
Security assessment of common open source MQTT
brokers and clients
Edoardo Di Paolo1, Enrico Bassetti1 and Angelo Spognardi1

1 Computer Science dept., Sapienza University of Rome, Italy

Abstract
Security and dependability of devices are paramount for the IoT ecosystem. Message Queuing Telemetry
Transport protocol (MQTT) is the de facto standard and the most common alternative for those limited
devices that cannot leverage HTTP. However, the MQTT protocol was designed with no security con-
cern since initially designed for private networks of the oil and gas industry. Since MQTT is widely used
for real applications, it is under the lens of the security community, also considering the widespread at-
tacks targeting IoT devices. Following this direction research, in this paper we present an empirical
security evaluation of several widespread implementations of MQTT system components, namely five
broker libraries and three client libraries. While the results of our research do not capture very critical
flaws, there are several scenarios where some libraries do not fully adhere to the standard and leave
some margins that could be maliciously exploited and potentially cause system inconsistencies.

1. Introduction

The number of devices connected to the Internet is growing very rapidly recently, driving a
new wave of technologies and applications in various fields. One of these trends is the so-called
Internet-of-Things: the explosion of low-cost, small/micro devices (often single-purposes and
with an IP stack), Ethernet port and some space for programming paved the way for a whole
new spectrum of applications.

Usually, these devices have a tiny amount of resources, so that common protocols like HTTP
cannot be efficiently implemented without sacrificing key features of the protocol itself (leading
to non-standard implementation) or key parts of the “business logic” (i.e. the main purpose
of the device). To overcome this limitation, several lightweight protocols were invented, like
MQTT (Message Queuing Telemetry Transport) protocol or AMQP (Advanced Message Queuing
Protocol) [1]. When resources are severely limited (simple sensors/actuators) and the system
is in under-constrained environments (low-speed wireless access), the former is the preferred
choice [2]. MQTT is a publish-subscribe protocol based on a simple message structure, basic
features and a minimal packet size (considering the message headers). Thanks to this design,
nearly all IoT devices use MQTT or similar lightweight protocols to talk to each other and
communicate with the rest of the world. Also, it has undergone several standard processes, and
MQTT v. 3.1.1 and 5.0 are both ISO standards [3].

ITASEC21: Italian Conference on Cybersecurity, April 07–09, 2021, Online
" dipaolo.1728334@studenti.uniroma1.it (E. D. Paolo); bassetti@di.uniroma1.it (E. Bassetti);
spognardi@di.uniroma1.it (A. Spognardi)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1

mailto:dipaolo.1728334@studenti.uniroma1.it
mailto:bassetti@di.uniroma1.it
mailto:spognardi@di.uniroma1.it
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Edoardo Di Paolo et al. CEUR Workshop Proceedings 1–13

The protocol was conceived with no security concern, since initially designed for private
networks of the oil and gas industry [4]. The adoption of the protocol has ramped up, and
several statistics show that many devices use it without any protection [5]. Also, considering the
privacy aspects, given its quite limited features, the MQTT protocol has no built-in encryption
features; farther, the use of TLS to provide a secure communication channels is very limited: at
the time of writing, comparing with the Shodan search engine the prevalence of the exposed IoT
and IIoT devices using MQTT, we have that those that use port 8883 (MQTT over SSL/TLS) is 42,
while those using port 1883 (MQTT-unencrypted) is 154632 [5]. Moreover, MQTT applications
keep receiving critiques, with the claim that they adopt weak protocol implementations, even
if some of them, like the Mosquitto library, offer extension plugins to improve security1 (i.e.
role-based authentication or Access Control List, not part of the MQTT standard).

Since MQTT is widely used for real applications, it is under the lens of the security commu-
nity, also considering the widespread attacks targeting IoT devices. The research is focusing
on shifting towards ensuring secure IoT systems, for example, implementing access control
mechanisms [6], lightweight cryptography [7] or remote attestation of devices [8]. An essential
aspect of this context is discovering unforeseen security risks resulting from the necessary
interoperability with different implementations of MQTT libraries.

Following this research direction, in this paper we present an empirical security evaluation of
several widespread implementations of MQTT system components, namely five broker libraries
and three client libraries. Moreover, we also applied our security analysis to an MQTT client
embedded in a real IoT device, namely a Shelly DUO Bulb. This IoT device is a remote-controlled
LED light bulb. It supports Wi-Fi connectivity and acts as an MQTT subscriber to receive
commands, like powering on/off or light dimming.

