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Abstract
This paper presents a benchmark framework for Controller Area Network (CAN) Intrusion Detection
Systems (IDS). This framework ships with a dataset and currently supports 4 detection algorithms
designed specifically for the CAN bus. The dataset is composed by a set of traces gathered from a
licensed, unaltered passenger vehicle used for the training of the detection models and by a set of traces
containing simulation of the most common attack scenarios affecting modern vehicle. The detection
performance of the 4 supported detection algorithms allows to compare their behavior against different
attack scenarios, highlighting the best detection algorithms against the different attack scenarios.

1. Introduction

Among the current trends of the automotive industry, we can witness a steady increase
in the adoption of drive-by-wire technologies, Advanced Driving Assistance Systems
(ADAS) and Internet connectivity, resulting in a proliferation of Electronic Control Units
(ECUs) connected to heterogeneous sensors and actuators that monitor and control many
features of the vehicle and its surroundings. These features are designed to increase safety,
however software-controlled actuators introduce security vulnerabilities [1] that have
already been documented in public white papers and technical reports [2, 3]. These works
demonstrate that it is possible to obtain remote control of the vehicle dynamic, allowing
attackers to interfere with braking, steering, and acceleration activities of the driver. To
prevent unauthorized access to the in-vehicle networks, cyber security researchers already
proposed Intrusion Detection Systems (IDS) designed for the Controller Area Network
(CAN) [4], which is the most deployed internal network communication protocol within
modern vehicles.

The current state-of-the-art already includes many research efforts related to intrusion
detection for in-vehicle networks based on the CAN bus [5]. Some of these intrusion
detection systems are designed to analyze the low-level characteristics of the ECUs, basing
their detection methods on the analysis of the clock skew of the microcontroller [6] or by
fingerprinting the voltage differentials of CAN transceivers [7, 8]. These solutions are able
to detect any inconsistency by comparing the low-level characteristic during transmission
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against the detection model. However, to implement these detectors it is necessary to
use dedicated hardware platforms and it is not possible to use them on the whole CAN
transmission. Other detection methodologies specifically designed for the whole CAN
bus are based on the analysis of the inter-arrival times of the messages [9, 10, 11], on
aggregated statistics of the bus communication [12, 13, 14], or on the analysis of the
fields of CAN messages [15, 16, 17, 18]. These detection algorithm are designed to detect
anomalies by inspecting the flow of the CAN messages, hence it is possible to deploy them
for the identification of attacks targeting the whole CAN system. This paper presents a
benchmark framework for Controller Area Network (CAN) Intrusion Detection Systems
(IDS). The main contributions of this paper are (I) the proposal of a detailed threat
model, allowing the test and the comparison of anomaly detection algorithms and (II)
the analysis and the comparison of 4 detection systems for the CAN bus against a set of
anomalies representing the considered threat model. The rest of the paper is organized as
follows. Section 2 introduces the background knowledge required for the understanding of
this paper, while Section 3 presents the benchmark framework. In Section 4 the dataset
used for the evaluation of multiple intrusion detection systems is described, and Section 5
presents the detection performance of the selected algorithms. Finally, conclusions and
future works are outlined in Section 6.

2. A primer on CAN

The Controller Area Network is a vehicle bus standard designed to allow the nodes of
the network to exchange data without requiring a host computer [4]. CAN is one of
the most deployed networking protocol for internal vehicular communications due to its
high resilience to electromagnetic interference and its cheap implementation. The ECUs
on the same CAN segment can communicate using CAN data frames. The CAN data
frame is composed by 3 main fields: the identifier (ID), the data length code (DLC) and
the payload (data). The ID is used to distinguish among different types of CAN data
frame. Data frames characterized by a given ID are produced by only one ECU, while
receiver ECUs use the value of the ID to select data frames that are relevant for their
functioning. The ID is also used for arbitration of the CAN messages, where lower values
of this field denote messages with higher priority. The size of the ID field depends on
the type of CAN message, as show in Figure 1. Figure 1a depicts a CAN data frame in
the standard format, which have IDs with a size of 11 bit, while the extended format
depicted in Figure 1b defines the ID field with a size of 29 bits. The extra 18 bits of
the extended format are encoded separately from the 11 bits of the standard format for
backward compatibility. The DLC field encodes the number of bytes composing the data
field. The data field encapsulates the information that the sender ECU transmits to
other ECUs on the network. The data field has a variable size (from 1 to 8 bytes) and
usually packs several different signals. The CAN standard leaves complete freedom to the
car manufacturers about the structure, number, encoding and semantic of these signals.
Hence, without having access to the formal specifications of the CAN messages for a
particular vehicle model, the signals encoded in the data field can only be interpreted as



an opaque binary blob.
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Figure 1: Data frame types comparison

