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Abstract  
This paper presents the development of an Intrusion Detection System (IDS) to be deployed 

on a CAN bus. Since the introduction of many external interfaces in modern vehicles exposes 

users to the risk of cyber-attacks, the need of focus on security is concrete. An IDS is a 

component that can detect anomalies in the behavior of the system where it is deployed. The 

proposed machine learning based solution is composed of two parts. The first includes a 

supervised trained neural network that is able to distinguish among different known attacks. 

The second includes a discriminator that has been trained exploiting the Generative 

Adversarial Network (GAN) paradigm, to distinguish among the attack-free situation and an 

anomalous situation. It will be demonstrated how the supervised training can achieve state of 

the art performance in classification and how the unsupervised training can guarantee a 

certain level of security even without the necessity of feeding labeled data to the network.  
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1. Introduction 

A connected car is a car capable of communicating bidirectionally with systems located outside of 

itself or with internal devices. Many forms of external interfaces were added to modern vehicles in 

recent years in order to enable such communication, unlocking a broad spectrum of new comforts for 

drivers. Among them are the collection of real-time traffic information, accident emergency services, 

access to status and operating conditions of the car. 

On the one hand, all of the above-mentioned features enrich the vehicle’s user experience and 

enhance higher transportation network security and efficiency standards. On the other hand, all these 

communication interfaces expose the vehicle internal networks to remote attacks, thus increasing the 

vehicles’ cyber vulnerability.  

In the future, each car will constantly communicate with the surrounding environment made of 

other cars, pedestrians and road signs giving rise to what is called the Vehicle to Everything (V2X) 

paradigm [1]. This will dramatically increase the risk of potential attacks that could exploit the greater 

connectivity routes available.  

In a modern vehicle there are many kinds of networks: the CAN bus is the de facto standard for 

safety critical applications. The CAN bus connects hundreds of Electronic Control Units (ECUs) and 

controls most, if not all, of the electro-mechanical actuated systems: from brakes to lights, from 

airbags to transmission. Being designed in the eighties, CAN bus does not embed security features. In 

today’s connected world, finding ways to prevent cyber-attacks that could damage on-board systems 

and put the vehicle and the passengers at risk, has become of pivotal importance.  

 Side by side with the growing awareness of the vulnerabilities in CAN bus security, and the 

consequences that a cyber-attack on a vehicle could entail, some technical countermeasures have 

already been adopted. Since the 2000s, preventive solutions have been explored such as the use of 
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sub-networks along with the addition of gateways and firewalls that block messages trying to cross 

subnets. Authentication protocols [2] and encryption methods [3] have been deployed as well, thus 

increasing safety levels of CAN buses. Other countermeasures include Intrusion Detection Systems 

(IDS), that try to identify anomalies on the traffic on a specific network by reading all the messages in 

transit. 

This paper presents the architecture and the safety performances of a two-step CAN bus IDS 

trained with machine learning techniques. This approach allows to add a measure of safety, even for 

on-board electronics architectures already consolidated, without too much interference with pre-

existent hardware and software. 

2. Related Works 

In the automotive field, numerous anomaly detection methods have been proposed. Most of these 

solutions try to identify two categories of attacks: those based on the frequency of messages, such as 

insertion or deletion of packets, and those that manipulate the payload.  

In [4] attacks are detected by checking the validity of the single frames with formal rules, and by 

defining a certain number of forbidden message sequences by exploiting the correlation between the 

target frame and contextual information regarding previously transmitted messages. A different rule 

based on transition matrices was illustrated in [5]. 

Another approach is presented in [6], where anomalies are detected by looking at the inter frame 

arrival times and at the frequencies of particular messages. This method can identify deviation from 

normal traffic targeting particular ECUs, and is pretty accurate, but frequency alone cannot be relied 

upon to discriminate an attack from an irregular noise situation in the CAN network. 

It is also possible to undertake a statistical approach, as it was done in [7], where a rolling window 

moves over a sequence of messages, focusing the attention on a portion of data in transit and 

computing statistical measures as the standard deviation on offsets and time intervals between 

messages. 

Also, many learning-based approaches were tested. Some of them are based on the time series of 

payload values, and make extensive use of recurrent neural networks, in particular LSTM models [8]. 