Our evaluation has aimed to verify the responses of the components of the different libraries
to different MQTT messages to see their behaviour in situations where the standard does not
indicate clearly how the message (or the connection itself) is supposed to be handled. These
mishandling might create interoperability issues or even open doors to malicious attackers.
While the results of our research do not capture very critical flaws, there are several scenarios
where some of the libraries do not fully adhere to the standard and leave some margins that
could be maliciously exploited and potentially cause system inconsistencies.

The structure of the paper is the following: Section 2 reports the state of the art concerning
the security analysis of MQTT, while in Section 3 we provide the details about our research
methodology. Section 4 reports the results of our security analysis, and the last section concludes
the paper with some remarks and future directions.

2. Related works

As the abundance of surveys suggests [9, 10, 11], security and dependability of IoT devices is
paramount for the whole ecosystem. In this context, the MQTT protocol plays a determinant
role. In 1999 Andy Stanford-Clark (IBM) and Arlen Nipper (then working for Eurotech, Inc.)
proposed the MQTT protocol [12] to monitor oil pipelines within the SCADA framework [13].
Since then, it has been revised in two main versions, namely 3.1.1 (last update December 2015)

1https://mosquitto.org/documentation/dynamic-security

2

https://mosquitto.org/documentation/dynamic-security


Edoardo Di Paolo et al. CEUR Workshop Proceedings 1–13

and 5 (last update March 2019). To date, the former is by far the most used in real applications,
the latter being much newer and still not well adopted [13].

Like all the network protocols becoming a standard, it has undergone many reviews both
formally and empirically. Several papers focus on MQTT formal modelling and performance
analysis [14, 15, 16], others on its possible vulnerabilities, and many others on its security
analysis. In this research, we focused on the security analysis and the comparison of several
of the most spread software libraries implementing the MQTT protocol. Instead of using
static analysis of their code, as in [17], we performed a dynamic analysis using the fuzzing
methodology. In [18], the authors proposed a template-based fuzzing framework and tested
its effectiveness against two implementations of MQTT. Using this method, they found some
security issues: Moquette and Mosquitto brokers were affected by a vulnerability that would
have led to a DoS attack in specific settings if exploited. In our research, we are focusing not
only on possible DoS attacks but also on the effects of standard violations of both brokers and
clients. Moreover, our analysis applies to five different brokers, three clients and a physical
device.

In [19], the authors evaluated the robustness of several MQTT implementations against a
subtle family of attacks known as low-rate denial of service. Similarly to this work, a real
testbed was set up, and several experiments performed, validating the open vulnerability of all
the MQTT implementations.

In [20], authors describe a new strategy to test MQTT through fuzzing and how much it is
efficient against the protocol. However, they do not present any results about the application of
their strategy. A similar approach is adopted in [21], where the authors propose to apply fuzzing
techniques in a container-based environment (Docker). This would allow a large scale test of
the MQTT protocol. However, again, the authors do not compare different implementations
(they only consider Mosquitto), neither describe the type of attacks they performed.

A different methodology based on attack patterns [22] was proposed by Sochor et al. and was
used to spot hidden vulnerabilities in different broker implementations. They adopted a method
to randomly generate test sequences (Randoop) to challenge the different brokers, and they
were able to find several failures and unhandled exceptions. Our research adopted a different
methodology, tested different broker MQTT implementations, and included clients.

Another methodology to perform a dynamic analysis is model-based testing, as proposed
for MQTT applications in [23]. The methodology considers using a finite state machine that
verifies the properties of the software and proposes extensions to model-based tools for MQTT
applications.

2.1. MQTT overview

MQTT implements the publish-subscribe communication paradigm (Figure 1): clients send
messages on a topic to servers (named brokers) that are responsible for delivering them to the
interested clients, the final recipients of the messages. Brokers are, then, intermediaries that
accept messages and forward a copy of each message to the clients who previously subscribed for
a given topic. A topic is a UTF-8 string obtained joining one or more topic levels with the slash
character, like in /home/basement/kitchen/temperature/ and the client subscriptions
can be made to a topic or part of it, thanks to the use of wildcards, like in /home/basement/#.

