
Robustness evaluation of convolutional neural
networks for malware classification
Vincenzo Carletti1, Antonio Greco1, Alessia Saggese1 and Mario Vento1

1 Dept. of Computer Engineering, Electrical Engineering and Applied Mathematics, University of Salerno, Italy

Abstract
In a world increasingly connected with smart devices, smartphones, tablets and servers in constant
communication with each other, malware is a serious threat for the security of users and systems. Every
day they are becoming more sophisticated and can rely on a growing attack surface. Traditional malware
analysis techniques are becoming unable to deal with this growth; to this reason new approaches are
arising. Among these, the most promising ones aim to exploit the disruptive accuracy and flexibility of
convolutional neural networks (CNNs) to realize innovative techniques to detect and classify malware by
using an intermediate image-based representation. However, several papers have highlighted the natural
tendency of CNNs to be fooled by perturbations applied on the input. In this paper we benchmark
four different CNNs widely used for images. To this purpose, we have specialized the CNNs, through
transfer learning, to classify malware belonging to 9 different families. Then, we have evaluated their
robustness against the obfuscation of the malware executable. All the CNNs achieved an impressive
classification accuracy on both the original and the obfuscated datasets confirming their suitability for
malware classification.

Keywords
Image-based malware analysis, Malware classification, Convolutional Neural Networks

1. Introduction

Any software intentionally designed to affect the integrity and the functionality of a digital
system in order to cause harm to users or other systems is classified as a malicious software,
namely a malware. Different families of harmful software lie under the definition of malware,
divided according to their functionalities [1]: virus, adware, ransomware, backdoor, trojan
are among them. Until a few years ago, most of the targets were mainly servers or personal
computers, but nowadays the scenario is completely changed. In fact, as highlighted in a recent
thread reports from Symantec [2] and Avira [3], the widespread diffusion of smart devices
constantly connected to the network which communicate with personal computers and cloud
services has enormously increased the opportunities to perform an attack. Therefore, effective
and adaptive methods are required to deal with the incessant growing of malware variants.
Most of the state-of-the-art approaches are based on traditional machine learning tech-

niques [4, 5], in which the features to distinguish a malware from a benign software or classify

ITASEC21 - ITALIAN CONFERENCE ON CYBERSECURITY
Envelope-Open vcarletti@unisa.it (V. Carletti); agreco@unisa.it (A. Greco); asaggese@unisa.it (A. Saggese); mvento@unisa.it
(M. Vento)
Orcid 0000-0002-9130-5533 (V. Carletti); 0000-0002-5495-2432 (A. Greco); 0000-0003-4687-7994 (A. Saggese);
0000-0002-2948-741X (M. Vento)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:vcarletti@unisa.it
mailto:agreco@unisa.it
mailto:asaggese@unisa.it
mailto:mvento@unisa.it
https://orcid.org/0000-0002-9130-5533
https://orcid.org/0000-0002-5495-2432
https://orcid.org/0000-0003-4687-7994
https://orcid.org/0000-0002-2948-741X
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Figure 1: Example of images extracted frommalware binary that are contained in the datasetMalImg [7]

the family it belongs to are manually selected by expert analysts. These methods usually rely
on static or dynamic analysis of the malware. In the former case, the malware is analyzed
considering the metadata of the executable, the assembly code instructions and binary data; the
main drawback of the static approach is the necessity to disassemble the executable, which can
be a complex and time consuming process. On the other side, the dynamic analysis requires to
execute the malware in a sandbox, a virtual safe environment like a Petri dish where it can not
damage the underling system but can be easily monitored. Also in this case there is a downside,
since the setup of the virtual environment can be very complex and getting an outcome is time
demanding.