However, this approach takes advantage of knowledge of payload semantics, which in most cases is 

unknown and proprietary. Another way to detect attacks in the network is to use a compound 

classifier, fusing a one-class SVM for each ID, to obtain an overall anomaly score [9]. Some other 

interesting approaches use a rolling window over the messages’ sequence and then use a CNN to 

classify the matrices obtained from a pre-processing on the portion of messages focused by the 

window [10]. This method proved to be very accurate in detecting known attacks and has been further 

improved by adding an additional filter on packet traffic consisting of a CNN trained with the GAN 

technique [11]. 

3. CAN Bus 

CAN [12] is a network with a bus topology, which means that all devices on the network are 

connected to a single line, or bus.  

At the transfer layer, the information is sent over the CAN bus through messages with a fixed 

format and of limited length. Each frame is made up of various fields, the most significant of which 

are: 

 
Figure 1: CAN bus frame structure 

 

● Identifier, an 11-bits identifier that also defines the priority of the message. The lower 

the binary value, the higher the priority. Can be extended to 29 bits. 

● Data, 64-bit field whose semantics are generally proprietary and specific to each ECU. 



 

 

A characteristic worth noticing is that there are no source and destination fields in a CAN packet: 

message routing is regulated by the ID field. A CAN packet is broadcasted to the entire network, and 

only some ECUs will process the packet based on the ID received. 

4. Attacks 

The first neural network of the presented IDS (ANN1) is trained in a supervised manner with a 

dataset of different categories of known attacks. The goal of ANN1 is to discriminate between known 

attacks and the normal condition by inferring over a sequence of data packets, in real time. The 

datasets used for training are made of real CAN bus messages [11], [7]. They consist of logs of traffic 

directly picked from the CAN bus through the OBD-II port of commercial vehicles where attacks 

were carried out connecting a Raspberry Pi3 board to the bus and a laptop to the board. The following 

paragraphs describe the types of known attacks that get detected by ANN1. 

4.1. Denial of Service (DoS) 

An attacker can inject high priority messages in a short cycle on the bus. DoS attack messages aim 

at occupying the bus using the theoretically highest priority identifier, namely 0x000. Since all nodes 

share a single bus, increasing occupancy of the bus can produce latencies of other messages and cause 

threats regarding availability with no response to driver’s commands 

4.2. Fuzzy 

An attacker can inject messages with randomly spoofed CAN ID, either with arbitrary data or with 

spoofed data values. All these messages are functional and structurally correct, but they can cause 

unintended vehicle behaviors. An attacker can passively observe in-vehicle traffic and select target 

identifiers to produce unexpected behaviors. Unlike the DoS attack, Fuzzy is more specific and aims 

at paralyzing a particular function of the vehicle. 

4.3. Impersonation 

An attacker can manage to stop message transmission from a target node and can plant/manipulate 

an impersonating node that will take its role. If a victim node stops transmitting, all messages sent by 

the targeted node will be removed from the bus.  

5. Pre-Processing 

The two datasets have been divided into windows of traffic logged from the bus. Each of these 

windows contain a number of packets, that during tests varied from a minimum of 8 to a maximum of 

128. The most informative fields in CAN packets are the ID and the payload. To enhance the system 

flexibility, semantic comprehension of payload data was not accounted.  

Only sequences of IDs were used to train the models. However, in log files IDs are formatted as 

hexadecimals, therefore they are not suited to be fed to a neural network directly. Windows of IDs 

have been converted into grayscale images with the two encodings pictured below. 

 



 
Figure 2: Encoding process of datasets 

6. Supervised Training 

In this chapter the different neural network architectures will be illustrated. Each of these 

architectures have been mantained small enough to fit memory constrained hardware. Two strategies 

ensured high detection accuracies: using RNNs, being the relationship of IDs sequences temporal 

rather than spatial, and using data fusion via the exploitation of other data available from the datasets. 

Each model proposed have been tested on different window sizes ranging from 8 to 128 CAN 

messages. All models have been trained using the same optimizer and the same hyperparameters. 

6.1. CNN Model 

The CNN model consists of 3 convolutional layers and a fully connected layer with 32 units which 

precedes the last layer that outputs four probability values, one for each class of attacks. Each 

convolutional layer has 3x3 filters. The number of filters increases while going deeper in the network. 

Each convolutional layer is followed by a BatchNormalization, a ReLU activation function and a 

Dropout layer (at training time only).  