3



Edoardo Di Paolo et al. CEUR Workshop Proceedings 1–13

In a general MQTT session, a client establishes a connection with a broker (CONNECT-
CONNACK exchange), subscribes to one or several topics (SUBSCRIBE-SUBACK exchange),
publishes contents (PUBLISH-PUBACK exchange), receives other client contents (PUBLISH or
PUBLISH-PUBREC-PUBREL exchange, according to the QoS) and terminates the session (client
DISCONNECT). The CONNECT packet can implement an authentication mechanism, based on
username and password. All the exchanges happen using a clear text TCP session on port 1883
or, if TLS is used, using an encrypted session on port 8883. Encrypted exchanges are mainly
used when authentication is enforced, so that username and password are protected against
eavesdropping.

In addition to the topic, any message also has a Quality-of-Service value (QoS), taken in the
range 0–2. A QoS equals 0 corresponds to no guarantees, and it means that the message can be
lost or delivered multiple times. A client sending a message with QoS equals 1 requires that
the message should never be discarded, while it might be delivered multiple times; in this case
the sender stores the message until it receives back a PUBACK packet that ensures reception.
Similarly, with a QoS set to 2, the message should never be discarded and it should be delivered
exactly one time; in this case the client will wait for a PUBREC packet and, once received, it
will discard the PUBLISH and it will send a PUBREL packet. The last packet that the client will
receive in this exchange is the PUBCOMP that will release the id of the PUBLISH for reuse. It
is important to highlight that the publisher QoS is not associated with the subscriber QoS –
unless the implementation supports this non-standardized feature.

Figure 1: Typical MQTT architecture: IoT devices (clients) publish their messages to the broker. Sub-
scribers ask the broker to receive only those messages with topics they subscribe. Broker relays (pub-
lishes) to each subscriber only messages with subscribed topics.

4



Edoardo Di Paolo et al. CEUR Workshop Proceedings 1–13

3. Methodology

The purpose of our research was to compare the behaviour of different implementations of
MQTT. The first step has been finding and setting up the most popular open-source brokers and
client libraries that people use to manage their devices or develop common software solutions.
To determine the popularity, we took into account the number of stars and forks on GitHub
repositories and the number of blog posts citing the examined brokers.

We focused only on open source libraries, namely: Mosquitto, EMQ X, HiveMQ, Moquette and
Aedes for the brokers, paho, mqttools and mqtt.js for the clients. We will discuss the brokers
and the clients respectively in Section 4.1 and in Section 4.2. Some of these have thousands
of instances running in “production” environments, in common consumer and business-to-
business solutions. We also tested a popular low-cost Internet-of-Things device, namely the
Shelly DUO Bulb (Section 4.3).

The next step has been to evaluate the type of tests to apply, considering the MQTT standard
specification, version 3.1.1. We specifically looked for undefined behaviours, unspecified states
or other missing information about message handling. Also, we looked for parts of the standard
that might lead to a wrong implementation (e.g. expected actions by the broker/client that are
implied but not specified or not clearly specified). This allowed us to focus our testing on a
restricted subset of cases, as explained in Section 4.

We created different sets of experiments to find possible anomalies in MQTT implementations,
developing our fuzzer written in python, with the help of the twisted library2. Our custom
fuzzer allowed us to manage different streams correctly and send custom packets: for example,
we could change every bit of the packets to see the brokers behaviour even in the presence
of malformed packets. Standard, common MQTT libraries, instead, implement some state-
machine which are expected in some part of the protocol (e.g. QoS2): a straightforward use of
such libraries would not allow arbitrary changes in the flow of the messages, like out-of-order
messages. Each experiment has been codified in a JSON file that specifies the sequence of
actions or packets that the test should run on/against the software under test, and the final
behaviour of the involved parties have been logged and analyzed.

4. Experimental results

4.1. Brokers

A broker is a fundamental component in an MQTT architecture. Its job is to accept messages
from clients (acting as “publishers") and then forward them to all clients with subscriptions
(“subscribers") matching the topic of the message. This loosely coupled architecture allows the
clients to not communicate directly with each other.

Modern brokers support many concurrent connections and messages per second. A flaw in
message state machines, packet parsing, topic logic, etc., might expose a high impact vulnerabil-
ity, which a malicious actor might exploit to launch some attacks like a Denial-of-Service.

