
On the feasibility of covert channels through
Short-Message-Service
Sara Narteni, Ivan Vaccari, Maurizio Mongelli, Maurizio Aiello and
Enrico Cambiaso

Consiglio Nazionale delle Ricerche (CNR-IEIIT), Genoa, Italy

Abstract
Short-Message-Service (SMS) is one of the most used ways to exchange text messages offered by mobile
networks. In this paper, we explore the feasibility of establishing a tunneling system based on SMS.
Our proposed scheme allows a client (e.g. a web browser) to connect to the Internet by encapsulating
HTTP/HTTPS requests/responses into SMS messages. Along with the development of the tunneling
architecture and the attack modelling, we conducted some preliminary tests to evaluate the feasibility
of the proposed tunneling system. Obtained results indicate that our system is able to handle up to 1200
bytes of web request data when using equal mobile operators, whereas 1248 bytes for different mobile
operators.

Keywords
covert channel, tunneling system, short-message-service, data exfiltration, cyber-security

1. Introduction

Covert channels represent a huge category of cyber-attacks consisting in communicating
information and data in a hidden way, as suggested by the word covert itself. They represent
one of the major threats affecting networks security, as they can lead to the exfiltration of
sensitive data [1]. In this context, Lampson [2] introduced covert channels by 1973: according
to his definition, they are communication channels “not intended for information transfer at all”.
In order to understand how covert channels work, it’s useful to remind Simmons’s Prisoner
Problem [3]: prisoners Alice and Bob want to communicate to agree on an escape plan, but
there’s a warden, Wendy, who monitors all the messages. If Wendy discovers suspicious
messages, she will place Alice and Bob into solitary confinement, so their escape plan will be
prevented. To bypass Wendy’s control, Alice and Bob must exchange innocuous messages (overt
channel) containing hidden information (covert channel). Alice and Bob can be two computers
in a network that communicate exploiting different protocols [4].

Nowadays, there are many techniques to create a covert channel. Covert channels can be
classified in different ways: for example, according to the distinct Open System Interconnection
(OSI) layers [5] or on the basis of the mechanism over which they’re constructed. Zander [6]

ITASEC21: Italian Conference on Cybersecurity, April 7-9, 2021, Online
email: sara.narteni@ieiit.cnr.it (S. Narteni); ivan.vaccari@ieiit.cnr.it (I. Vaccari); maurizio.mongelli@ieiit.cnr.it
(M. Mongelli); maurizio.aiello@ieiit.cnr.it (M. Aiello); enrico.cambiaso@ieiit.cnr.it (E. Cambiaso)
orcid: 0000-0002-0579-647X (S. Narteni); 0000-0001-7721-5737 (I. Vaccari); 0000-0001-6201-6225 (M. Mongelli);
0000-0001-5008-225X (M. Aiello); 0000-0002-6932-1975 (E. Cambiaso)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:sara.narteni@ieiit.cnr.it
mailto:ivan.vaccari@ieiit.cnr.it
mailto:maurizio.mongelli@ieiit.cnr.it
mailto:maurizio.aiello@ieiit.cnr.it
mailto:enrico.cambiaso@ieiit.cnr.it
https://orcid.org/0000-0002-0579-647X
https://orcid.org/0000-0001-7721-5737
https://orcid.org/0000-0001-6201-6225
https://orcid.org/0000-0001-5008-225X
https://orcid.org/0000-0002-6932-1975
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

followed the last criterion to provide an overview of the existing covert channels. Protocols
of the network and transport layers (IP, TCP, ICMP) present header fields that can be misused
to convey secret data: this can be achieved by header bit modulation (e.g. unused header bits,
TCP ISN field, checksum field, address fields, etc.), header bit crafting (e.g. header extension,
padding, IP ID and Fragment Offset) or optional header extension [7]. An alternative is payload
tunneling [6], that is a covert channel where a forbidden protocol is encapsulated in the payload
of an allowed one, such as IP over ICMP, SSH over HTTP, UDP/TCP over HTTP. Moreover, it is
possible to employ headers of the application layer protocols, such as HTTP or DNS [6]. Covert
channels described above are known as covert storage channels (CSC). In contrast, covert timing
channels (CTC) are based on concealing information by modulating packet timing parameters.
Recent studies proposed covert channels in the field of mobile vocal calls belonging to CTC
category, exploiting VoLTE (VoIP over LTE) Protocol [8] and VoIP [9]. Both works hide covert
data into silent periods of the voice signal. Along with the discovery of new covert channels,
researches on the development of new detection techniques have been carried out in recent
times [10].