6.2. RNN Model 

The RNN model consists of 32 LSTM cells followed by two fully connected layers with 

respectively 64 and 32 units. Finally, the output layer is the same as the one in the CNN model. In this 

way, in respect to CNNs complexity of models is consistently reduced. 

6.3. Data Fusion 

Looking at time intervals between subsequent messages enables the detection of a set of known 

attacks [7]. The sequence of timestamps available in the datasets was divided into windows. Each 

window was normalized by subtracting its first value from each timestamp and then dividing by the 

mean time elapsed in the transmission of a normal window, to remove outliers. 

The data fusion models were built as the concatenation of two models, one taking as input the 

sequences of IDs and the other taking as input the sequences of timestamps. The first model has the 

same structure as defined in the previous section. The second has the same architecture but uses one-

dimensional filters. After the convolutional layers, each model output is flattened and concatenated.  

 



 
Figure 3: Architecture of data-fusion CNN model 

 

As expected, the number of trainable parameters grows compared to above models. However, at 

the expense of a limited increase in model complexity, the performance in classifying attacks is 

considerably enhanced, in particular for convolutional models and bigger windows. 

6.4. One-Hot Vector Encoding 

One-hot vector encoding proved to offer better results in the classification of images extracted 

from CAN bus traffic [11].  

The CNN model tested with OHV encoded data is composed of three convolutional layers, with 

respectively 4, 8 and 16 channels. Each layer has a filter with a 3x5 kernel that is moved over the 

image with a stride of 1x2. At the end, between the flattened matrix and the output layer there is a 

dense layer composed of 32 neurons. The use of a rectangular stride allowed for a consistent 

reduction of the number of parameters. 

The RNN model instead maintains the same structure presented in 6.2, with the only difference in 

the input size. 

7. GAN Training 

A drawback of the supervised approach to machine learning in anomaly detection is that it relies 

on known attacks. Slight variations to attacks forming the dataset will increase the possibility to be 

confused with normal situations. Approaches based on distinguishing the normal behavior from 

anomalies, based only on attack-free data, could have a high false positive rate. It is possible though 

to train a network to generate data similar to the ones of the given dataset, and at the same time train a 

second network to distinguish among generated data and real data. This mechanism is called 

Generative Adversarial Network training. This approach results in a reliable discriminator that could 

enable protection against unknown attacks and also helps reduce the false positive samples yielded by 

a supervised model. In the next sections architectures and setups of the second part of the proposed 

system (ANN2) will be illustrated. 

 

 
Figure 4: GAN training flow diagram 

 



7.1. CNN Discriminator 

The CNN discriminator is composed of 3 convolutional layers, each of them with a 3x3 kernel and 

respectively 128, 64 and 32 channels, and a single neuron as output. Each layer is followed by a 

Leaky ReLU function and a Dropout layer.  

The associated generator takes a random vector of 256 values as the input of a dense layer with 

13*5*8 units, that is reshaped in a three-dimensional object. The network is then composed of 3 

Conv2DTranspose layers. The first two consist of rectangular filters of dimension 5x3, moved with a 

stride of 2x1. They have 4 and 3 filters respectively. The last layer has only one channel and uses a 

4x3 kernel moved in 1x1 strides. Each layer is followed by a ReLU function and a Dropout layer. The 

last layer squeezes the values of the generated image in the range [-1, 1] applying a ‘tanh’ activation 

function. 

7.2. DNN Discriminator 

The DNN discriminator is composed of 2 dense layers, with bi-dimensional input and respectively 

96 and 48 units, and a single neuron as output. Each layer is followed by a Leaky ReLU function and 

a Dropout layer.  

The associated generator takes a random vector of 256 values as the input of a dense layer with 

1*12*256 units, that is then reshaped in a three-dimensional object. The network is then composed of 

four Conv2DTranspose layers. Each of them moves its filters along a stride of 2x2. The first two 

layers have 3x3-sized filters while the last two have 5x5. Each layer is followed by a ReLU function 

and a Dropout layer. The last layer squeezes the values of the generated image in the range [-1, 1] 

applying a ‘tanh’ activation function. 

7.3. Training Setup 

Each architecture of ANN2 has been tested with three different setups: 

 

• DCGAN: the last neuron of the discriminator incorporates a sigmoid activation function. The 

loss function used is the Minimax loss and the optimizer used is Adam with a learning rate of 1e-3. 

BatchNormalization is added after each layer of the two networks.  

