoning for Managing Next-Gen Distributed Applications,
in: ICLP (Technical Communications), volume 325 of EPTCS, 2020, pp. 164–177.

[43] R. Calegari, E. Denti, S. Mariani, A. Omicini, Logic programming as a service, Theory
Pract. Log. Program. 18 (2018) 846–873.


	1 Introduction
	2 Motivating Example
	3 Methodology
	3.1 Modelling Applications, Infrastructures and Trust
	3.2 Placing FaaS Chains onto Fog Infrastructures

	4 Motivating Example Revisited
	5 Related Work
	6 Concluding Remarks