In recent years, we have assisted to a rapid growth of mobile technologies, so their security
is now a very important issue to take into account. It is often compromised: as an example, a
well-known phone company has recently declared that private and technical data have been
stolen from users’ SIM cards 1.

Covert channels affecting mobile networks worth to be investigated; in particular, text
messages like SMSs can constitute a new opportunity to construct a covert channel, since they
are now widely available at relatively low cost.

In this paper, we study the feasibility of a novel tunneling system based on CSC, in which
application data are carried inside Short-Message-Service (SMS) payload. Since people bring
their mobile phones everywhere today, as essential parts of their everyday activities, such
devices may become instruments for an attacker too. In fact, thinking about the insider threat
scenario [11], the insider (i.e. a member of an organization that wants to exfiltrate data to the
outside) could make misuse of mobiles to bypass his/her organization network by exploiting
the proposed SMS covert channel scheme, thus exposing the organization to serious damages.

The remaining of the paper is structured as follows: Section 2 introduces SMS and their
functioning, while Section 3 describes the concept idea of the proposed innovative covert
channel. Instead, Section 4 reports some preliminary tests on the feasibility to establish SMS-
based tunnels. Section 5 reports the related works on the topic. Finally, Section 6 concludes the
paper and reports further work on the topic.

2. Short-Message-Service

Short-Message-Service (SMS) is a service that allows the exchange of text messages between
mobile devices. A first implementation of SMS was carried by Global System for Mobile
Communications (GSM), the first standard developed for mobile telephony systems in the world.
SMS was implemented by GSM according to the European Telecommunication Stardard Institute

1More information is available at the following address: https://www.cybersecurity-help.cz/blog/1855.html

https://www.cybersecurity-help.cz/blog/1855.html

(ETSI) technical specifications, then it has been carried out in the scope of 3G Partnership Project
(3GPP) activities so that, by now, the service works in 3G and 4G networks too.

A single SMS comprises a header, with useful information, and a payload, which is the text
content. The maximum size of a single SMS is 160 characters with 7-bit encoding.

The flow of an SMS through the GSM network involves the following steps [12]:

1. An SMS is sent from the Mobile Station (MS), that is the mobile device equipped with
Subscriber Identity Module (SIM) card, to the Base Transceiver Station (BTS), which
receives and digitalizes the radio signals from MS.

2. BTS forwards the SMS to the Mobile Switching Centre (MSC), which has the Equip-
ment Identity Register (EIR) and Authentication Register (AUC) databases for equipment
verification and user authentication.

3. The message is then transmitted from MSC to SMSC, where it is stored in a queue until it
can’t be delivered. SMSC interrogates its databases (Home and Visitor Location Register
(HLR and VLR)) for the location information about the recipient’s MS.

4. By finding the location of the target MS, the message is sent from SMSC to the respective
MSC and from here to the final recipient.

There are two ways to submit a message on GSM network: Protocol Description Unit (PDU)
mode, that is in bits, and text format, i.e. the normal text. PDU format is more structured: the
message appears as a string of hexadecimal octets, grouped in different parts containing useful
information regarding the message and also details about the user. In PDU mode, SMS packets
are different depending on if the SMS is being sent or received: SMS_SUBMIT or SMS_DELIVER
formats are used respectively (see Section 3.3 of [12] for further details).

2.1. AT Commands

AT (ATtention) commands are a set of short text string commands used to control GSM phones
or modems. They can support many actions, including all the processes involved in send-
ing/receiving of SMSs. To understand the AT commands usage, in Table 1 we report a list of the
most common ones in the field of SMSs.

Parameters can be added to the AT commands after an = sign to enable functionalities (e.g.
AT+CGMF=1 for SMS text mode). There are lots of AT commands, but manufacturers usually do
not implement all of them in the same way and with the same parameters. Hence, the use of AT
commands cannot be generalized for all kind of devices.