• WGAN: the last neuron of the discriminator can output any real value, however the weights 

of each layer in the discriminator are clipped in the range [-0.01, 0.01] after each iteration. The 

loss function used is the Wasserstein loss and the optimizer used is RMSprop with a learning rate 

of 5e-5. The discriminator is trained for 5 times the iterations of the generator. 

• WGAN-GP: the last neuron of the discriminator can output any real value, however a 

penalization factor (Gradient Penalty) is added to the loss after each iteration. The loss function 

used is the Wasserstein loss and the optimizer used is Adam with a learning rate of 2e-5, 

beta_1=0.5 and beta_2=0.9. The discriminator is trained for 5 times the iterations of the generator. 

Gradient penalty factor λ has been fixed to 10. 

 

 
Figure 5: Loss functions of GAN training setups 

 

 

 



8. Results 
8.1. Supervised Training 

In Figure 6, average accuracies of architectures presented in Supervised Training, over OTIDS 

dataset, can be compared over different window sizes. Accuracy is calculated as the sum of true 

positives and true negatives over the sum of all the samples of each class in the test dataset. The AUC 

score is also reported in Figure 6. Detailed measurements on individual classes and on GIDS dataset 

are reported in Appendix A. 

Analysing the results, a trend can be extrapolated from each test, that shows how the accuracy in 

detecting a particular situation is almost everywhere increasing with bigger windows. This is possibly 

due to the fact that the model has more data to relies on to predict the various classes. Instead, with 

smaller windows, the model is biased to predict more a single class with respect to the others. 

Following the same principle of adding data to get a more reliable detection, data fusion models prove 

to be more accurate.  

As it is clear, RNN models yields better results than CNN on almost all the different attacks and 

window sizes. Also, the limited complexity of the models let this solution be the best choice to be 

deployed on an ECU. Using the 64-message long window on the combined RNN, the average 

accuracy achieved is 99.77%.  

 

 
Figure 6: Average accuracy and AUC score of supervised models on OTIDS dataset 

 

Looking now at the different encodings, fixing the window to 64 messages, there is a positive 

aspect in using OHV for CNN models. However, for RNN models there is a drop in accuracy of 
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detecting Impersonation attack. It is also worth noticing that inputs for OHV models are almost four 

times bigger. This results in an increasing complexity of models. 

8.2. GAN Training 

Evaluation have been done comparing the output of the discriminator with a threshold, that can be 

roughly evaluated from the mean outputs on test set. Assuming that the outputs of the discriminator 

can be modelled as a normal distribution, a threshold have been fixed in a way that 99% of attack-free 

data can be correctly classified. This choice would be beneficial in a possible use case, where it is 

desirable a low false negative rate. 

Confirming the tests on [11], CNN discriminator proved to fail in distinguishing attacks from the 

normal situation, However, one of the main purposes of GANs has been achieved. Looking at the 

generated data they seem pretty similar to the real ones. Problems in convergence were encountered, 

as the loss functions reached a stalemate after few iterations. In this way the discriminator had only 

the chance to see a small amount of different samples, which do not allow it to differentiate the output 

on the various attacks. This problem can be summarized as Mode Collapse. 

DNN discriminator making use of Minimax loss suffer of convergence problems. In OTIDS 

dataset the output is similar to the one presented above, where known attacks cannot be discriminated. 

Looking at the distribution of outputs of the model at the end of the training, it can be easily seen that 

the intervals, in which each class falls in, overlap. Setting the threshold in a way that most of attack 

free data can be correctly classified lead to poor results in classifying attacks properly. 

DNN discriminator with WGAN setup managed to reach a proper classification for two out of 

three attacks in OTIDS dataset. The only one that is almost always misclassified as an attack-free case 

is the Impersonation attack. In this setup, an important parameter to tune is the clipping range. 

Increasing it can spread out the outputs, but beyond a certain limit the training becomes very unstable. 

DNN discriminator with GP-WGAN setup achieved the best results. In OTIDS dataset a perfect 

separation between Fuzzy and DoS attacks from Normal data have been reached, However, 

Impersonation still cannot be detected. Thus, it was possible to achieve a minimum level of protection 

against specific types of attack, starting only from data concerning an attack-free situation. 