Data transmission on the CAN bus uses a loss-less bit-wise arbitration method for
contention resolution. The CAN specification defines each bit sent on the network as
either “dominant” (logical value 0, actively driven to voltage level by the transmitter)
or “recessive” (logical value 1, passively driven to ground level by the transmitter). The
idle state of the network is represented by the recessive value. During data transmission,
if one node sends a dominant value on the network and another node sends a recessive
value, the node sending the dominant value of the network will win arbitration and any
collision on the network is avoided, thus allowing to send high-priority messages on the
network without any delay due to transmission errors. To avoid collisions between nodes,
each transmitting node reads the logical value of the bus after writing each bit of the
message. If any transmitting node reads a bus value different from the one it has written
on the bus it stops transmission and attempts re-transmission of the message after the
current transmission is concluded by the sender.

3. The benchmark framework

In this section the threat model considered for the definition of the attacks analyzed
by the framework is presented in Section 3.1, while Section 3.2 describes the anomaly
detectors currently supported by the framework.

3.1. Threat model

The threat model considered in this paper is based on different attack scenarios already
published by security researchers on technical reports and white papers [19, 2, 20, 21, 22,
23].

3.1.1. Replay Attack

The replay attack is used for injecting messages on the CAN bus to subvert its normal
behavior, by exploiting modern drive-by-wires capabilities such as brake-by-wire or steer-
by-wire. The replay attack sequence is usually selected after an initial phase of reverse
engineering of the values encoded in the payload, allowing the attacker to inject messages
which content is expected to command part of the vehicle dynamics. For the purposes of
this paper, we consider two different typologies of replay attack based on the length of
the injected message sequence:



1. Single ID Replay: A Single Message ID is injected on the normal flow of the CAN
bus with a particular frequency;

2. Sequence Replay: A sequence of messages is injected on the normal flow of the
CAN bus with a particular frequency. The length of the injected sequence is a
parameter that will be inspected in the detection process.

3.1.2. Fuzzing Attack

The fuzz-testing (also known as fuzzing) attack describes the process of automatically
generating and sending malformed input to the software under test, while monitoring
its behavior [24]. Fuzzing attacks to automotive internal networks can be described as
the injection of CAN messages with malformed values in the fields composing the data
frame. For the purposes of this paper, two different fuzzing attacks are considered:

1. ID Fuzzing: CAN data frames with the ID and data field randomly generated. The
ID field is chosen to be different from the values of IDs observed in the dataset;

2. Payload Fuzzing: CAN data frames with valid ID field and randomly generated
data field.

3.1.3. Disruption Attack

The disruption attack comprises all the other attacks focusing on the interruption of
the normal operation of either the network or its components [25]. We remark that
in the automotive scenario, a disruption attack can either target the network or its
microcontrollers. For the purposes of this paper, we consider the following disruption
attacks:

1. Denial-of-Service: CAN data frames with the highest priority are injected with high
frequency, thus preventing any other node to start transmission of other messages;

2. ECU inhibition: messages generated by a target ECU are removed by sending the
ECU in a bus-off state, thus preventing the target ECU to participate in the normal
CAN communication.

3.2. Anomaly Detectors

The anomaly detectors supported by the framework are chosen as representative examples
of different detection algorithms designed for the analysis of the different fields of CAN
messages.

3.2.1. Message sequence algorithm

The message sequence algorithm [15] is based on the analysis of the message IDs. This
algorithm analyzes the possible transitions between pairs of IDs and later uses the list
of all the possible transitions for its detection purposes. There are no configuration
parameter in this algorithm, hence it is implemented as-is.



3.2.2. Bus entropy algorithm

The bus entropy algorithm [13] is based on the analysis of the information entropy of the
bus for detection purposes. This algorithm uses the entropy evaluated over a time window
𝑡 to define the normal entropy range [𝜇𝑒 − 𝑘𝜎𝑒, 𝜇𝑒 + 𝑘𝜎𝑒, ], where 𝜇𝑒 is the mean entropy
of the time windows, 𝜎𝑒 is its standard deviation, and 𝑘 is a tuning parameter. In our
experimental evaluation we used a time window 𝑡 = 0.01 seconds, resulting in 𝜇𝑒 = 2.7225,
𝜎𝑒 = 0.3176, and with a value of 𝑘 = 3 to achieve 0 false positives in the validation process.