3. The Proposed Covert Channel

In network security context, the aim of a tunneling system is to carry a given communication
protocol into the payload of another one. Typically, such systems may be used to overcome
network limitations (i.e. firewalls) and potentially to leak private and sensitive data. Such
scenario can fit the insider threat problem [11].

AT command Description
AT Returns OK when the communication between the device and the appli-

cation has been verified
AT+CLIP Refers to the GSM/UMTS supplementary service CLIP (Calling Line

Identification Presentation)
AT+CRC Controls whether or not the extended format of incoming call indication

or GPRS network request for PDP context activation or notification for
VBS/VGCS calls is used

AT+CMGF Message format (0 for PDU mode, 1 for Text mode)
AT+CNMI New message indications to Terminal Equipment
AT+CMGL Lists all text messages that are stored in memory
AT+CMGD Deletes messages from memory
AT+CMGW Writes SMSs to message storage area of SIM card
AT+CMSS Sends SMSs from message storage area
AT+CMGS Sends SMSs directly to the recipient’s phone number

Table 1
List of common AT commands

Figure 1: SMS Tunneling architecture

Inspired by the rapid development of mobile technologies and the drastic cost reduction of
SMSs, we decided to investigate if it is possible to implement a tunneling system that exploits
the SMS protocol.

Our SMS tunneling system can be described through the architecture shown in Figure 1.
The proposed system is composed of four software modules: socks, tunnel client, tunnel

server, and tunnel proxy. In order to understand how the system works, the first two blocks
may be ideally coupled to form a socks server and, similarly, the other two blocks are referred
to as a unique tunnel receiver component. In our scenario, an attacker establishes a connection
over the tunnel by communicating with the socks server through a client (e.g. a web browser).
We assume that the socks server is located inside the targeted private network and used by the
malicious node to initiate the tunneling system. In contrast, the tunnel receiver component is
thought as an external node, which is under the control of the attacker too.

Therefore, by exploiting such tunneling system, the client may be able to perform web
browsing activities.

Suppose 𝐶 → 𝑆 and 𝑆 → 𝐶 being the request and response pathways respectively, involving
tunnel client 𝐶 and tunnel server 𝑆 modules. We now provide a more detailed description of the
single modules; in this context, our focus is on HTTP/HTTPS data, but the involved messages
can actually be of any kind:

• Socks server. In the 𝐶 → 𝑆 pathway, it receives the HTTP/HTTPS raw requests from
the client, splits their payload into 𝐿-characters-sized parts and builds an SMS string for
each obtained portion. Such SMS is then sent to the tunnel receiver. In 𝑆 → 𝐶 , it listens
for incoming connections from tunnel receiver and reconstructs the web response from
the received SMSs. Finally, such response reaches the client.

• Tunnel receiver. This component acts in a symmetric manner with respect to socks
server. It overtly communicates with a web server: while being in 𝐶 → 𝑆 phase, the
tunnel receiver reconstructs the original HTTP/HTTPS request from SMSs received by
the socks server; in 𝑆 → 𝐶 , it receives a web response, then it generates SMSs in the
same way as socks server does for 𝐶 → 𝑆 and sends them to the socks server.

Each SMS, both in 𝐶 → 𝑆 and 𝑆 → 𝐶 phases, is made up of a string containing five fields,
separated by a dash character (-), containing (i) the web server IP address (destination_ip
in the following), (ii) the web server listening port number (destination_port in the fol-
lowing), (iii) the client port number, (iv) a message index (index in the following), and (v) the
payload (portion) to send. The first three fields represent a kind of header used to match
the connection between the client and the socks2. In addition, the tunnel proxy connects to
destination_ip:destination_port to get the information about the requested web page.

The index is calculated in order to count how many fragments of the original request/response
are generated by splitting it into pieces of 𝐿 characters. This information is needed to control
the correct order of SMSs after they travel along the tunnel.

The content field encapsulates the request/response fragment. Before being sent through
the tunnel, it is encoded in base 64 in our design, in order to maintain the standard ASCII SMS
characters and prevent possible SMS reading issues. Once the SMS reaches its recipient, this
field will then be decoded from base 64 for further processings.

