
Learning-based Intrusion Detection System for On-Board
Vehicle Communication

Tobia Fiorese
1,2 and Pietro Montino

2

1 University of Padova, Italy
2 Bluewind, Via della Borsa, 16A Castelfranco Veneto, 31033 (TV), Italy

Abstract
This paper presents the development of an Intrusion Detection System (IDS) to be deployed

on a CAN bus. Since the introduction of many external interfaces in modern vehicles exposes

users to the risk of cyber-attacks, the need of focus on security is concrete. An IDS is a

component that can detect anomalies in the behavior of the system where it is deployed. The

proposed machine learning based solution is composed of two parts. The first includes a

supervised trained neural network that is able to distinguish among different known attacks.

The second includes a discriminator that has been trained exploiting the Generative

Adversarial Network (GAN) paradigm, to distinguish among the attack-free situation and an

anomalous situation. It will be demonstrated how the supervised training can achieve state of

the art performance in classification and how the unsupervised training can guarantee a

certain level of security even without the necessity of feeding labeled data to the network.

Keywords 1
GAN Training, IDS, CAN Bus

1. Introduction

A connected car is a car capable of communicating bidirectionally with systems located outside of

itself or with internal devices. Many forms of external interfaces were added to modern vehicles in

recent years in order to enable such communication, unlocking a broad spectrum of new comforts for

drivers. Among them are the collection of real-time traffic information, accident emergency services,

access to status and operating conditions of the car.

On the one hand, all of the above-mentioned features enrich the vehicle’s user experience and

enhance higher transportation network security and efficiency standards. On the other hand, all these

communication interfaces expose the vehicle internal networks to remote attacks, thus increasing the

vehicles’ cyber vulnerability.

In the future, each car will constantly communicate with the surrounding environment made of

other cars, pedestrians and road signs giving rise to what is called the Vehicle to Everything (V2X)

paradigm [1]. This will dramatically increase the risk of potential attacks that could exploit the greater

connectivity routes available.

In a modern vehicle there are many kinds of networks: the CAN bus is the de facto standard for

safety critical applications. The CAN bus connects hundreds of Electronic Control Units (ECUs) and

controls most, if not all, of the electro-mechanical actuated systems: from brakes to lights, from

airbags to transmission. Being designed in the eighties, CAN bus does not embed security features. In

today’s connected world, finding ways to prevent cyber-attacks that could damage on-board systems

and put the vehicle and the passengers at risk, has become of pivotal importance.

 Side by side with the growing awareness of the vulnerabilities in CAN bus security, and the

consequences that a cyber-attack on a vehicle could entail, some technical countermeasures have

already been adopted. Since the 2000s, preventive solutions have been explored such as the use of

ITASEC21, May 2021

EMAIL: fioresetobia@gmail.com (A. 1); pietro.montino@gmail.com (A. 2)
ORCID: 0000-0002-0151-5597 (A. 1); 000-0001-9715-9998 (A. 2)

©️ 2020 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

sub-networks along with the addition of gateways and firewalls that block messages trying to cross

subnets. Authentication protocols [2] and encryption methods [3] have been deployed as well, thus

increasing safety levels of CAN buses. Other countermeasures include Intrusion Detection Systems

(IDS), that try to identify anomalies on the traffic on a specific network by reading all the messages in

transit.

This paper presents the architecture and the safety performances of a two-step CAN bus IDS

trained with machine learning techniques. This approach allows to add a measure of safety, even for

on-board electronics architectures already consolidated, without too much interference with pre-

existent hardware and software.

2. Related Works

In the automotive field, numerous anomaly detection methods have been proposed. Most of these

solutions try to identify two categories of attacks: those based on the frequency of messages, such as

insertion or deletion of packets, and those that manipulate the payload.

In [4] attacks are detected by checking the validity of the single frames with formal rules, and by

defining a certain number of forbidden message sequences by exploiting the correlation between the

target frame and contextual information regarding previously transmitted messages. A different rule

based on transition matrices was illustrated in [5].

Another approach is presented in [6], where anomalies are detected by looking at the inter frame

arrival times and at the frequencies of particular messages. This method can identify deviation from

normal traffic targeting particular ECUs, and is pretty accurate, but frequency alone cannot be relied

upon to discriminate an attack from an irregular noise situation in the CAN network.