 
Table 1 
Accuracy of GAN and Combined Method prediction on OTIDS dataset 

 DCGAN WGAN WGAN-GP CNN OHV 
+ DCGAN 

CNN OHV 
+ WGAN 

CNN OHV 
+ WGAN-

GP 

No attack 96,66 98,93 98,15 99,8 100 99,64 
DoS attack 5,26 81,79 100 99,93 100 100 

Fuzzy attack 4,05 54,62 100 99,86 99,93 100 
Impersonation 

attack 
2,28 0,57 2,63 95,94 95,73 96,02 

 

9. Combined Detection 

The system used for attack detection is composed of ANN1 and ANN2. When the prediction of 

ANN1 is not correct the input is passed to ANN2 that gives its response. Even if the performance of 

discriminators themselves were not excellent, the combination of models improved them. Here below 

results obtain on the OHV encoded dataset are reported. In all of them the supervised model used was 

the CNN one, that proved to be the weakest, that is used as a binary classificator.  Only results for 

DNN discriminators are reported, as CNN ones proved to be useless and so they cannot bring any 

improvement. 



10. Conclusion and Further Works 

In this paper, we showed how we could reach state of the art performance on known attacks 

classification using models with limited complexity. Furthermore, we showed how GAN training can 

help expand the domain of training by going beyond known attacks, improving the results achieved 

with supervised training techniques alone. Even more, we showed how the single use of the GAN 

paradigm can guarantee a certain level of protection against cyber-attacks even if the model used has 

never experienced any of them. That is, only data taken from an attack-free situation directly collected 

from the system we want to protect are necessary to achieve a minimum amount of security. 

Of course, further research could be carried out on the basis of the methods proposed. Data fusion 

can be extended with other data collected directly from the CAN bus. An example can be the clock 

skew, that has already been used in other solutions, and that is more robust than timestamps. 

Furthermore, from the supervised point of view other combinations of models, encoding and different 

pre-processing techniques could be tested. 

From the GAN perspective, many other models have been presented in recent years, like the 

StyleGAN or the CycleGAN. Furthermore, other techniques that haven’t been explored could be 

added to the presented models, for example the spectral normalization of models’ weights, in order to 

check for faster convergence during GAN training. 

However, to understand the degree of security that our system could provide, it would be a great 

improvement to have access to more data. The effective deployment of the model on top of a real 

CAN bus could result in a different behaviour. 

We expect that Generative Adversarial Networks will play an always greater role in the design of 

security and safety systems in the future and that the field of GAN will be a field of fervent academic 

and industrial research.  
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12. Appendix A 

Here we report some tables that comprehends more accurate measures on models’ behaviour.  

 
Table 2 
Accuracy of models’ prediction on OTIDS dataset 

Window Size  8 16 32 64 128 

No attack CNN 29,55 44,32 91,39 73,47 79,66 
 RNN 54,27 80,28 96,16 91,54 98,15 
 CNN Fusion 57,28 58,15 88,8 84,85 90,18 
 RNN Fusion 49,07 85,28 98,15 99,79 98,58 

DoS attack CNN 99,64 99,82 100 100 100 
 RNN 99,88 99,95 100 100 100 
 CNN Fusion 99,69 99,86 99,79 100 100 
 RNN Fusion 99,86 99,95 100 100 100 

Fuzzy attack CNN 88,83 96,11 99,18 95,09 97,01 
 RNN 95,56 98,56 99,47 99,86 100 
 CNN Fusion 87,14 98,97 97,19 99,72 100 
 RNN Fusion 94,79 98,1 99,72 99,79 99,86 

Impersonation 
attack 

CNN 70,29 82,01 74,15 93,31 99,72 

 RNN 80,78 85,72 97,08 100 99,72 
 CNN Fusion 68,43 91,08 91,64 97,8 98,44 
 RNN Fusion 70,89 67,27 94,81 99,5 100 

Table 3 
Accuracy of GAN and Combined Method prediction on GIDS dataset 

Window Size  8 16 32 64 128 

No attack CNN 60,06 80,3 99,89 99,22 95,31 
 RNN 98,71 81,76 100 100 100 
 CNN Fusion 87,85 81,1 100 100 94,74 
 RNN Fusion 82,12 82,88 99,93 99,79 100 

DoS attack CNN 79,48 99,8 100 100 99 
 RNN 47,78 99,98 100 100 100 
 CNN Fusion 63,17 99,79 99,93 96,02 99,57 
 RNN Fusion 64,36 95,86 100 100 100 