In order to handle the connection between the client and the socks server at the transport level,
so that the system acknowledges when the data exchange between them must be interrupted,
we introduced a particular SMS, which we call zero packet. Such SMS has the same header as
described above, while its index is fixed at 0. The content is put to 1 if the connection is
open, whereas it is 0 when closed. When the communication between client and socks server
ends, the closure zero packet is used to close it. Similarly, a zero packet with content=0 may
be sent to establish connections, although this may lead a connection closure, if the message
with index=1 is not received before the expiration of the server-side timeout waiting for data
after the three-way-handshake is completed.

2Here, we assume a single client is present; in case of multiple clients, an additional field may be required,
specifying the IP address of the involved client.

In order to better define the proposed attack and evaluate if it is possible to exploit it for
network communications, we will now model the attack behavior.

3.1. Attack modelling

In order to analyze if the proposed tunneling attack can be employed for a specific communica-
tion, it is required to analyze the time delays introduced in the communication by the tunnel
architecture.

In particular, referring to the scheme depicted in Figure 1, let’s suppose that a request message
𝑚𝑟 has to be sent from the client to the web server. Once 𝑚𝑟 is received and interpreted by the
web server, the relative response message 𝑚𝑠 is generated and sent back from the web server to
the client.

Suppose | · | being the length of · , in bytes, and the addition symbol + the concatenation of
two strings, expressed in bytes. Let’s also define 𝑆𝐿 as the maximum size (in bytes) of a single
SMS message. Given a message 𝑚 to be sent through the tunnel by one endpoint to the other,
we can compute the number of required SMSs as follows:

𝑘𝑚 =

⌈︂
|𝑚|
𝑆𝐿

⌉︂
(1)

where, for simplicity, we assume that no overhead is introduced on each message (for instance,
by headers, footers, or changes in data representation).

Referring to the 𝐶 → 𝑆 pathway, we have:

|𝑚𝑟| > 𝑆𝐿 =⇒ 𝑚𝑟 = 𝑚1
𝑟 + . . .+𝑚𝑘𝑚𝑟

𝑟 (2)

where 𝑘𝑚𝑟 > 1 is the number of SMS messages required to send a message 𝑚𝑟 , computed as in
Equation 1. Instead, for 𝑘𝑚𝑟 = 1 , we have |𝑚𝑟| ≤ 𝑆𝐿 .

The expression of 𝑚𝑟 in Equation 2 can then be simplified as:

𝑚𝑟 =

𝑘𝑚𝑟∑︁
𝑖=1

𝑚𝑖
𝑟 (3)

Similarly, for the 𝑆 → 𝐶 pathway, we define 𝑚𝑠 as follows:

𝑚𝑠 =

𝑘𝑚𝑠∑︁
𝑖=1

𝑚𝑖
𝑠 (4)

with 𝑘𝑚𝑠 being the number of SMSs needed to send 𝑚𝑠, defined as in Equation 1.

Now, in order to define if it is possible to exploit the proposed tunnel, it is required to analyze
the network requirements of the specific channel which has to be established. Such channel
depends both on the client and web server characteristics. For our scenario, such characteristics
are browser and server timeouts.

In particular, considering a specific channel, let’s suppose that, through the proposed tunnel,
the number of sent SMSs per second is 𝑁 .

Notation Description
𝐿 Maximum number of characters per SMS
| · | Bytes length of ·
𝑚𝑟 Request message
𝑚𝑠 Response message
𝑆𝐿 Bytes size of 1 𝐿-characters SMS
𝑘𝑚 Number of SMSs needed to send message 𝑚
𝑁 Number of sent SMSs in 1s
𝑇𝐶 Client timeout
𝑇𝑆 Server timeout
𝑇𝑚 Time required to send message 𝑚
𝑇𝛼 Time required for web server to process request message

Table 2
Notation used in our attack modelling

Let’s suppose 𝑇𝐶 be the timeout used by the client/browser and, similarly, 𝑇𝑆 be the server
timeout. Let’s also define 𝑇𝑚 the time required to send a message 𝑚 from one endpoint to the
other one, through the proposed tunnel. Particularly, we define 𝑇𝑚 in function of 𝑁 , as follows:

𝑇𝑚 =
𝑘𝑚
𝑁

(5)

In addition, for given 𝑚𝑟 and 𝑚𝑠, we define 𝑇𝛼 the time required to the web server to process
the 𝑚𝑟 request, in order to produce 𝑚𝑠.