3.2.3. Hamming distance algorithm

The Hamming distance algorithm [18] is based on the analysis of the Hamming distance
of consecutive payloads of messages with the same ID for detection purposes. This
algorithm evaluates the Hamming distance between consecutive payloads of message
with the same ID for the definition of the normal model, which is composed by the
pair [𝑚𝑖𝑛, 𝑚𝑎𝑥] values for each message ID, representing the minimum and maximum
Hamming distance found in the between consecutive payloads of the same message ID.
This normal model is later used for detection purposes, and if the Hamming distance
evaluated between two consecutive payload of messages with the same ID is outside the
[𝑚𝑖𝑛, 𝑚𝑎𝑥] range, than an anomaly is raised.

3.2.4. Missing message algorithm

The missing message algorithm [11] is designed to detect missing messages from the
normal CAN communication. This algorithm evaluates the cycle time 𝑐𝑡 of each message
ID and later uses it for the definition of the valid waiting time (𝑐𝑡 𝐼𝐷 ∗ 𝑘𝐼𝐷) that normally
occurs between two consecutive messages with the same ID, where 𝑘𝐼𝐷 is a configuration
parameter. In the validation process on the clean dataset, we achieved zero false positives
with a maximum value of 𝑘𝐼𝐷 = 2.

4. Dataset Description

This Section presents the dataset used for the evaluation of the detection algorithms. The
clean dataset used for the training of the detection algorithms is described in Section 4.1,
while Section 4.2 describes the infected dataset, that contains the attacks described in
the threat model (see Section 3.1).

4.1. Clean dataset description

The dataset used for the definition of the detection models of the selected algorithms
is collected from the high-speed CAN buses of an unmodified, licensed 2016 Volvo V40
by physically connecting a laptop to the OBD-II port with a PCAN-USB adapter by
Peak System and a D-Sub to OBD-II cable. According to international standards, the
high-speed CAN bus exposed on the OBD-II port is the powertrain segment, which is
composed by ECUs that control different subsystems of the vehicle dynamic, such as the



cruise control system, the anti-braking system, the electronic stability control, and many
optional Advanced Driver Assistance Systems (ADAS). The CAN recording process is
configured to save metadata information about the CAN traffic (such as the timestamp
and the type of the message) and the fields composing the messages (CAN ID, the DLC
value, and the bytes composing the data field). These data are gathered during several
driving sessions performed on different road types (urban, suburban and highways),
traffic conditions, weather conditions and on different geographical areas (plain, hill and
mountain). The whole dataset includes an aggregated amount of more than 10 hours
of driving over 7 different CAN traffic traces, including more than 8 million messages
belonging to 50 unique message IDs. The clean dataset is publicly available at [26].

4.2. Infected dataset description

The infected dataset is created by simulating the attacks described in the considered
threat model (see Section 3.1) on the clean dataset. To avoid any possible bias toward
unrealistic detection results due to the different frequencies of messages composing the
clean dataset, IDs with different probability distribution are used for the simulation of
attacks on the clean dataset. For the simulation of the different attacks, we selected 4
different message IDs to represent the most frequent message (CAN ID 0x10 , cycle time
of 10 milliseconds, labeled as top), a medium frequency message (CAN ID 0x145 , cycle
time of 20 milliseconds, labeled as mid), a low frequency message (ID 0x210 , cycle time
of 25 milliseconds, labeled as low), and a non-periodic message (ID 0x1 , undefined cycle
time, labeled as not).

The infected dataset is composed by the following attack scenarios:

• Replay attack - single ID: Set of traces in which a single valid ID is injected. This
set is composed by 4 different traces, each one corresponding to the injection of
one of the 4 selected IDs.

• Replay attack - valid sequence: Set of traces in which a sequence of IDs observed
in the traces is injected. Different traces are generated by injecting sequences with
different length, ranging from 2 to 10.

• Replay attack - invalid sequence: Set of traces in which a random generated sequence
of valid IDs is injected. Different traces are generated by injecting sequences with
different length, ranging from 2 to 10.

• Fuzzing attack - random ID: Set of traces in which a single invalid ID is injected.
• Fuzzing attack - random payload: Set of traces where a single valid ID is injected

with randomly generated payloads. The valid ID used for the injection of a random
payload is selected using the same criteria used for the single ID replay attack.

• Disruption - Bus DoS: Set of traces where 100 messages with the same ID are
injected each second.

• Disruption - ECU inhibition: Set of traces where CAN messages with a particular
ID are completely removed. This attack scenario represents an attacker that is able
to permanently disable a target ECU. This set is composed by 4 different traces,
each one corresponding to the removal of one of the 4 selected IDs.