Unfortunately, as discussed in [1, 6, 5], these traditional approaches are becoming unable to
deal with the huge variety of malware. As a consequence, new approaches are coming into
play [6, 5]. Among these, the Image-based Malware Analysis is the most promising one; the
main idea of this approach is to represent the executable of a malware as a gray-scale image [7]
or as a RGB image [8]. It is important to note that the real innovation of this approach lies in
the fact that it does not require neither to disassemble the executable nor to configure complex
sandboxes, and allows to exploit successful and accurate methods coming from the image
analysis.
Once we have an image, different pattern recognition and machine learning methods can

be applied to perform the classification task. In [7], the first paper proposing an image-based
method, the authors extracted texture features from the image through a wavelet decomposi-
tion [9]; then, the classification is performed using a k-Nearest Neighbour. Tucher et al. in [10]
propose to use local neighborhood binary patterns (LNBP) together with a principal component
analysis (PCA) to select the features and a linear discriminant analysis (LDA) to classify the
malware. However, these methods based on traditional pattern recognition techniques do not
solve the problem of a hand-crafted feature selection that requires to have a deep experience
about image analysis and malware. An attempt to face this problem is discussed in [11], by
extracting hybrid features and then using a Support Vector Machine (SVM) for classification.
Except for a few papers, the trend is to exploit deep neural networks [6] that have been

demonstrated to be extremely effective on image classification tasks without the need of per-



forming a feature analysis. The most immediate way, proposed in [12, 1, 13, 14, 8], is to use
Convolutional Neural Networks (CNN) already available for other tasks such as ResNet50 [15],
InceptionV3 [16], VGG16 [17] and MobileNet [18] and specialize them on malware images
through transfer learning. In particular, Vasan et al. [8] propose a malware classification sys-
tem, named IMCFN, that uses VGG16 to obtain an embedding of the malware image and two
fully-connected layers to perform the classification. Another interesting solution, proposed
in [19, 20], is to realize an ensemble of multiple CNNs and then combine the output of different
networks to address the problem.
Although there are undeniable benefits in using CNNs to classify malware, they can be

also very sensitive to perturbation of the input, as demonstrated by the possibility to generate
adversarial examples [21, 22] able to properly force the outcome of the network. Therefore,
together with the accuracy of the system, it is also essential to evaluate the robustness against
techniques aimed at modifying the malware to fool the classification. It is worth to note
that common methods which generate adversarial examples or distribution shifts through
augmentation, like those used in [14], designed for standard images, are not meaningful in the
case of malware images. In fact, they are not designed to generate an image that is still the
representation of the same malware and a valid executable. For this reason, the perturbation
must be applied not on the resulting image, but on the original executable using methods like
the obfuscation.

In this paper we discuss a robustness analysis against obfuscation performed considering four
CNNs, namely ResNet50 [15], InceptionV3 [16], VGG16 [17] and MobileNet [18], that are widely
adopted on images and used as base to realize image-based malware classification systems.
To this purpose, we have retrained the CNNs, through transfer learning, to classify malware
belonging to 9 different families from the dataset BIG2015 [23]. The latter has been published
by Microsoft during the Malware Classification Challenge and, differently from other datasets
like MalImg [7], it also provides the binary code. We have extended the BIG2015 dataset by
generating an obfuscated version of the samples it contains, in order to analyze the robustness
of the considered CNNs.

In the following sections we describe the setup realize to perform the proposed analysis and
the experimental results confirming the effectiveness of the image-based approaches.

2. System Setup

Assessing the robustness of a machine learning system requires two steps, that we address in
this paper: i) the performance evaluation of the system; ii) the robustness evaluation against
perturbations of the input. Thus, in this section we detail the considered malware classification
system (see Subsections 2.1) and describe the obfuscation techniques we introduce for assessing
the stability of the system (see Subsections 2.2).

2.1. Malware classification system

As mentioned before, we consider an image-based malware classification system in which
the analysis of the image is performed through a CNN (see Figure 2). The system adopts an
intermediate representation based on gray-scale image, firstly introduced in [7]. This is justified



File Size Range Image Width
<10kB 32

10kB - 30kB 64
30kB - 60kB 128
60kB - 100kB 256
100kB - 200kB 384
200kB - 500kB 512
500kB - 1000kB 768

>1000kB 1024

Table 1
The table reports the correspondence considered for computing the width of the image which represents
the malware. On the left we report the file size range, while on the right the corresponding image width.

by the observation that, as visually confirmed in Figure 1, malware samples belonging to the
same family have a similar visual appearance while those of different families have not.