We analyzed five common MQTT brokers:

2https://github.com/twisted/twisted

5

https://github.com/twisted/twisted


Edoardo Di Paolo et al. CEUR Workshop Proceedings 1–13

Figure 2: Schema of the testbed for the experiments: the fuzzer, which acts as a typical client, takes in
input a “JSON experiment file" containing the client’s packets to the MQTT broker. The fuzzer will also
receive all the PUBLISH packets sent to the broker. The MQTT Client, instead, uses one of the libraries
that are examined in the subsection 4.2.

• Mosquitto3: it is one of the most used MQTT brokers in the world. It is a single-threaded,
lightweight broker written in C. This broker has been widely used thanks to its flexibility.

• EMQ X4: it is written in Erlang and it claims to be so efficient to be “the Leader in Open
Source MQTT Broker for IoT".

• HiveMQ5: a broker written in Java. It supports MQTT version 3.x and 5.0 and it is widely
used in automation and industrial systems. We tested the Community Edition.

• Moquette6: another Java-powered open-source broker. It is very lightweight but it is
less-known and less-used, when compared to other brokers.

• Aedes7: a broker written in JavaScript/NodeJS. It is the successor of MoscaJS. It does
not support version 5 of MQTT, but it is fully compatible with version 3.x and supports
several extension libraries.

Each broker underwent the same set of tests specified in the next section. We performed more
than 60 different experiments on a consumer-grade PC with local connections. A summary of
the results is in Table 1.

4.1.1. Experiments and results

Publish QoS 2 and 1. In this experiment, the client performs the following steps:

1. it sends a SUBSCRIBE packet with a specific topic;
2. it sends the first PUBLISH packet with a quality of service 2 and with id 1 over the topic

specified in the subscription;
3. it sends the second PUBLISH packet with a quality of service 1, still with id 1 over the

topic specified in the subscription;
4. it sends a PUBREL packet for the first packet sent.

We noticed different broker behaviours: Mosquitto publishes the first received packet with QoS
2, but then it loses the second packet that is not published to the clients due to the PUBCOMP

3https://mosquitto.org/
4https://www.emqx.io/
5https://www.hivemq.com/developers/community/
6https://github.com/moquette-io/moquette
7https://github.com/moscajs/aedes

6

https://mosquitto.org/
https://www.emqx.io/
https://www.hivemq.com/developers/community/
https://github.com/moquette-io/moquette
https://github.com/moscajs/aedes


Edoardo Di Paolo et al. CEUR Workshop Proceedings 1–13

Table 1
Brokers test result summary. The tested versions were the latest stable, available at the time of our
experiments.

Broker Anomalies found Security problems Version
Mosquitto when handling quality of service. Possible unwanted applica-

tion scenarios.
1.16.12

EMQ X when handling quality of service
and long topics.

Possible unwanted applica-
tion scenarios.

4.2.1

HiveMQ when handling quality of service
and long topics.

Possible unwanted applica-
tion scenarios.

2020.5

Moquette when handling quality of service
and long topics.

Possible denial of service
and unwanted application
scenarios.

0.13

Aedes when handling quality of service
and packet references.

Possible denial of service. 0.43.0

packet that is not received, and so the packet id is not available for use. The EMQ X broker
publishes both packets; it handles the flow for the first packet and then the flow for the second
one. In HiveMQ and in Moquette, the client that sends packets receives the publication first and
after the pubcomp, concerning the first packet. Additionally, in HiveMQ the client receives the
pubcomp back first and then the pubrec. Aedes publishes both packets, but the pubcomp arrives
at the client after the two publications. This behaviour repeated several times, also in the other
experiments regarding the quality of service that are described below.

Publish QoS 2 and 0. This experiment is very similar to the one described above, but in this
case, the client performs the following steps:

1. it sends a SUBSCRIBE packet with a specific topic;
2. it sends the first PUBLISH packet with a quality of service 2 and with the id 1 over the

topic specified in the subscription;
3. it sends the second PUBLISH packet with a quality of service 0 and with the id 1 over the

topic specified in the subscription;
4. it sends a PUBREL packet for the first packet sent.

Mosquitto, in this case, publishes both packets but in reverse order: it handles the one with
quality of service 0 first, and then it handles, correctly, all the flow regarding the first packet
sent with quality of service 2. EMQ X and HiveMQ maintain the order of the packets published
by the client; also, in the case of HiveMQ, the client received back the pubcomp first and then
the pubrec regarding the packet with quality of service 2. Moquette behaves similarly to EMQ X,
but, in this case, the pubcomp arrives after the publication of the second packet. Aedes has the
same behaviour as Mosquitto, but the pubcomp arrives after the publication as in the previous
experiment.