It is also possible to undertake a statistical approach, as it was done in [7], where a rolling window

moves over a sequence of messages, focusing the attention on a portion of data in transit and

computing statistical measures as the standard deviation on offsets and time intervals between

messages.

Also, many learning-based approaches were tested. Some of them are based on the time series of

payload values, and make extensive use of recurrent neural networks, in particular LSTM models [8].

However, this approach takes advantage of knowledge of payload semantics, which in most cases is

unknown and proprietary. Another way to detect attacks in the network is to use a compound

classifier, fusing a one-class SVM for each ID, to obtain an overall anomaly score [9]. Some other

interesting approaches use a rolling window over the messages’ sequence and then use a CNN to

classify the matrices obtained from a pre-processing on the portion of messages focused by the

window [10]. This method proved to be very accurate in detecting known attacks and has been further

improved by adding an additional filter on packet traffic consisting of a CNN trained with the GAN

technique [11].

3. CAN Bus

CAN [12] is a network with a bus topology, which means that all devices on the network are

connected to a single line, or bus.

At the transfer layer, the information is sent over the CAN bus through messages with a fixed

format and of limited length. Each frame is made up of various fields, the most significant of which

are:

Figure 1: CAN bus frame structure

● Identifier, an 11-bits identifier that also defines the priority of the message. The lower

the binary value, the higher the priority. Can be extended to 29 bits.

● Data, 64-bit field whose semantics are generally proprietary and specific to each ECU.

A characteristic worth noticing is that there are no source and destination fields in a CAN packet:

message routing is regulated by the ID field. A CAN packet is broadcasted to the entire network, and

only some ECUs will process the packet based on the ID received.

4. Attacks

The first neural network of the presented IDS (ANN1) is trained in a supervised manner with a

dataset of different categories of known attacks. The goal of ANN1 is to discriminate between known

attacks and the normal condition by inferring over a sequence of data packets, in real time. The

datasets used for training are made of real CAN bus messages [11], [7]. They consist of logs of traffic

directly picked from the CAN bus through the OBD-II port of commercial vehicles where attacks

were carried out connecting a Raspberry Pi3 board to the bus and a laptop to the board. The following

paragraphs describe the types of known attacks that get detected by ANN1.

4.1. Denial of Service (DoS)

An attacker can inject high priority messages in a short cycle on the bus. DoS attack messages aim

at occupying the bus using the theoretically highest priority identifier, namely 0x000. Since all nodes

share a single bus, increasing occupancy of the bus can produce latencies of other messages and cause

threats regarding availability with no response to driver’s commands

4.2. Fuzzy

An attacker can inject messages with randomly spoofed CAN ID, either with arbitrary data or with

spoofed data values. All these messages are functional and structurally correct, but they can cause

unintended vehicle behaviors. An attacker can passively observe in-vehicle traffic and select target

identifiers to produce unexpected behaviors. Unlike the DoS attack, Fuzzy is more specific and aims

at paralyzing a particular function of the vehicle.

4.3. Impersonation

An attacker can manage to stop message transmission from a target node and can plant/manipulate

an impersonating node that will take its role. If a victim node stops transmitting, all messages sent by

the targeted node will be removed from the bus.

5. Pre-Processing

The two datasets have been divided into windows of traffic logged from the bus. Each of these

windows contain a number of packets, that during tests varied from a minimum of 8 to a maximum of

128. The most informative fields in CAN packets are the ID and the payload. To enhance the system

flexibility, semantic comprehension of payload data was not accounted.

Only sequences of IDs were used to train the models. However, in log files IDs are formatted as

hexadecimals, therefore they are not suited to be fed to a neural network directly. Windows of IDs

have been converted into grayscale images with the two encodings pictured below.

Figure 2: Encoding process of datasets

6. Supervised Training

In this chapter the different neural network architectures will be illustrated. Each of these

architectures have been mantained small enough to fit memory constrained hardware. Two strategies

ensured high detection accuracies: using RNNs, being the relationship of IDs sequences temporal

rather than spatial, and using data fusion via the exploitation of other data available from the datasets.

Each model proposed have been tested on different window sizes ranging from 8 to 128 CAN

messages. All models have been trained using the same optimizer and the same hyperparameters.