Therefore, we expect a server side connection closure if the 𝑇𝑆 timeout, related to the 𝐶 → 𝑆
pathway, expires, according to the Equation 6.

𝑇𝑆 < 𝑇𝑚𝑟 (6)

Also, we expect a client side connection closure if the 𝑇𝐶 timeout, related to both the 𝐶 → 𝑆
and 𝑆 → 𝐶 pathways, expires, according to the Equation 7.

𝑇𝐶 < 𝑇𝑚𝑟 + 𝑇𝛼 + 𝑇𝑚𝑠 (7)

Finally, we state that the proposed tunnel is effective if Equation 8 is satisfied.

𝑇𝑚𝑟 + 𝑇𝛼 + 𝑇𝑚𝑠 ≤ 𝑇𝐶 ∧ 𝑇𝑚𝑟 ≤ 𝑇𝑆 (8)

For sake of clarity, in Table 2 we wrap up the notation adopted throughout our attack
description.

4. Tests and obtained results

In order to perform an evaluation on the feasibility of the proposed attack, we conducted some
preliminary tests based on AT commands (Section 2.1), aimed at studying the behavior of SMSs
sent between the endpoints.

For the implementation of our system, we used two Raspberry Pis, one as the socks server
and one as the tunnel receiver, each interfaced with a USB HSPA modem provided with a slot
for a SIM card.

We performed a direct sending test, where SMSs were sent to the recipient without interme-
diate steps, using the AT+CMGS command (Table 1).

Let’s suppose 𝑚𝑖, 𝑖 = [1, . . . , 𝑁𝑠] as the sequence of 𝑁𝑠 different SMS messages that our
system is able to continuously send in a fixed time window 𝑇 (expressed in seconds), being
𝑁𝑠 ≤ 𝑘𝑚 the number of messages which is possible to send in that time interval, with 𝑘𝑚
defined as in Equation 1. The goal of the preliminary tests we have accomplished is then to
compute 𝑁𝑠 in two different test cases, involving (i) the same mobile operator (TIM Italian
mobile carrier) for both sender and receiver, and (ii) a different mobile operator between sender
(TIM Italian mobile carrier) and receiver (Iliad Italian mobile carrier). In both test cases, the
content of each message 𝑚𝑖 was made up of a text string containing also a counter, which we
use to evaluate the SMSs sending, also in terms of reception order or losses.

Such tests were conducted by fixing 𝑇 = 60s as time window. Within such time window, we
found out the following results:

𝑁1
𝑠 = 15 (9)

for the first scenario (same mobile operator), and

𝑁2
𝑠 = 16 (10)

for the second scenario (different mobile operators).
Referring to the attack model presented in Section 3.1, we exploited the obtained 𝑁𝑠 values

to compute the total maximum size |𝑚| of HTTP/HTTPS requests/responses payload we can
transfer over the tunnel, measured in bytes.

First of all, we computed the frequency of SMS sending, expressed by 𝑁 (i.e. how many SMSs
are sent per second), as follows:

𝑁 =
𝑁𝑠

𝑇
(11)

For our two scenarios we obtained 𝑁1 = 0.25 SMS/s (same operator) and 𝑁2 = 0.26 SMS/s
(different operators).

Referring to Equation 8, we can assume, for simplicity, 𝑇𝛼 = 0 s , hence an extremely reduced
server-side computation time. This may be reasonable, considered the greater impact of both
𝑇𝑚𝑟 and 𝑇𝑚𝑠 . We can also assume 𝑇𝐶 = 30 s, corresponding to a client-side timeout (e.g.
a browser timeout) of 30 seconds. Finally, we can assume 𝑇𝑆 = 300 s, as it represents, for
instance, the default Apache2 timeout [13]. Particularly, as the web server may be under the
control of the attacker, the server timeout may also (mathematically) tend to infinite. Therefore,
we can consider only the first/left part of Equation 8, where, for simplicity in notation, we
define:

𝑇𝑚 = 𝑇𝑚𝑟 + 𝑇𝑚𝑠 (12)

hence:
𝑇𝑚 ≤ 𝑇𝐶 (13)

with 𝑇𝑚 defined in Equation 5.