In more details, starting from the hexadecimal representation of an executable file, each byte
is converted into an integer which can varies in a range between 0 and 255. Subsequently, each
integer is inserted into an array, that is successively reshaped into a two-dimensional matrix.
This matrix represents the grey scale image. In [7] the authors also experimentally evaluate
how to fix the width of the matrix. Indeed, they propose to vary this parameter, depending on
the whole image size, and in particular depending on the size of the file, as summarized in Table
1. Subsequently, the number of pixels composing the height is obtained by dividing the file size
by the width.
Given the image, we consider four widely adopted CNN architectures, namely VGG16 [17],

ResNet50 [24], Xception [25] and MobileNet [18]. This choice has been made so as to consider
(i) networks of different dimensions, namely large (VGG16), medium sized (ResNet50, Xception)
and small networks (MobileNet), thus characterized by different computational requirements and
processing times; (ii) networks based on different concepts, from traditional convolutional layers
(VGG16) to more modern blocks inspired by Network-In-Network architectures, respectively
based on residual blocks (ResNet50) and on depthwise separable convolutional layers (Xception,
MobileNet).

Binay code Integer Array Gray-scale image CNN

Figure 2: Overview of the considered malware classification system. The binary code is represented as
an array of integers (values between 0 and 255), which is then arranged in a square gray-scale image,
whose width depends on the original size of the malware. Finally, the image is fed to a CNN trained for
malware classification.



For the sake of clearness, VGG16 is the biggest network we considered. It is composed by
a stack of convolutional layers, followed by fully connected layers. The convolutional layers
employ filters with a very small receptive field, namely 3 × 3, which is the smallest size to
capture the notion of left/right, up/down, center.
ResNet is based on the concept of Residual Blocks; typically, in a deep convolutional neural

network, several layers are stacked; the network learns low/middle/high level features at the end
of each layer. In residual learning, the residuals are learnt instead than the features. Residual
can be seen as the subtraction of feature learned from input of that layer.
Xception is a simplified version of the Inception network (Xception stands for eXtreme

Inception). It is composed by depthwise separable convolutional layers structured into modules,
all of which have linear residual connections around them, except for the first and last modules.
Finally, MobileNet is the smallest network (only 16 MB required for storing), designed for

being efficient on mobile and embedded devices. Like Xception, it is based on depthwise
separable convolutions; this is a form of factorized convolutions, able to factorize a standard
convolution into a depthwise convolution and a pointwise convolution.

Similarly to [8], we removed the top layers of the original CNNs and added four new layers:
two fully connected layers with 2048 neurons; a dropout layer for regularization purposes; a
fully connected layer, responsible for the classification, with a softmax activation function and
a number of neurons equal to the number of considered malware categories. For all the CNNs
we performed transfer learning, by training only the weights of the four additional layers and
freezing all the convolutional part of the networks with the weights pre-trained over ImageNet.

2.2. Obfuscation

As for their biological version, the first need of a malware is to extend its lifetime and be able to
infect as much targets as possible. To this aim, a malware must be able to evade the defenses
of the attacked system and hopefully perform its job without being detected and removed.
Therefore, the camouflage is an essential characteristic for a malware to survive in the wild.
There are four main stealth methodologies: encryption, oligomorphism, polymorphism, and
metamorphism. in this paper, we focus our analysis on metamorphic techniques because these
can be applied directly on the hexadecimal representation of a binary file. In more details, we
adopt a dead code insertion. We ensure that the junk code instructions are inserted into the
text section, which contains the instructions of the file itself. The adopted algorithm is reported
in Algorithm 1, while the list of instructions considered is listed in Table 2.

As we can see, the algorithm works as follows: for each instruction in the text section of the
binary file, and if the maximum number of allowed dead instructions (namely max_insertions)
has not been reached, it adds an obfuscation dead code sequence with a uniform random
probability (namely insertion_probability). Also, the dead code sequence has a random length,
which varies between 1 and sequence_max_len. As constrain it has been chosen to insert a dead
code instruction in a specific junk code sequence only one time.