6.1. CNN Model

The CNN model consists of 3 convolutional layers and a fully connected layer with 32 units which

precedes the last layer that outputs four probability values, one for each class of attacks. Each

convolutional layer has 3x3 filters. The number of filters increases while going deeper in the network.

Each convolutional layer is followed by a BatchNormalization, a ReLU activation function and a

Dropout layer (at training time only).

6.2. RNN Model

The RNN model consists of 32 LSTM cells followed by two fully connected layers with

respectively 64 and 32 units. Finally, the output layer is the same as the one in the CNN model. In this

way, in respect to CNNs complexity of models is consistently reduced.

6.3. Data Fusion

Looking at time intervals between subsequent messages enables the detection of a set of known

attacks [7]. The sequence of timestamps available in the datasets was divided into windows. Each

window was normalized by subtracting its first value from each timestamp and then dividing by the

mean time elapsed in the transmission of a normal window, to remove outliers.

The data fusion models were built as the concatenation of two models, one taking as input the

sequences of IDs and the other taking as input the sequences of timestamps. The first model has the

same structure as defined in the previous section. The second has the same architecture but uses one-

dimensional filters. After the convolutional layers, each model output is flattened and concatenated.

Figure 3: Architecture of data-fusion CNN model

As expected, the number of trainable parameters grows compared to above models. However, at

the expense of a limited increase in model complexity, the performance in classifying attacks is

considerably enhanced, in particular for convolutional models and bigger windows.

6.4. One-Hot Vector Encoding

One-hot vector encoding proved to offer better results in the classification of images extracted

from CAN bus traffic [11].

The CNN model tested with OHV encoded data is composed of three convolutional layers, with

respectively 4, 8 and 16 channels. Each layer has a filter with a 3x5 kernel that is moved over the

image with a stride of 1x2. At the end, between the flattened matrix and the output layer there is a

dense layer composed of 32 neurons. The use of a rectangular stride allowed for a consistent

reduction of the number of parameters.

The RNN model instead maintains the same structure presented in 6.2, with the only difference in

the input size.

7. GAN Training

A drawback of the supervised approach to machine learning in anomaly detection is that it relies

on known attacks. Slight variations to attacks forming the dataset will increase the possibility to be

confused with normal situations. Approaches based on distinguishing the normal behavior from

anomalies, based only on attack-free data, could have a high false positive rate. It is possible though

to train a network to generate data similar to the ones of the given dataset, and at the same time train a

second network to distinguish among generated data and real data. This mechanism is called

Generative Adversarial Network training. This approach results in a reliable discriminator that could

enable protection against unknown attacks and also helps reduce the false positive samples yielded by

a supervised model. In the next sections architectures and setups of the second part of the proposed

system (ANN2) will be illustrated.

Figure 4: GAN training flow diagram

7.1. CNN Discriminator

The CNN discriminator is composed of 3 convolutional layers, each of them with a 3x3 kernel and

respectively 128, 64 and 32 channels, and a single neuron as output. Each layer is followed by a

Leaky ReLU function and a Dropout layer.

The associated generator takes a random vector of 256 values as the input of a dense layer with

13*5*8 units, that is reshaped in a three-dimensional object. The network is then composed of 3

Conv2DTranspose layers. The first two consist of rectangular filters of dimension 5x3, moved with a

stride of 2x1. They have 4 and 3 filters respectively. The last layer has only one channel and uses a

4x3 kernel moved in 1x1 strides. Each layer is followed by a ReLU function and a Dropout layer. The

last layer squeezes the values of the generated image in the range [-1, 1] applying a ‘tanh’ activation

function.

7.2. DNN Discriminator

The DNN discriminator is composed of 2 dense layers, with bi-dimensional input and respectively

96 and 48 units, and a single neuron as output. Each layer is followed by a Leaky ReLU function and

a Dropout layer.

The associated generator takes a random vector of 256 values as the input of a dense layer with

1*12*256 units, that is then reshaped in a three-dimensional object. The network is then composed of

four Conv2DTranspose layers. Each of them moves its filters along a stride of 2x2. The first two

layers have 3x3-sized filters while the last two have 5x5. Each layer is followed by a ReLU function

and a Dropout layer. The last layer squeezes the values of the generated image in the range [-1, 1]

applying a ‘tanh’ activation function.