5. Performance evaluation

The detection performance of the algorithms supported by the framework are evaluated
by means of ℱ−measure, which is a statistical index representing the accuracy of a test.
The ℱ−measure is harmonic mean between the precision (i.e. the number of correctly
identified anomalies on the total of detected anomalies, hence including also the false
positives) and the recall (i.e. the number of correctly identified anomalies on the total
of actual anomalies, hence including the false negatives). Its value ranges from 0 to 1,
where 0 denotes the inability of the detector to identify anomalies in the data, while 1
denotes the ability to identify all the anomalies and only the anomalies in the data. All
the detection algorithms are implemented using the Python programming language on
a server equipped with an Intel® Core™ i7-7700HQ CPU @3.8 GHz and with 16 GB of
RAM running Fedora 33 x64.

5.1. Performance against the replay attacks

The detection results evaluated with the framework against the replay attacks are depicted
in Figure 2, showing the ℱ−measure of the supported algorithms against the single ID
replay attack (Figure 2a), valid sequence replay attack (Figure 2b), and invalid sequence
replay attack (Figure 2c).

5.1.1. Single ID replay detection results

Figure 2a shows the detection results of the detection algorithm against the single ID
replay attack. The 𝑥-axis of Figure 2a shows the labels representing the different replayed
IDs, while the 𝑦-axis shows the ℱ−measure evaluated using the algorithms. The four
vertical bars represents the four detection algorithms: message sequence (blue bar), bus
entropy (red bar), Hamming distance distance (yellow bar), missing message (green bar).
From the analysis of the results presented in Figure 2a it is possible to notice that the
message sequence detection algorithm is able to constantly identify the injection of a
single message ID, while the bus entropy detection algorithm only detects a limited subset
of the injected messages. Moreover, we remark also that these results are independent of
the injected message (despite being higher in case of injection of the not message), while
the Hamming distance and the missing message algorithms are not able to detect any
anomaly.

5.1.2. Valid sequence replay detection results

Figure 2b shows the detection results of the detection algorithm against the valid sequence
replay attack. The 𝑥-axis of Figure 2b shows the length of the injected sequence, while
the 𝑦-axis represents the ℱ−measure achieved by the different detection methods against
the attack scenarios. The vertical bars represents the results of the detection algorithm,
as already described for the previous attack scenario. From the analysis of the results
presented in Figure 2b it is possible to notice the same trend already observed in the
previous case, despite in this attack scenario the message sequence detection algorithm
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Figure 2: Detection results of the supported algorithms against the message replay attacks (left to
right: single ID replay, valid sequence replay, invalid sequence).

performance decreases against the injection of longer valid sequences. This trend is
explained by considering that with the injection of valid sequences of messages, the
message sequence detection algorithm is able to detect an anomaly only in the transition
from the normal CAN communication to the first message of the sequence or from the
last message of the sequence to the normal CAN communication. Hence, by increasing
the overall length of the attack, the percentage of anomalies that this detection method
is able to detect decreases (since the internal transitions are considered valid).

5.1.3. Invalid sequence replay detection results

Figure 2c shows the detection results of the detection algorithm against the invalid
sequence replay attack. The results of Figure 2c are shown using the same structure
already described for Figure 2b. The results presented in Figure 2c shows that the
entropy detection algorithm is still unable to detect anomalies consistently, while the
performance of the message sequence algorithm are higher compared to the previous
attack scenario and being constantly higher than ℱ−measure = 0.8.

As a final comment of the detection results achieved with the framework against the
replay attack scenario, we highlight that the detection algorithm based on the analysis
of the sequence of messages is able to achieve higher detection results compared to the
others, while the bus entropy anomaly detector struggles to achieve detection results
higher than ℱ−measure ≥ 0.5. Moreover, we remark that the Hamming distance and
the missing message detection algorithm are not able to detect any anomaly against this
attack scenario.

5.2. Performance against the Fuzzing attack

The detection results achieved with the framework against the replay attack are depicted
in Figure 3, showing the ℱ−measure of the algorithms against the random ID fuzzing
attack (Figure 3a), and the random payload fuzzing attack (Figure 3b).
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Figure 3: Detection results of the supported algorithms against the fuzzing attacks (left to right: random
ID fuzzing, random payload fuzzing).