Fuzzy attack CNN 67,19 55,88 53,17 54,34 57,18 
 RNN 53,6 62,04 54,87 55,12 54,91 
 CNN Fusion 47,3 57,92 53,84 54,98 60,17 
 RNN Fusion 62,37 61,55 52,42 55,69 56,33 

Gear attack CNN 82,14 99,93 100 100 100 
 RNN 56,32 99,96 100 100 100 
 CNN Fusion 65,43 99,8 100 96,51 99,86 
 RNN Fusion 70,4 95,18 100 100 100 

Rpm attack CNN 78,81 99,91 100 100 100 
 RNN 48,36 100 100 100 100 
 CNN Fusion 60,66 99,82 100 96,87 99,43 
 RNN Fusion 68,4 96,41 100 100 100 

Legend:  = CNN 

  = RNN 

  = multi CNN 

  = multi RNN 



Table 4 
Precision (P), Recall (R) and F1 Score (F1) of models’ prediction on OTIDS dataset 

Window 
Size 

No attack DoS attack Fuzzy attack Impersonation 
attack 

 P R F1 P R F1 P R F1 P R F1 

8 0.5 0.3 0.37 1 1 1 0.79 0.89 0.84 0.54 0.7 0.61 
16 0.69 0.44 0.54 1 1 1 0.87 0.96 0.91 0.65 0.82 0.73 
32 0.77 0.91 0.84 1 1 1 0.96 0.99 0.98 0.94 0.74 0.83 
64 0.87 0.73 0.79 1 1 1 0.98 0.95 0.96 0.79 0.93 0.86 

128 0.96 0.80 0.87 1 1 1 0.97 0.97 0.97 0.85 1 0.92 

8 0.68 0.07 0.12 0.84 1 0.91 0.38 0.99 0.55 0.73 0.1 0.17 
16 0.87 0.58 0.7 1 1 1 0.95 0.99 0.97 0.7 0.91 0.79 
32 0.89 0.89 0.89 1 1 1 1 0.97 0.99 0.89 0.92 0.9 
64 0.97 0.85 0.91 1 1 1 1 1 1 0.87 0.98 0.92 

128 0.98 0.90 0.94 1 1 1 0.98 1 0.99 0.93 0.98 0.96 

8 0.73 0.54 0.62 1 1 1 0.94 0.96 0.95 0.65 0.81 0.72 
16 0.84 0.8 0.82 1 1 1 0.99 0.99 0.99 0.81 0.86 0.83 
32 0.97 0.96 0.96 1 1 1 1 0.99 1 0.96 0.97 0.97 
64 1 0.92 0.96 1 1 1 1 1 1 0.92 1 0.96 

128 1 0.98 0.99 1 1 1 1 1 1 0.98 1 0.99 

8 0.63 0.49 0.55 1 1 1 0.9 0.95 0.92 0.61 0.7 0.66 
16 0.72 0.85 0.78 1 1 1 0.96 0.98 0.97 0.85 0.67 0.75 
32 0.95 0.98 0.96 1 1 1 1 1 1 0.98 0.95 0.96 
64 0.99 1 1 1 1 1 1 1 1 1 1 1 

128 0.99 0.3 0.46 1 1 1 1 1 1 0.59 1 0.74 

CNN 
OHV 

0.95 0.89 0.92 1 1 1 1 1 1 0.9 0.96 0.93 

RNN 
OHV 

0.92 0.93 0.93 1 1 1 0.99 1 0.99 0.94 0.92 0.93 

Table 5 
Precision (P), Recall (R) and F1 Score (F1) of models’ prediction on GIDS dataset 

Window 
Size 

No attack DoS attack Fuzzy attack Gear attack RPM attack 

 P R F1 P R F1 P R F1 P R F1 P R F1 

8 0.54 0.58 0.56 0.95 0.33 0.49 0.62 0.59 0.6 0.35 0.75 0.48 0.84 0.42 0.56 
16 0.43 0.98 0.6 0.99 0.46 0.63 0.95 0.54 0.69 0.66 0.81 0.73 0.96 0.45 0.62 
32 0.51 0.89 0.65 0.96 0.51 0.67 0.94 0.57 0.71 0.68 0.98 0.8 0.82 0.55 0.66 
64 0.51 0.96 0.66 0.56 0.82 0.66 0.92 0.59 0.72 0.66 0.35 0.45 0.98 0.46 0.63 