7.3. Training Setup

Each architecture of ANN2 has been tested with three different setups:

• DCGAN: the last neuron of the discriminator incorporates a sigmoid activation function. The

loss function used is the Minimax loss and the optimizer used is Adam with a learning rate of 1e-3.

BatchNormalization is added after each layer of the two networks.

• WGAN: the last neuron of the discriminator can output any real value, however the weights

of each layer in the discriminator are clipped in the range [-0.01, 0.01] after each iteration. The

loss function used is the Wasserstein loss and the optimizer used is RMSprop with a learning rate

of 5e-5. The discriminator is trained for 5 times the iterations of the generator.

• WGAN-GP: the last neuron of the discriminator can output any real value, however a

penalization factor (Gradient Penalty) is added to the loss after each iteration. The loss function

used is the Wasserstein loss and the optimizer used is Adam with a learning rate of 2e-5,

beta_1=0.5 and beta_2=0.9. The discriminator is trained for 5 times the iterations of the generator.

Gradient penalty factor λ has been fixed to 10.

Figure 5: Loss functions of GAN training setups

8. Results
8.1. Supervised Training

In Figure 6, average accuracies of architectures presented in Supervised Training, over OTIDS

dataset, can be compared over different window sizes. Accuracy is calculated as the sum of true

positives and true negatives over the sum of all the samples of each class in the test dataset. The AUC

score is also reported in Figure 6. Detailed measurements on individual classes and on GIDS dataset

are reported in Appendix A.

Analysing the results, a trend can be extrapolated from each test, that shows how the accuracy in

detecting a particular situation is almost everywhere increasing with bigger windows. This is possibly

due to the fact that the model has more data to relies on to predict the various classes. Instead, with

smaller windows, the model is biased to predict more a single class with respect to the others.

Following the same principle of adding data to get a more reliable detection, data fusion models prove

to be more accurate.

As it is clear, RNN models yields better results than CNN on almost all the different attacks and

window sizes. Also, the limited complexity of the models let this solution be the best choice to be

deployed on an ECU. Using the 64-message long window on the combined RNN, the average

accuracy achieved is 99.77%.

Figure 6: Average accuracy and AUC score of supervised models on OTIDS dataset

Looking now at the different encodings, fixing the window to 64 messages, there is a positive

aspect in using OHV for CNN models. However, for RNN models there is a drop in accuracy of

70

75

80

85

90

95

100

8 16 32 64 128

A
cc

u
ra

cy
 (

%
)

Buffer Size (# of messages)

Average Accuracy of Supervised Models

CNN

RNN

CNN Fusion

RNN Fusion

CNN OHV

RNN OHV

0,9

0,91

0,92

0,93

0,94

0,95

0,96

0,97

0,98

0,99

1

8 16 32 64 128

A
U

C
 S

co
re

Buffer Size (# of messages)

AUC Score of Supervised Models

CNN

RNN

CNN Fusion

RNN Fusion

CNN OHV

RNN OHV

detecting Impersonation attack. It is also worth noticing that inputs for OHV models are almost four

times bigger. This results in an increasing complexity of models.

8.2. GAN Training

Evaluation have been done comparing the output of the discriminator with a threshold, that can be

roughly evaluated from the mean outputs on test set. Assuming that the outputs of the discriminator

can be modelled as a normal distribution, a threshold have been fixed in a way that 99% of attack-free

data can be correctly classified. This choice would be beneficial in a possible use case, where it is

desirable a low false negative rate.

Confirming the tests on [11], CNN discriminator proved to fail in distinguishing attacks from the

normal situation, However, one of the main purposes of GANs has been achieved. Looking at the

generated data they seem pretty similar to the real ones. Problems in convergence were encountered,

as the loss functions reached a stalemate after few iterations. In this way the discriminator had only

the chance to see a small amount of different samples, which do not allow it to differentiate the output

on the various attacks. This problem can be summarized as Mode Collapse.

DNN discriminator making use of Minimax loss suffer of convergence problems. In OTIDS

dataset the output is similar to the one presented above, where known attacks cannot be discriminated.

Looking at the distribution of outputs of the model at the end of the training, it can be easily seen that

the intervals, in which each class falls in, overlap. Setting the threshold in a way that most of attack

free data can be correctly classified lead to poor results in classifying attacks properly.