Double publish QoS 2. In this experiment, the client performs the following steps:

1. it sends a SUBSCRIBE packet with a specific topic;

7



Edoardo Di Paolo et al. CEUR Workshop Proceedings 1–13

2. it sends the first PUBLISH packet with a quality of service 2 and with the id 1 over the
topic specified in the subscription;

3. it sends the second PUBLISH packet with a quality of service 2 and with the id 1 over the
topic specified in the subscription;

4. it sends a PUBREL packet for the first packet sent;
5. it sends a PUBREL packet for the second packet sent.

In Mosquitto, only one publication referred to the first packet sent, but the flow regarding the
quality of service is properly handled. EMQ X, in this case, has the same behaviour as Mosquitto.
Instead, HiveMQ and Moquette publish both packets in the correct order. In Aedes, there is a
different behaviour: the broker publishes two packets, but they are the same packet, the first
one sent by the client.

Long topic. In the MQTT standard, the maximum length topic is 65536 bytes, but we saw
that in the source code of EMQ X there is a constant that represents the maximum length, and
its value is 4096. So, we tried to subscribe to a topic with more than 4096 bytes. In Mosquitto
the subscription to the topic is successful. Instead, HiveMQ cuts the topic to which the client
is subscribing to. In Moquette there is an IOException and then the client disconnection. In
Aedes there is a crash of the broker and the client; in particular, the exception thrown by the
experiment generated an error like “too many words”. In EMQ X the client disconnects.

Other experiments. Further experiments are listed below. They have been briefly summa-
rized, since the behaviour of all the brokers was correct.

• some experiment where the client id value in the packet contains characters non-UTF-8
encoded: no anomalies. In detail, we have built a connection packet with the client id
containing particular characters and the experiment was handled correctly by all brokers;

• Keep-alive field in connection packet as a string: in all brokers there is the client discon-
nection due to malformed packet;

• subscription (or publication) in an invalid wildcard: in all brokers there is the client
disconnection due to “invalid topic”;

• topics and wildcard encoded in: utf-16, zzlib, bz2 and base64. In the last three cases, there
were no anomalies to report. In the utf-16 experiment, in all brokers the client disconnects.
A particular experiment was the one with many “ / ” in the topic value; in Mosquitto, EMQ
X, Moquette and Aedes there was client disconnection while in HiveMQ there was a cut
of the topic and then the client subscription;

• packets flood with QoS 0: all brokers handled the flood well;
• invalid protocol name (or version) in the connection packet: in all cases, the client

disconnects;
• sending a pubrel packet that references a publication packet that was never sent: all

brokers, except for Aedes, sent back a pubcomp message. In Aedes there is the client
disconnection.

8



Edoardo Di Paolo et al. CEUR Workshop Proceedings 1–13

4.2. Clients

In addition to tests on brokers, we also carried out tests on client libraries available in the web.
In particular, we studied three different client libraries: paho-mqtt8, mqttools9 and mqtt.js10; the
first two are written in python while the third is written in javascript. Again, we considered
metrics like the number of stars and forks on GitHub repositories. However, the experiments
have not found particular anomalies. Here there is a list of tests we tried:

• invalid QoS level: all libraries report an error about the QoS, blocking the sending of the
packet;

• invalid wildcard subscription: in this case mqtt.js generates an “Invalid topic" error, while
the other two libraries timeout;

• client id not encoded in utf-8: in mqttools the client cannot connect to the broker, in
paho-mqtt there is a successful connection to the broker and mqtt.js generates an error
with the consequent client disconnection;

• publication (or subscription) to a topic with a length more than 65536 characters: in all
libraries there is the client disconnection.

Table 2
Client libraries test results. The tested versions were the latest stable, available at the time of our
experiments.

Library Anomalies found Security problems Version
paho-mqtt when handling subscription (or

publication) to an invalid wildcard.
It produces an hang. 1.5.1

MQTT.js when handling an invalid quality of
service.

There is a crash of the client
due to a TypeError.

4.2.1

mqttools when handling subscription (or
publication) to an invalid wildcard
and when the client id value con-
tains not utf-8 characters.

It produces an hang and an
infinite connection loop.