Algorithm 1 Outline of the procedure used to obfuscate the binary file of a malware. The
output of the procedure is a new binary file containing the instructions of the original malware
with the random addition of junk instructions.
Input: 𝑓 𝑖𝑙𝑒, 𝑗𝑢𝑛𝑘_𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠, 𝑖𝑛𝑠𝑒𝑟 𝑡 𝑖𝑜𝑛_𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝑚𝑎𝑥_𝑖𝑛𝑠𝑒𝑟 𝑡 𝑖𝑜𝑛𝑠, 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑚𝑎𝑥_𝑙𝑒𝑛
Output: 𝑜𝑏𝑓 𝑢𝑠𝑐𝑎𝑡𝑒𝑑_𝑓 𝑖𝑙𝑒

1: function Obfuscation(𝑓 𝑖𝑙𝑒, 𝑗𝑢𝑛𝑘_𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠, 𝑖𝑛𝑠𝑒𝑟 𝑡 𝑖𝑜𝑛_𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝑚𝑎𝑥_𝑖𝑛𝑠𝑒𝑟 𝑡 𝑖𝑜𝑛𝑠,
𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑚𝑎𝑥_𝑙𝑒𝑛)

2: 𝑐𝑜𝑢𝑛𝑡_𝑖𝑛𝑠𝑒𝑟 𝑡 𝑖𝑜𝑛 ← 0
3: for 𝑟𝑜𝑤 in 𝑓 𝑖𝑙𝑒 do
4: Insert 𝑟𝑜𝑤 in 𝑜𝑏𝑓 𝑢𝑠𝑐𝑎𝑡𝑒𝑑_𝑓 𝑖𝑙𝑒
5: if 𝑠𝑒𝑐𝑡 𝑖𝑜𝑛 = ’text’ and 𝑐𝑜𝑢𝑛𝑡_𝑖𝑛𝑠𝑒𝑟 𝑡 𝑖𝑜𝑛 < 𝑚𝑎𝑥_𝑖𝑛𝑠𝑒𝑟 𝑡 𝑖𝑜𝑛𝑠 then
6: Take 𝑝 uniformly chosen in the range [0,1]
7: if 𝑖𝑛𝑠𝑒𝑟 𝑡 𝑖𝑜𝑛_𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 >p then
8: Choose a random integer 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑙𝑒𝑛 in the range [1,𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑚𝑎𝑥_𝑙𝑒𝑛]
9: 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠_𝑠𝑒𝑡 ← []
10: 𝑖 ← 0
11: for 𝑖 < 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑙𝑒𝑛 do
12: Choose 𝑖𝑛𝑠𝑡𝑟 ∈ 𝑗𝑢𝑛𝑘_𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 with 𝑖𝑛𝑠𝑡𝑟 ∉ 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠_𝑠𝑒𝑡
13: Insert 𝑖𝑠𝑡𝑟 in 𝑜𝑏𝑓 𝑢𝑠𝑐𝑎𝑡𝑒𝑑_𝑓 𝑖𝑙𝑒
14: 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠_𝑠𝑒𝑡 ← 𝑖𝑛𝑠𝑡𝑟
15: 𝑐𝑜𝑢𝑛𝑡_𝑖𝑛𝑠𝑒𝑟 𝑡 𝑖𝑜𝑛 ← 𝑐𝑜𝑢𝑛𝑡_𝑖𝑛𝑠𝑒𝑟 𝑡 𝑖𝑜𝑛 + 1
16: 𝑖 ← 𝑖 + 1
17: return 𝑜𝑏𝑓 𝑢𝑠𝑐𝑎𝑡𝑒𝑑_𝑓 𝑖𝑙𝑒

3. Experiments

3.1. Dataset

We used BIG2015 dataset [23] for our malware classification experiments. It includes 10868
malware, belonging to 9 different families: Rammit, Lollipop, Kelihos_ver3, Vundo, Simbda,
Tracur, Kelihos_ver1, Obfuscator.ACY, Gatak. Therefore, the dataset contains various types of
Worm, Adware, Backdoor, Trojan, TrojanDownloader and Obfuscated malware. The detailed
composition of the dataset is reported in Table 3. It points out that the dataset is strongly
unbalanced; in fact, half of the dataset consists of Lollipop and Kelihos_ver3 samples, while
there are only 42 Simbda samples.