DNN discriminator with WGAN setup managed to reach a proper classification for two out of

three attacks in OTIDS dataset. The only one that is almost always misclassified as an attack-free case

is the Impersonation attack. In this setup, an important parameter to tune is the clipping range.

Increasing it can spread out the outputs, but beyond a certain limit the training becomes very unstable.

DNN discriminator with GP-WGAN setup achieved the best results. In OTIDS dataset a perfect

separation between Fuzzy and DoS attacks from Normal data have been reached, However,

Impersonation still cannot be detected. Thus, it was possible to achieve a minimum level of protection

against specific types of attack, starting only from data concerning an attack-free situation.

Table 1
Accuracy of GAN and Combined Method prediction on OTIDS dataset

 DCGAN WGAN WGAN-GP CNN OHV
+ DCGAN

CNN OHV
+ WGAN

CNN OHV
+ WGAN-

GP

No attack 96,66 98,93 98,15 99,8 100 99,64
DoS attack 5,26 81,79 100 99,93 100 100

Fuzzy attack 4,05 54,62 100 99,86 99,93 100
Impersonation

attack
2,28 0,57 2,63 95,94 95,73 96,02

9. Combined Detection

The system used for attack detection is composed of ANN1 and ANN2. When the prediction of

ANN1 is not correct the input is passed to ANN2 that gives its response. Even if the performance of

discriminators themselves were not excellent, the combination of models improved them. Here below

results obtain on the OHV encoded dataset are reported. In all of them the supervised model used was

the CNN one, that proved to be the weakest, that is used as a binary classificator. Only results for

DNN discriminators are reported, as CNN ones proved to be useless and so they cannot bring any

improvement.

10. Conclusion and Further Works

In this paper, we showed how we could reach state of the art performance on known attacks

classification using models with limited complexity. Furthermore, we showed how GAN training can

help expand the domain of training by going beyond known attacks, improving the results achieved

with supervised training techniques alone. Even more, we showed how the single use of the GAN

paradigm can guarantee a certain level of protection against cyber-attacks even if the model used has

never experienced any of them. That is, only data taken from an attack-free situation directly collected

from the system we want to protect are necessary to achieve a minimum amount of security.

Of course, further research could be carried out on the basis of the methods proposed. Data fusion

can be extended with other data collected directly from the CAN bus. An example can be the clock

skew, that has already been used in other solutions, and that is more robust than timestamps.

Furthermore, from the supervised point of view other combinations of models, encoding and different

pre-processing techniques could be tested.

From the GAN perspective, many other models have been presented in recent years, like the

StyleGAN or the CycleGAN. Furthermore, other techniques that haven’t been explored could be

added to the presented models, for example the spectral normalization of models’ weights, in order to

check for faster convergence during GAN training.

However, to understand the degree of security that our system could provide, it would be a great

improvement to have access to more data. The effective deployment of the model on top of a real

CAN bus could result in a different behaviour.

We expect that Generative Adversarial Networks will play an always greater role in the design of

security and safety systems in the future and that the field of GAN will be a field of fervent academic

and industrial research.

11. References

[1] J. Wang, Y. Shao, Y. Ge e R. Yu, A Survey of Vehicle to Everything (V2X) Testing, Sensors,

vol. 19, p. 334, 2019. doi: 10.3390/s19020334.

[2] A. V. Herrewege, D. Singelee and I. Verbauwhede, CANAuth - A Simple, Backward Compatible

Broadcast Authentication Protocol for CAN bus, in: Proceedings of the ECRYPT Workshop on

Lightweight Cryptography 2011, Louvain-la-Neuve, Belgium, pp. 229-235.

[3] A. S. Siddiqui, Y. Gui, J. Plusquellic e F. Saqib, Secure communication over CANBus, in:

Proceedings of the IEEE 60th International Midwest Symposium on Circuits and Systems,

MWSCAS 2017, Boston, MA, USA, August 6-9, 2017, pp. 1264-1267. doi:

10.1109/MWSCAS.2017.8053160.

[4] I. Studnia, E. Alata, V. Nicomette, M. Kaâniche e Y. Laarouchi, A language-based intrusion

detection approach for automotive embedded networks, Int. J. Embed. Syst., vol. 10, p. 1–12,

2018. doi: 10.1504/IJES.2018.10010488.