At this point, according to Equation 5, by fixing 𝑇𝑚 = 𝑇𝐶 = 30 s (as we do not want to
expire the client timeout), we get 𝑘𝑚 = 𝑇𝑚 · 𝑁 . The maximum payload length can be then
computed as |𝑚| = 𝑇𝑚 ·𝑁 · 𝑆𝐿 (Equation 1). By assuming, for simplicity, that the size of SMS
messages to be sent through the tunnel is the highest supported by the SMS protocol, we fix
𝑆𝐿 = 160 bytes/SMS (i.e., 160 characters with 7-bit encoding).

Therefore, in our two test cases we get:

|𝑚1| = 𝑇𝑚 ·𝑁1 · 𝑆𝐿 = 1200 bytes (14)

for the first scenario (same mobile operator), and

|𝑚2| = 𝑇𝑚 ·𝑁2 · 𝑆𝐿 = 1248 bytes (15)

for the second scenario (different mobile operators). All payloads exceeding such sizes will
lead to a connection closure for the considered web scenario. Also, since the results show
|𝑚1| < |𝑚2|, the exploitation of equal operators seems to slightly have a negative impact on the
tunnel performance. Other scenarios (like chats or SMTP data exchange) will be investigated in
the scope of further works on the topic.

Moreover, by monitoring the SMS reception, we noticed that the order of the received SMSs
was not the same as the one in which the messages were sent: we expected such a behavior, in
fact our tunneling system embeds a reordering mechanism for the messages received from a
tunnel endpoint to another one.

5. Related Work

In the era of mobile technologies outbreak, people are prone to make a massive use of their
mobile phones, they download lots of apps without being aware of the risks they may encounter.
For this reason, security of mobile devices is always more under threat.

In recent years, a lot of work ([14], [15],[16], [17], [18]) has been done to collect different
vulnerabilities, threats and attacks addressing mobile devices and their Operating Systems.
Between them, there are attacks versus the victim device itself (such as viruses, spyware, Trojan,
rootkit etc), while others steal information by eavesdropping the communication between
different devices (as for the case of Man-In-The-Middle attack) [14]. As regards the SMS context,
some attacks exploit SMSs for data leakage, e.g. Smishing (phishing via SMS) attack [15], that
consists in stealing information by sending trustworthy SMSs to the users.

In another survey ([19]), SMS interception and manipulation attacks are presented, where
attackers act as SMSC and make use of fake MSC in order to get IMSI and address of the victim,
thus identifying it.

SMSs are now a common method for two-factors authentication, even if they’re not so secure.
In [20], three methods to intercept SMSs are presented: GSM traffic capture; getting access to
Signalling System No. 7 (SS7) architecture and exploiting its protocols (like CAMEL) flaws; SIM
swapping, which consists in porting a user’s SIM card by fooling mobile operators, so that the
attacker receives all its data.

Focusing on GSM network, a second generation standard for cellular networks that reached
90% of market share by 2017 [21], very few works explored the feasibility of creating covert

channels exploiting SMS protocols. The author in [22] demonstrated the possibility to embed
secret information inside SMS User Data Header redundant fields, in such a way that an
independent warden (recalling Simmons’s Prisoner Problem [3]) can interpret the SMS as
normal. Another work illustrated how to secretly convey data through SMS [23]: the aim of
such study was to develop a system able of transmitting SMS messages from an Android device
without the end user’s knowledge. Such a system design includes an Android application able
to covertly transmit SMSs and a network node able to receive them; in particular, OpenBTS and
SMSqueue softwares were used to establish a GSM network and manage SMS routing, acting
like a SMSC. In addition to the SMS-based approaches mentioned so far, it’s also possible to hide
information directly in text messages or other media: this method is known as steganography.
It can be achieved in many different ways: as an example, secret data may be hidden in text
manipulations (like abbreviations, blank spaces, synonyms and acronyms [24]) or into the
widely used emoticons [25]. However, steganographic methods are a sub-category of covert
channels, being based on modifications of the contents of the data being transmitted. Moreover,
all the SMS-based data exfiltration techniques mentioned so far are different from tunneling
systems, since they do not involve network protocols.