For each malware, the dataset makes available the binary content in hex dump representation
without the portable executable header and the disassembled file generated through the IDA
Pro software. The latter is important since it allows to understand and analyze the workflow of
the malware and to extract handcrafted features.



Table 2
Possible instructions that can be used as junk code to obfuscate the malware.

Assembly Instruction Binary Instruction

nop 90
inc eax; dec eax 40;48
inc ebx; dec ebx 43;4B
inc ecx; dec ecx 41;49
inc edx; dec edx 42;4A
add eax,0 83 C0 00
add ebx,0 83 C3 00
add ecx,0 83 C1 00
add edx,0 83 C2 00
sub eax,0 8E E8 00
sub ebx,0 83 EB 00
sub ecx,0 83 E9 00
sub edx,0 83 EA 00

3.2. Results

In order to evaluate the robustness of the considered CNNs for malware classification, we
applied them over the original dataset and on three different versions obfuscated with three
growing levels of severity [0,1,2]. In particular, at severity 0 the maximum length for a junk code
sequence is 2, at severity 1 is 4, while at severity 2 is 10. The adopted experimental protocol is a
stratified 3-fold cross validation.

The results of our experiments are reported in Table 4. MobileNet achieves the best accuracy
over the original dataset (99.25%), but it is also the most robust to obfuscations (95.42% with
severity 2). Even Xception obtains good results on the original dataset (99.07%) and on samples
obfuscated with severity 0 (95.69%), but it is less robust to stronger obfuscations (94.77% and
93.05% at severity 1 and 2). VGG16 achieves similar performance (98.51% on the original
dataset), slightly worse in absolute but suffering less in percentage on the obfuscated samples.

Table 3
Composition of BIG2015 dataset

Family Name Type #Samples

Ramnit Worm 1541
Lollipop Adware 2478
Kelihos_ver3 Backdoor 2942
Vundo Trojan 475
Simbda Backdoor 42
Tracur TrojanDownloader 751
Kelihos_ver1 Backdoor 398
Obfuscator.ACY Any kind of obfuscated malware 1228
Gatak Backdoor 1013



Finally, ResNet achieves substantially worse results on the original dataset (95.48%) and on the
obfuscated ones (93.17%, 92.11% and 90.55%).
For the sake of comparison, we have also reported the results of XGBoost [26], a standard

machine learning algorithm which is known for being the most efficient among the ones based
on handcrafted features. Based on features obtained from the binary source code and from the
disassembled malware, it achieves the best accuracy over the original dataset (99.43%) and over
low and medium obfuscation levels (96.90% and 96.34% at severity 0 and 1), but it suffers strong
obfuscations more than MobileNet (95.22% vs 95.42%).

However, it is worth mentioning that, in the worst case, methods based on CNNs require less
than 5 seconds for obtaining the image from the malware and for performing the classification,
while XGBoost can require up to 105 seconds for a single sample. The slight accuracy improve-
ment is strongly payed in terms of processing time. Therefore, we can conclude that the method
based on MobileNet is surely the best trade-off between accuracy and processing time.

Table 4
Accuracy achived on the original dataset and on the obfuscated dataset using different severities. The
drop of accuracy on the obfuscated dataset is reported in brackets.