[5] M. Marchetti e D. Stabili, Anomaly detection of CAN bus messages through analysis of ID

sequences, in: Procedings of the IEEE Intelligent Vehicles Symposium, IV 2017, Los Angeles,

CA, USA, June 11-14, 2017, pp. 1577-1583. doi: 10.1109/IVS.2017.7995934.

[6] A. Taylor, N. Japkowicz e S. Leblanc, Frequency-based anomaly detection for the automotive

CAN bus, in: Proceedings of the 2015 World Congress on Industrial Control Systems Security,

WCICSS 2015, London, United Kingdom, December 14-16, 2015, pp. 45-49. doi:

10.1109/WCICSS.2015.7420322.

[7] H. Lee, S. H. Jeong e H. K. Kim, OTIDS: A Novel Intrusion Detection System for In-vehicle

Network by Using Remote Frame, in: Proceedings of the 15th Annual Conference on Privacy,

Security and Trust, PST 2017, Calgary, AB, Canada, August 28-30, 2017, pp. 57-66. doi:

10.1109/PST.2017.00017.

[8] A. Taylor, S. Leblanc e N. Japkowicz, Anomaly Detection in Automobile Control Network Data

with Long Short-Term Memory Networks, in: Proceedings of the 2016 IEEE International

Conference on Data Science and Advanced Analytics, DSAA 2016, Montreal, QC, Canada,

October 17-19, 2016, pp. 130-139. doi: 10.1109/DSAA.2016.20.

[9] A. Tomlinson, J. W. Bryans e S. A. Shaikh, Using a one-class compound classifier to detect in-

vehicle network attacks, in: Proceedings of the Genetic and Evolutionary Computation

Conference Companion, GECCO 2018, Kyoto, Japan, July 15-19, 2018, pp. 1926-1929. doi:

10.1145/3205651.3208223.

[10] H. M. Song, J. Woo e H. K. Kim, In-vehicle network intrusion detection using deep

convolutional neural network, Veh. Commun., vol. 21, 2020. doi:

10.1016/j.vehcom.2019.100198.

[11] E. Seo, H. M. Song e H. K. Kim, GIDS: GAN based Intrusion Detection System for In-Vehicle

Network, in: Proceedings of the 16th Annual Conference on Privacy, Security and Trust, PST

2018, Belfast, Northern Ireland, Uk, August 28-30, 2018, pp. 1-6. doi:

10.1109/PST.2018.8514157.

[12] Robert Bosch GmbH, CAN specification - version 2.0, 1991.

12. Appendix A

Here we report some tables that comprehends more accurate measures on models’ behaviour.

Table 2
Accuracy of models’ prediction on OTIDS dataset

Window Size 8 16 32 64 128

No attack CNN 29,55 44,32 91,39 73,47 79,66
 RNN 54,27 80,28 96,16 91,54 98,15
 CNN Fusion 57,28 58,15 88,8 84,85 90,18
 RNN Fusion 49,07 85,28 98,15 99,79 98,58

DoS attack CNN 99,64 99,82 100 100 100
 RNN 99,88 99,95 100 100 100
 CNN Fusion 99,69 99,86 99,79 100 100
 RNN Fusion 99,86 99,95 100 100 100

Fuzzy attack CNN 88,83 96,11 99,18 95,09 97,01
 RNN 95,56 98,56 99,47 99,86 100
 CNN Fusion 87,14 98,97 97,19 99,72 100
 RNN Fusion 94,79 98,1 99,72 99,79 99,86

Impersonation
attack

CNN 70,29 82,01 74,15 93,31 99,72

 RNN 80,78 85,72 97,08 100 99,72
 CNN Fusion 68,43 91,08 91,64 97,8 98,44
 RNN Fusion 70,89 67,27 94,81 99,5 100

Table 3
Accuracy of GAN and Combined Method prediction on GIDS dataset

Window Size 8 16 32 64 128

No attack CNN 60,06 80,3 99,89 99,22 95,31
 RNN 98,71 81,76 100 100 100
 CNN Fusion 87,85 81,1 100 100 94,74
 RNN Fusion 82,12 82,88 99,93 99,79 100

DoS attack CNN 79,48 99,8 100 100 99
 RNN 47,78 99,98 100 100 100
 CNN Fusion 63,17 99,79 99,93 96,02 99,57
 RNN Fusion 64,36 95,86 100 100 100