0.47.0

4.3. Physical device

In “home automation” the MQTT protocol is widely used as most smart devices supports it.
Many software applications allow you to use the protocol to manage the smart devices, and one
of them, for example, is Home Assistant; also Amazon, in AWS IoT, uses MQTT to connect the
user’s devices to other devices and other services.

We decided to perform the previous experiments on a physical device. In this case, we tested
a Shelly light bulb that supports MQTT: it is possible, for example, to turn on or off the device
through specific commands sent in the local network. In this device, the protocol configuration
can be done in a simple web interface, available in the local network, where the user has to

8https://pypi.org/project/paho-mqtt/
9https://pypi.org/project/mqttools/

10https://github.com/mqttjs/MQTT.js

9

https://pypi.org/project/paho-mqtt/
https://pypi.org/project/mqttools/
https://github.com/mqttjs/MQTT.js


Edoardo Di Paolo et al. CEUR Workshop Proceedings 1–13

specify the broker’s IP and port. The username and password are not mandatory during the
configuration; this could be a security issue, depending on the context. This device does not
have an “anti-flood” regarding the packets it receives; for example, it is possible to turn off and
on the light bulb repeatedly and quickly by sending a PUBLISH packet on the specific topic with
specific content. The software that runs in the light bulb is the same as other Shelly devices, so
this problem also affects them. Therefore, it is possible to send many packets that overload the
device’s electronic components to make it useless.

To confirm the obtained results in the brokers, we performed on the device the same set of
experiments previously carried out on both brokers and clients. For example, the experiment
“Publish QoS 2 and 1" (discussed in Section 4.1) has confirmed the expected results. In this case,
we sent a “turn on packet” with QoS 2 and then we sent a “turn off packet” with QoS 1. When
Mosquitto was the broker used, the light bulb turned on but then did not go off, while in all
other cases, the light bulb turned on and then turned off.

In addition to these experiments already performed for the various brokers, we have tried
to generate some buffer overflows, through the payload sent to the device, with a consequent
DoS. However, the light bulb passed all tests without errors; in particular, the device ignores
any form of payload other than what it expects to receive.

4.4. Discussion

Interesting results have been obtained from the experiments carried out on brokers, clients,
and the physical device. In [5] Kant et al. shown that many consumer-grade devices do not
use a secure transport for MQTT (like TLS); this is due to the few resources on-board (in turn,
this is caused by the target price of these devices in the consumer market, which is very low).
Sometimes these devices lack proper authentication protocols, again due to missing resources
or insecure default configurations. These security issues could lead attackers to control devices
(e.g. they could control an entire home environment remotely) directly in some cases (e.g. with
Man-in-the-Middle attacks).

In our work, the model of the attacker includes the capability to modify the MQTT packet
flow, delaying the transmission or making it out of order, or modifying MQTT packets payload,
injecting invalid values. This capability can be exploited with limited access to the broker or
intermediate network devices, or even remotely, by using other attacks like Distributed Denial-of-
Service or flooding against a network device in the path of the packet flow (for delaying packets,
for example). Some of these vulnerabilities can be exploited with an older version of TLS
protocol itself11: for example, SSL used a vulnerable Message Authentication Code until TLS [24];
vulnerabilities in TLS HMAC implementations are still found years after the standard [25].

We described bad behaviours for brokers in Section 4.1.1. Some of them can be classified as
vulnerabilities, and they can lead to attacks if some conditions happen. In fact, we saw that
brokers publish some messages violating the protocol state machine in some tests. An example
of this is the out-of-order Aedes (and other brokers) use of pubcomp, which might be used to
trigger a replay attack if the pubcomp itself is delayed or dropped by a malicious actor. This
attack can disrupt or even damage some devices: for example, IoT-mechanical devices can be
continuously triggered until the mechanical part is over-stressed.

11Note that low-cost IoT devices often implement old protocols, sometimes even partially

10



Edoardo Di Paolo et al. CEUR Workshop Proceedings 1–13

Another violation of the standard which leads to a vulnerability (in all brokers but Mosquitto)
is the bad handling of long topics: in the MQTT standard, the maximum length topic is 65536
bytes. However, trying to publish to a very long topic (>4096 bytes) leads to a disconnection of
the client. A malicious actor that can inject (even indirectly, think user-provided information)
some characters in the topic may cause a Denial of Service for that client. Even worst, in
Aedes there is a crash of the broker itself, leading to a Denial of Service for the entire
MQTT network.