The idea of an SMS tunneling was investigated in [26] too, where a so-called WebSIM was
developed, i.e. a SIM card acting as a web server for personal security. In this context, IP packets
were embedded into SMSs in order to reach the WebSIM and provide connectivity. In contrast,
in our system we use SMSs just as carriers for bringing connection outside. Another work [27]
developed a query/retrieve system, called iTrust with SMS, which allows users to search/get
information cointained in iTrust with HTTP network nodes[28] via SMS. The requests are made
through text keywords and then this framework is able to convert them to GET HTTP requests.
Such a system has limited application because of the limitation in SMS size (140 bytes) and it
cannot fit into a covert channel definition.

To the best of our knowledge, no studies investigated the feasibility of a SMS tunneling,
intended as a way to exchange forbidden information between two nodes via SMS.

6. Conclusions and Further Work

In this paper we have theorized an innovative tunneling attack based on the exchange of SMS
messages. Such a system may represent a potentially dangerous threat, as the stealing of
private and sensitive data could lead to serious problems in critical contexts like health, finance
or industry. In addition, using a third-party network, potentially uncontrolled, may hinder
detection and mitigation of the proposed threat. Despite many malicious tunneling applications
already exist and are well-established, involving the most common network protocols (DNS,
ICMP, SSH, etc), our proposed scheme allows to exploit a protocol in the field of mobile networks.
In our concept, this feature represents a great advantage, in virtue of the huge development of
mobile devices and the fact that the sending of SMSs has become cheaper in recent years.

Nevertheless, in this paper we have presented a preliminary investigation on the feasibility of
the SMS tunneling. Due to the limited size of SMS messages, we expect performance limitations
of the tunnel: however, the obtained preliminary results indicate a promising starting point
for further investigations. Namely, future works will be addressed to a deeper testing of the

system, aimed to the individuation of the SMS tunneling capabilities and weaknesses.

Acknowledge

This work was supported by the following research project: the Integrated Framework for
Predictive and Collaborative Security of Financial Infrastructures (FINSEC) project, which has
received funding from the European Union’s Horizon 2020 Research and Innovation Programme
under Grant Agreement No. 786727.

References

[1] W. Mazurczyk, P. Szary, S. Wendzel, L. Caviglione, Towards reversible storage network
covert channels, in: Proceedings of the 14th International Conference on Availability,
Reliability and Security, 2019, pp. 1–8.

[2] B. W. Lampson, A note on the confinement problem, Commun. ACM 16 (1973) 613–615.
[3] G. J. Simmons, The prisoners’ problem and the subliminal channel, in: CRYPTO, 1983.
[4] S. Zander, Detecting covert channels in fps online games, in: 2017 IEEE 42nd Conference

on Local Computer Networks (LCN), 2017, pp. 555–558.
[5] T. G. Handel, M. T. Sandford, Hiding data in the osi network model, in: Information

Hiding, Springer Berlin Heidelberg, 1996, pp. 23–38.
[6] S. Zander, G. Armitage, P. Branch, A survey of covert channels and countermeasures in

computer network protocols, IEEE Communications Surveys & Tutorials 9 (2007) 44–57.
[7] Y. Heda, R. Shah, Covert channel design and detection techniques : a survey, in: 2015 IEEE

International Conference on Electronics, Computing and Communication Technologies
(CONECCT), 2015, pp. 1–6.

[8] X. Zhang, Y. Tan, C. Liang, Y. Li, J. Li, A covert channel over volte via adjusting silence
periods, IEEE Access 6 (2018) 9292–9302.

[9] S. Schmidt, W. Mazurczyk, R. Kulesza, J. Keller, L. Caviglione, Exploiting ip telephony
with silence suppression for hidden data transfers, Computers and Security 79 (2018).

[10] L. Caviglione, Trends and challenges in network covert channels countermeasures, Applied
Sciences 11 (2021). doi:10.3390/app11041641.

[11] I. Homoliak, F. Toffalini, J. Guarnizo, Y. Elovici, M. Ochoa, Insight into insiders and it:
A survey of insider threat taxonomies, analysis, modeling, and countermeasures, ACM
Comput. Surv. 52 (2019). URL: https://doi.org/10.1145/3303771. doi:10.1145/3303771.

[12] A. Chaudari, Security analysis of sms and related technologies, 30 Nov 2015.
[13] E. Cambiaso, G. Papaleo, G. Chiola, M. Aiello, Designing and modeling the slow next dos

attack, in: Computational Intelligence in Security for Information Systems Conference,
Springer, 2015, pp. 249–259.