Fuzzy attack CNN 67,19 55,88 53,17 54,34 57,18
 RNN 53,6 62,04 54,87 55,12 54,91
 CNN Fusion 47,3 57,92 53,84 54,98 60,17
 RNN Fusion 62,37 61,55 52,42 55,69 56,33

Gear attack CNN 82,14 99,93 100 100 100
 RNN 56,32 99,96 100 100 100
 CNN Fusion 65,43 99,8 100 96,51 99,86
 RNN Fusion 70,4 95,18 100 100 100

Rpm attack CNN 78,81 99,91 100 100 100
 RNN 48,36 100 100 100 100
 CNN Fusion 60,66 99,82 100 96,87 99,43
 RNN Fusion 68,4 96,41 100 100 100

Legend: = CNN

 = RNN

 = multi CNN

 = multi RNN

Table 4
Precision (P), Recall (R) and F1 Score (F1) of models’ prediction on OTIDS dataset

Window
Size

No attack DoS attack Fuzzy attack Impersonation
attack

 P R F1 P R F1 P R F1 P R F1

8 0.5 0.3 0.37 1 1 1 0.79 0.89 0.84 0.54 0.7 0.61
16 0.69 0.44 0.54 1 1 1 0.87 0.96 0.91 0.65 0.82 0.73
32 0.77 0.91 0.84 1 1 1 0.96 0.99 0.98 0.94 0.74 0.83
64 0.87 0.73 0.79 1 1 1 0.98 0.95 0.96 0.79 0.93 0.86

128 0.96 0.80 0.87 1 1 1 0.97 0.97 0.97 0.85 1 0.92

8 0.68 0.07 0.12 0.84 1 0.91 0.38 0.99 0.55 0.73 0.1 0.17
16 0.87 0.58 0.7 1 1 1 0.95 0.99 0.97 0.7 0.91 0.79
32 0.89 0.89 0.89 1 1 1 1 0.97 0.99 0.89 0.92 0.9
64 0.97 0.85 0.91 1 1 1 1 1 1 0.87 0.98 0.92

128 0.98 0.90 0.94 1 1 1 0.98 1 0.99 0.93 0.98 0.96

8 0.73 0.54 0.62 1 1 1 0.94 0.96 0.95 0.65 0.81 0.72
16 0.84 0.8 0.82 1 1 1 0.99 0.99 0.99 0.81 0.86 0.83
32 0.97 0.96 0.96 1 1 1 1 0.99 1 0.96 0.97 0.97
64 1 0.92 0.96 1 1 1 1 1 1 0.92 1 0.96

128 1 0.98 0.99 1 1 1 1 1 1 0.98 1 0.99

8 0.63 0.49 0.55 1 1 1 0.9 0.95 0.92 0.61 0.7 0.66
16 0.72 0.85 0.78 1 1 1 0.96 0.98 0.97 0.85 0.67 0.75
32 0.95 0.98 0.96 1 1 1 1 1 1 0.98 0.95 0.96
64 0.99 1 1 1 1 1 1 1 1 1 1 1

128 0.99 0.3 0.46 1 1 1 1 1 1 0.59 1 0.74

CNN
OHV

0.95 0.89 0.92 1 1 1 1 1 1 0.9 0.96 0.93

RNN
OHV

0.92 0.93 0.93 1 1 1 0.99 1 0.99 0.94 0.92 0.93

Table 5
Precision (P), Recall (R) and F1 Score (F1) of models’ prediction on GIDS dataset

Window
Size

No attack DoS attack Fuzzy attack Gear attack RPM attack

 P R F1 P R F1 P R F1 P R F1 P R F1

8 0.54 0.58 0.56 0.95 0.33 0.49 0.62 0.59 0.6 0.35 0.75 0.48 0.84 0.42 0.56
16 0.43 0.98 0.6 0.99 0.46 0.63 0.95 0.54 0.69 0.66 0.81 0.73 0.96 0.45 0.62
32 0.51 0.89 0.65 0.96 0.51 0.67 0.94 0.57 0.71 0.68 0.98 0.8 0.82 0.55 0.66
64 0.51 0.96 0.66 0.56 0.82 0.66 0.92 0.59 0.72 0.66 0.35 0.45 0.98 0.46 0.63