CNN Original Dataset Obfuscated Dataset
Severity 0 Severity 1 Severity 2

MobileNet 99.25% 96.62% (2.63%) 95.87% (3.38%) 95.42% (3.83%)
VGG16 98.51% 95.47% (3.04%) 94.25% (4.26%) 92.98% (5.53%)
Xception 99.07% 95.69% (3.38%) 94.77% (4.40%) 93.05% (6.02%)
ResNet50 95.48% 93.17% (2.33%) 92.11% (3.37%) 90.55% (4.93%)

XGBoost[26] 99.43% 96.90% (2.53%) 96.34% (3.09%) 95.22% (4.21%)

4. Conclusions

In this paper we have have evaluated the robustness of convolutional neural networks when
used on image-based malware classification tasks. The analysis have considered four state-
of-the-art CNNs: VGG16, ResNet50, MobileNet, Xception and a standard machine learning
approach XGBoost. The CNNs have been tuned to classify malware belonging to 9 different
families. The analysis required to realize an extended version of the original BIG2015 dataset,
composed of more than 10.000 samples, to include obfuscated malware. The analysis have
demonstrated that image-based approaches are able to achieve an impressive accuracy with a
limited drop on obfuscated samples. In particular, MobileNet have shown a high accuracy and
robustness together with a very short classification time. Therefore, although a more extensive
analysis on larger datasets is required, we can conclude that CNNs are enough robust and
accurate to be adopted on malware analysis systems.



References

[1] J. Su, D. V. Vasconcellos, S. Prasad, D. Sgandurra, Y. Feng, K. Sakurai, Lightweight clas-
sification of iot malware based on image recognition, in: 2018 IEEE 42nd Annual Com-
puter Software and Applications Conference (COMPSAC), volume 02, 2018, pp. 664–669.
doi:10.1109/COMPSAC.2018.10315 .

[2] S. Corporation, Symantec internet security threat report, 2020.
[3] A. O. GmbH, Malware threat report:q2 2020, 2020. URL: https://www.avira.com/en/blog/

malware-threat-report-q2-2020-statistics-and-trends.
[4] D. Ucci, L. Aniello, Survey on the usage of machine learning techniques for malware

analysis, Computers & Security 81 (2017). doi:10.1016/j.cose.2018.11.001 .
[5] B. Yadav, S. Tokekar, Recent innovations and comparison of deep learning techniques in

malware classification : A review, International Journal on Information Security Science 9
(2021) 230 – 247.

[6] Q. Le, O. Boydell, B. Mac Namee, M. Scanlon, Deep learning at the shallow end: Malware
classification for non-domain experts, Digital Investigation 26 (2018) S118–S126. doi:https:
//doi.org/10.1016/j.diin.2018.04.024 .

[7] L. Nataraj, S. Karthikeyan, G. Jacob, B. S. Manjunath, Malware images: Visualization
and automatic classification, in: Proceedings of the 8th International Symposium on
Visualization for Cyber Security, Association for Computing Machinery, 2011. doi:10.1145/
2016904.2016908 .

[8] D. Vasan, M. Alazab, S.Wassan, H. Naeem, B. Safaei, Q. Zheng, Imcfn: Image-basedmalware
classification using fine-tuned convolutional neural network architecture, Computer
Networks 171 (2020) 107138. doi:10.1016/j.comnet.2020.107138 .

[9] Torralba, Murphy, Freeman, Rubin, Context-based vision system for place and object
recognition, in: Proceedings Ninth IEEE International Conference on Computer Vision,
2003, pp. 273–280 vol.1. doi:10.1109/ICCV.2003.1238354 .

[10] T. Tuncer, F. Ertam, S. Dogan, Automated malware recognition method based on local
neighborhood binary pattern, Multimedia Tools and Applications (2020) 1 – 18.

[11] H. Naeem, B. Guo, M. R. Naeem, A light-weight malware static visual analysis for iot
infrastructure, in: 2018 International Conference on Artificial Intelligence and Big Data
(ICAIBD), 2018, pp. 240–244. doi:10.1109/ICAIBD.2018.8396202 .

[12] S. Yue, Imbalanced malware images classification: a cnn based approach, arXiv preprint
arXiv:1708.08042 (2017).