5.2.1. Random ID fuzzing detection results

The results achieved by the detection algorithms against the random ID fuzzing attack
are shown in Figure 3a. The results presented in Figure 3a show that the detection
performance in this attack scenario are similar to the previous scenario, with the only
difference being that the message sequence detection algorithm is able to achieve a
fixed ℱ−measure = 1 in all the attack simulation. This results is easily explainable
by considering that the attack is simulated using a message ID never observed in the
clean dataset, while the detection model of the message sequence algorithm is composed
by all the message IDs found in the clean dataset. With this analysis it is clear that
the message ID sequence is able to detect all the instances of this attack scenario, with
absolute precision and recall.

5.2.2. Random payload fuzzing detection results

The results achieved by the detection algorithms against the random payload fuzzing
attack are depicted in Figure 3b, showing the ℱ−measures (𝑦-axis) achieved with the
algorithms (vertical bars) in case of fuzzing of a payload with different IDs (𝑥-axis). The
results presented in Figure 3b are equal to the ones presented in case of the single ID
replay attack (Figure 2a) for the message sequence, bus entropy, and missing message
detection algorithms since the attack is simulated using the same message IDs. However,
it is necessary to remark that the Hamming distance detection algorithm is able to detect
anomalies, and that its detection performance increase by decreasing the frequency of
the message.

As a final comment on the detection performance of the algorithms against the fuzzing
attacks we highlight that the message sequence detection algorithm is still reaching high
ℱ−measures in both attack scenario, achieving the maximum ℱ−measure against the
random ID fuzzing attack, while the bus entropy algorithm is not able to detect anomalies
consistently. The missing message detection algorithm is still not able to detect any



anomaly, but the Hamming distance detection algorithm is able to detect anomalies
consistently in half of the simulated scenario against the random payload fuzzing attack.

5.3. Performance against the disruption attacks

Figure 4 shows the detection performance of the algorithms against the two considered
disruption attacks: Bus DoS (Figure 4a) and ECU inhibition (Figure 4b). The results
against the bus DoS attack in Figure 4a shows the ℱ−measure (𝑦-axis) of the detection
algorithms (vertical bars), as already presented in previous scenarios, while the results
against the ECU inhibition attack depicted in Figure 4b shows, for each message used
for the attack simulation (𝑥-axis), the percentage of the detected anomalies (𝑦-axis) of
the four different detection algorithms (vertical bars).

5.3.1. Denial-of-Service detection results

From the analysis of the results depicted in Figure 4a we highlight that the Hamming
payload distance and the missing message algorithms are not able to detect any anomaly,
while the message sequence and the bus entropy algorithms are both able to achieve
consistent detection results. Moreover, we remark that the message sequence detection
algorithm is able to achieve a perfect ℱ−measure = 1 also in this attack scenario, since
the detection model does not have any transition between the same message ID and that
the injection of a 100 consecutive messages with the same ID. On the other hand, the bus
entropy algorithm is able to achieve ℱ−measure = 0.8 consistently, demonstrating the
ability of this detection method to detect attacks composed by the injection of multiple
messages within the same time window.

5.3.2. ECU inhibition detection results

In case of the ECU inhibition attack (Figure 4b we highlight that the best algorithm
for the detection of the ECU inhibition attack is the missing message algorithm, that is
able to detect almost 100% of the missing messages. The message sequence algorithm
is also able to detect anomalies, despite its detection performance are not consistent
throughout the different tests. The bus entropy and the Hamming distance payload
detection algorithms however are not able to detect any anomaly. As a final remark, we
highlight that in case of the removal of the not message, the tested algorithms are not able
to detect any anomaly. This is easily explained by considering that the not message is a
non-cyclic message, hence it is not possible to define the normal behavior of this message.
This implies that it is not possible to identify the cycle time of the message, hence it is
not possible to apply the missing message algorithm in this particular scenario.

6. Conclusions

This paper presents a framework for the comparison of anomaly detection algorithms
designed for CAN communications. This framework is designed to compare of the
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Figure 4: Detection results of the supported algorithms against the fuzzing attacks (left to right: random
ID fuzzing, random payload fuzzing).

detection performance of the algorithms against the same attack scenarios, representing
known attacks to the CAN bus. The benchmark framework currently supports 4 detection
algorithms designed to analyze different features of the CAN communications, and the
experimental evaluation demonstrated that the message sequence algorithm is able to
detect anomalies consistently in all the attack scenarios, while others methods have a
more limited applicability. In particular, the Hamming payload distance algorithm and
the missing message algorithm are proven effective in the detection of the only random
payload fuzzing attack and the disruption ECU inhibition attack, respectively; while the
bus entropy algorithm is only able to detect attacks carried out with the injection of a
high-volume of messages. We are currently expanding the framework to include other
detection algorithms and novel attack scenarios.
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