128 0.47 0.97 0.63 0.97 0.52 0.68 0.96 0.56 0.71 0.67 0.9 0.76 0.96 0.46 0.63 
8 0.48 0.66 0.56 0.98 0.41 0.58 0.81 0.55 0.65 0.37 0.75 0.49 0.9 0.42 0.57 

16 0.45 0.94 0.61 0.98 0.45 0.62 0.9 0.56 0.69 0.6 0.82 0.69 0.96 0.46 0.62 
32 0.5 1 0.67 0.97 0.54 0.69 1 0.55 0.71 0.69 0.99 0.81 1 0.45 0.62 
64 0.49 1 0.66 1 0.49 0.66 1 0.55 0.71 0.68 1 0.81 0.99 0.46 0.62 

128 0.5 0.98 0.66 0.97 0.55 0.71 1 0.56 0.72 0.69 1 0.82 1 0.46 0.63 
8 0.34 0.98 0.5 1 0.49 0.66 0.94 0.51 0.67 0.66 0.41 0.51 0.94 0.43 0.59 

16 0.44 1 0.61 1 0.53 0.7 0.99 0.55 0.71 0.68 0.82 0.74 1 0.45 0.62 
32 0.5 1 0.67 1 0.55 0.71 1 0.55 0.71 0.69 1 0.82 1 0.46 0.63 
64 0.5 1 0.67 1 0.55 0.71 1 0.55 0.71 0.69 1 0.82 1 0.45 0.62 

128 0.5 1 0.67 1 0.55 0.71 1 0.56 0.72 0.69 1 0.82 1 0.45 0.62 
8 0.47 0.65 0.55 0.97 0.5 0.66 0.81 0.53 0.64 0.39 0.78 0.52 0.93 0.43 0.59 

16 0.45 0.97 0.62 0.99 0.54 0.7 1 0.55 0.71 0.64 0.82 0.72 0.97 0.46 0.62 
32 0.5 1 0.67 1 0.55 0.71 1 0.55 0.71 0.69 1 0.82 1 0.46 0.63 
64 0.5 1 0.67 1 0.55 0.71 1 0.56 0.72 0.69 1 0.82 1 0.46 0.63 

128 0.51 1 0.67 0.89 0.59 0.71 1 0.56 0.72 0.7 0.93 0.8 1 0.47 0.63 
CNN OHV 0.5 0.99 0.67 0.96 0.55 0.7 0.99 0.56 0.71 0.69 0.98 0.81 1 0.46 0.63 

RNN OHV 0.5 0.98 0.66 1 0.55 0.71 1 0.56 0.71 0.68 1 0.81 1 0.46 0.63 



 

Table 6 
Accuracy of GAN and Combined Method prediction on GIDS dataset 

 DCGAN WGAN WGAN-
GP 

CNN OHV 
+ DCGAN 

CNN OHV 
+ WGAN 

CNN OHV 
+ WGAN-

GP 

No attack 97,01 98,08 97,65 100 99,86 99,86 
DoS attack 54,55 57,82 62,23 100 100 100 

Fuzzy attack 56,12 56,33 56,76 56,61 56,47 56,9 
Gear attack 61,45 55,12 61,81 100 100 100 
Rpm attack 54,2 50,78 56,47 100 100 100 

 

Table 7 
Precision (P), Recall (R) and F1 Score (F1) of GAN models’ prediction 

Dataset Method No attack Attack 

  P R F1 P R F1 

OTIDS DCGAN 0.25 0.97 0.4 0.78 0.04 0.07 
 WGAN 0.38 0.99 0.55 0.99 0.46 0.63 
 WGAN-GP 0.5 0.98 0.66 0.99 0.68 0.8 
 DCGAN 

combined 
0.96 1 0.98 1 0.99 0.99 

 WGAN 
combined 

0.96 1 0.98 1 0.99 0.99 

 WGAN-GP 
combined 

0.96 1 0.98 1 0.99 0.99 

GIDS DCGAN 0.36 0.97 0.52 0.99 0.57 0.72 
 WGAN 0.35 0.98 0.52 0.99 0.55 0.71 
 WGAN-GP 0.38 0.98 0.54 0.99 0.59 0.74 
 DCGAN 

combined 
0.7 1 0.82 1 0.89 0.94 

 WGAN 
combined 

0.7 1 0.82 1 0.89 0.94 

 