[13] N. Bhodia., P. Prajapati., F. D. Troia., M. Stamp., Transfer learning for image-based
malware classification, in: Proceedings of the 5th International Conference on Information
Systems Security and Privacy - Volume 1: ForSE„ INSTICC, SciTePress, 2019, pp. 719–726.
doi:10.5220/0007701407190726 .

[14] M. Nisa, J. Shah, S. Kanwal, M. Raza, M. Khan, R. Damasevicius, T. Blazauskas, Hybrid
malware classification method using segmentation-based fractal texture analysis and deep
convolution neural network features, Applied Sciences 10 (2020). doi:10.3390/app10144966 .

[15] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp.
770–778.

http://dx.doi.org/10.1109/COMPSAC.2018.10315
https://www.avira.com/en/blog/malware-threat-report-q2-2020-statistics-and-trends
https://www.avira.com/en/blog/malware-threat-report-q2-2020-statistics-and-trends
http://dx.doi.org/10.1016/j.cose.2018.11.001
http://dx.doi.org/https://doi.org/10.1016/j.diin.2018.04.024
http://dx.doi.org/https://doi.org/10.1016/j.diin.2018.04.024
http://dx.doi.org/10.1145/2016904.2016908
http://dx.doi.org/10.1145/2016904.2016908
http://dx.doi.org/10.1016/j.comnet.2020.107138
http://dx.doi.org/10.1109/ICCV.2003.1238354
http://dx.doi.org/10.1109/ICAIBD.2018.8396202
http://dx.doi.org/10.5220/0007701407190726
http://dx.doi.org/10.3390/app10144966


[16] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z.Wojna, Rethinking the inception architecture
for computer vision, in: Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 2818–2826.

[17] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image
recognition, in: 3rd International Conference on Learning Representations, 2015.

[18] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto,
H. Adam, Mobilenets: Efficient convolutional neural networks for mobile vision applica-
tions, arXiv preprint arXiv:1704.04861 (2017).

[19] Y. Lin, X. Chang, Towards interpretable ensemble learning for image-based malware
detection, ArXiv abs/2101.04889 (2021).

[20] A. Çayır, U. Ünal, H. Dağ, Random capsnet forest model for imbalanced malware
type classification task, Computers & Security 102 (2021) 102133. URL: https://www.
sciencedirect.com/science/article/pii/S0167404820304065. doi:https://doi.org/10.1016/j.
cose.2020.102133 .

[21] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, R. Fergus, Intriguing
properties of neural networks, in: International Conference on Learning Representations,
2014. URL: http://arxiv.org/abs/1312.6199.

[22] N. Carlini, D. Wagner, Towards evaluating the robustness of neural networks, in: 2017
IEEE Symposium on Security and Privacy (SP), 2017, pp. 39–57. doi:10.1109/SP.2017.49 .

[23] R. Ronen, M. Radu, C. Feuerstein, E. Yom-Tov, M. Ahmadi, Microsoft malware classification
challenge, arXiv preprint arXiv:1802.10135 (2018).

[24] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.
doi:10.1109/CVPR.2016.90 .

[25] F. Chollet, Xception: Deep learningwith depthwise separable convolutions, in: Proceedings
of the IEEE conference on computer vision and pattern recognition, 2017, pp. 1251–1258.

[26] M. Ahmadi, D. Ulyanov, S. Semenov, M. Trofimov, G. Giacinto, Novel feature extraction,
selection and fusion for effective malware family classification, 2016. doi:10.1145/2857705.
2857713 .

https://www.sciencedirect.com/science/article/pii/S0167404820304065
https://www.sciencedirect.com/science/article/pii/S0167404820304065
http://dx.doi.org/https://doi.org/10.1016/j.cose.2020.102133
http://dx.doi.org/https://doi.org/10.1016/j.cose.2020.102133
http://arxiv.org/abs/1312.6199
http://dx.doi.org/10.1109/SP.2017.49
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1145/2857705.2857713
http://dx.doi.org/10.1145/2857705.2857713

	1 Introduction
	2 System Setup
	2.1 Malware classification system
	2.2 Obfuscation

	3 Experiments
	3.1 Dataset
	3.2 Results

	4 Conclusions