128 0.47 0.97 0.63 0.97 0.52 0.68 0.96 0.56 0.71 0.67 0.9 0.76 0.96 0.46 0.63
8 0.48 0.66 0.56 0.98 0.41 0.58 0.81 0.55 0.65 0.37 0.75 0.49 0.9 0.42 0.57

16 0.45 0.94 0.61 0.98 0.45 0.62 0.9 0.56 0.69 0.6 0.82 0.69 0.96 0.46 0.62
32 0.5 1 0.67 0.97 0.54 0.69 1 0.55 0.71 0.69 0.99 0.81 1 0.45 0.62
64 0.49 1 0.66 1 0.49 0.66 1 0.55 0.71 0.68 1 0.81 0.99 0.46 0.62

128 0.5 0.98 0.66 0.97 0.55 0.71 1 0.56 0.72 0.69 1 0.82 1 0.46 0.63
8 0.34 0.98 0.5 1 0.49 0.66 0.94 0.51 0.67 0.66 0.41 0.51 0.94 0.43 0.59

16 0.44 1 0.61 1 0.53 0.7 0.99 0.55 0.71 0.68 0.82 0.74 1 0.45 0.62
32 0.5 1 0.67 1 0.55 0.71 1 0.55 0.71 0.69 1 0.82 1 0.46 0.63
64 0.5 1 0.67 1 0.55 0.71 1 0.55 0.71 0.69 1 0.82 1 0.45 0.62

128 0.5 1 0.67 1 0.55 0.71 1 0.56 0.72 0.69 1 0.82 1 0.45 0.62
8 0.47 0.65 0.55 0.97 0.5 0.66 0.81 0.53 0.64 0.39 0.78 0.52 0.93 0.43 0.59

16 0.45 0.97 0.62 0.99 0.54 0.7 1 0.55 0.71 0.64 0.82 0.72 0.97 0.46 0.62
32 0.5 1 0.67 1 0.55 0.71 1 0.55 0.71 0.69 1 0.82 1 0.46 0.63
64 0.5 1 0.67 1 0.55 0.71 1 0.56 0.72 0.69 1 0.82 1 0.46 0.63

128 0.51 1 0.67 0.89 0.59 0.71 1 0.56 0.72 0.7 0.93 0.8 1 0.47 0.63
CNN OHV 0.5 0.99 0.67 0.96 0.55 0.7 0.99 0.56 0.71 0.69 0.98 0.81 1 0.46 0.63

RNN OHV 0.5 0.98 0.66 1 0.55 0.71 1 0.56 0.71 0.68 1 0.81 1 0.46 0.63

Table 6
Accuracy of GAN and Combined Method prediction on GIDS dataset

 DCGAN WGAN WGAN-
GP

CNN OHV
+ DCGAN

CNN OHV
+ WGAN

CNN OHV
+ WGAN-

GP

No attack 97,01 98,08 97,65 100 99,86 99,86
DoS attack 54,55 57,82 62,23 100 100 100

Fuzzy attack 56,12 56,33 56,76 56,61 56,47 56,9
Gear attack 61,45 55,12 61,81 100 100 100
Rpm attack 54,2 50,78 56,47 100 100 100

Table 7
Precision (P), Recall (R) and F1 Score (F1) of GAN models’ prediction

Dataset Method No attack Attack

 P R F1 P R F1

OTIDS DCGAN 0.25 0.97 0.4 0.78 0.04 0.07
 WGAN 0.38 0.99 0.55 0.99 0.46 0.63
 WGAN-GP 0.5 0.98 0.66 0.99 0.68 0.8
 DCGAN

combined
0.96 1 0.98 1 0.99 0.99

 WGAN
combined

0.96 1 0.98 1 0.99 0.99

 WGAN-GP
combined

0.96 1 0.98 1 0.99 0.99

GIDS DCGAN 0.36 0.97 0.52 0.99 0.57 0.72
 WGAN 0.35 0.98 0.52 0.99 0.55 0.71
 WGAN-GP 0.38 0.98 0.54 0.99 0.59 0.74
 DCGAN

combined
0.7 1 0.82 1 0.89 0.94

 WGAN
combined

0.7 1 0.82 1 0.89 0.94