[14] M. Taleby Ahvanooey, Q. Li, M. Rabbani, A. Rajput, A survey on smartphones secu-
rity: Software vulnerabilities, malware, and attacks, International Journal of Advanced
Computer Science and Applications 8 (2017) 30–. doi:10.14569/IJACSA.2017.081005.

[15] S. Muthuswamy, P. Ganapathi, Mobile device security: A survey on mobile device threats,

http://dx.doi.org/10.3390/app11041641
https://doi.org/10.1145/3303771
http://dx.doi.org/10.1145/3303771
http://dx.doi.org/10.14569/IJACSA.2017.081005

vulnerabilities and their defensive mechanism, International Journal of Computer Appli-
cations 56 (2012) 24–29. doi:10.5120/8960-3163.

[16] M. La Polla, F. Martinelli, D. Sgandurra, A survey on security for mobile devices, Communi-
cations Surveys & Tutorials, IEEE 15 (2013) 446–471. doi:10.1109/SURV.2012.013012.
00028.

[17] B. Rashidi, C. Fung, A survey of android security threats and defenses, Journal of Wireless
Mobile Networks, Ubiquitous Computing, and Dependable Applications (JoWUA) 6 (2015)
3–35.

[18] S. Farhan, S. F. Zaidi, A. Munam, M. Shah, M. Kamran, Q. Javaid, S. Zhang, A survey on
security for smartphone device, International Journal of Advanced Computer Science and
Applications 7 (2016) 206–219. doi:10.14569/IJACSA.2016.070426.

[19] K. Ullah, I. Rashid, H. Afzal, M. M. W. Iqbal, Y. A. Bangash, H. Abbas, Ss7 vulnerabilities—a
survey and implementation of machine learning vs rule based filtering for detection
of ss7 network attacks, IEEE Communications Surveys Tutorials 22 (2020) 1337–1371.
doi:10.1109/COMST.2020.2971757.

[20] R. P. Jover, Security analysis of sms as a second factor of authentication, Commun. ACM
63 (2020) 46–52. URL: https://doi.org/10.1145/3424260. doi:10.1145/3424260.

[21] F. Hillebrand, The creation of standards for global mobile communication: Gsm and umts
standardization from 1982 to 2000, IEEE Wireless Communications 20 (2013) 24–33.

[22] M. Z. Rafique, K. Khan, K. Alghatbar, M. Farooq, Embedding high capacity covert channels
in short message service (sms), in: Communications in Computer and Information Science,
volume 186, 2011, pp. 1–10.

[23] K. G. Kangas, Clandestine transmissions and operations of embedded software on cellular
mobile devices, 2011.

[24] W. Mazurczyk, L. Caviglione, Steganography in modern smartphones and mitigation
techniques, IEEE Communications Surveys & Tutorials 17 (2015) 334–357.

[25] S. Patiburn, V. Iranmanesh, P. Teh, Text steganography using daily emotions monitoring,
International Journal of Education and Management Engineering 7 (2017) 1–14.

[26] S. Guthery, J. Posegga, M.-m. Deutsche, The websim - clever smartcards listen to port 80,
2000.

[27] I. Lombera, L. Moser, P. Melliar-Smith, Y.-T. Chuang, Mobile decentralized search and
retrieval using sms and http, Mobile Networks and Applications 18 (2013). doi:10.1007/
s11036-012-0412-0.

[28] Y.-T. Chuang, M. Isaí, L. Lombera, P. Moser, Melliar-Smith, Trustworthy distributed search
and retrieval over the internet, 2012.

http://dx.doi.org/10.5120/8960-3163
http://dx.doi.org/10.1109/SURV.2012.013012.00028
http://dx.doi.org/10.1109/SURV.2012.013012.00028
http://dx.doi.org/10.14569/IJACSA.2016.070426
http://dx.doi.org/10.1109/COMST.2020.2971757
https://doi.org/10.1145/3424260
http://dx.doi.org/10.1145/3424260
http://dx.doi.org/10.1007/s11036-012-0412-0
http://dx.doi.org/10.1007/s11036-012-0412-0

	1 Introduction
	2 Short-Message-Service
	2.1 AT Commands

	3 The Proposed Covert Channel
	3.1 Attack modelling

	4 Tests and obtained results
	5 Related Work
	6 Conclusions and Further Work