Some violations of the standard are so misinterpreted that each broker does a different thing:
in Double publish QoS 2 test, nearly all brokers (the only exception is Mosquitto) violates the
"unique identifier" feature of MQTT in different ways. This causes no direct impact as a violation,
but it can be exploited if some client library shows some bad handling of this situation.

Among all brokers, our tests show that Mosquitto seems to be the strongest one in terms of
MQTT standard adoption, and so the safest from a security point of view.

Instead, client libraries have shown only minor issues, many of them relating to encoding
errors or long topic subscription issues. Our tests show that they are quite robust, sometimes
even better than some brokers.

5. Conclusions

MQTT is considered one of the enabling technologies for the IoT ecosystem. It is adopted
by almost all IoT applications that run on devices with limited computational power, thanks
to the high availability of open source libraries implementing MQTT. In this paper, we have
presented an empirical study of the most popular implementations of both brokers and clients,
considering the possible behaviour deviations from the standard that could lead applications
to possibly inconsistent or even critical states. We also tested a physical smart-home device.
The results of our experiments were noticeable: while almost all the considered libraries are
correctly handling most of the interactions, as expected, some anomalies have been detected
that could be exploited and target the applications, mainly exposing them to denial of service
attacks.

Given the promising results, we plan to expand the number of considered libraries further and
to include in our experiments some real applications to create some proof-of-concept attacks
that exploit the found anomalies. Similarly, we plan to extend the experiments also considering
the libraries that also support the new version of the MQTT protocol, namely version 5.

Acknowledgments

This research has been partially supported by MIUR (Italian Ministry of Education, University,
and Research) under grant “Dipartimenti di eccellenza 2018-2022” of the Computer Science
Department of Sapienza University of Rome.

11



Edoardo Di Paolo et al. CEUR Workshop Proceedings 1–13

References

[1] N. Naik, Choice of effective messaging protocols for iot systems: Mqtt, coap, amqp and
http, in: 2017 IEEE International Systems Engineering Symposium (ISSE), 2017, pp. 1–7.
doi:10.1109/SysEng.2017.8088251.

[2] J. E. Luzuriaga, M. Perez, P. Boronat, J. C. Cano, C. Calafate, P. Manzoni, A comparative
evaluation of amqp and mqtt protocols over unstable and mobile networks, in: 2015 12th
Annual IEEE Consumer Communications and Networking Conference (CCNC), 2015, pp.
931–936. doi:10.1109/CCNC.2015.7158101.

[3] ISO, ISO/IEC 20922:2016 Information technology – Message Queuing Telemetry Transport
(MQTT) v3.1.1, 2016. URL: https://www.iso.org/standard/69466.html.

[4] MQTT.org, Who invented MQTT, 2021. https://mqtt.org/faq/, last accessed: 28/02/2021.
[5] D. Kant, A. Johannsen, R. Creutzburg, Analysis of IoT Security Risks based on the exposure

of the MQTT Protocol, Technical Report, Technische Hochschule Brandenburg, 2021.
[6] P. Colombo, E. Ferrari, Access Control Enforcement within MQTT-Based Internet of

Things Ecosystems, in: Proceedings of the 23nd ACM on Symposium on Access Control
Models and Technologies, SACMAT ’18, Association for Computing Machinery, New York,
NY, USA, 2018, p. 223–234. URL: https://doi.org/10.1145/3205977.3205986. doi:10.1145/
3205977.3205986.

[7] Dinculeană, Dan and Cheng, Xiaochun, Vulnerabilities and Limitations of MQTT Protocol
Used between IoT Devices, Applied Sciences 9 (2019). URL: https://www.mdpi.com/
2076-3417/9/5/848. doi:10.3390/app9050848.

[8] A. Francillon, Q. Nguyen, K. B. Rasmussen, G. Tsudik, A minimalist approach to remote
attestation, in: 2014 Design, Automation Test in Europe Conference Exhibition (DATE),
DATE ’14, Leuven, BEL, 2014, pp. 1–6.

[9] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, W. Zhao, A survey on internet of things:
Architecture, enabling technologies, security and privacy, and applications, IEEE Internet
of Things Journal 4 (2017) 1125–1142. doi:10.1109/JIOT.2017.2683200.

[10] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, M. Ayyash, Internet of things:
A survey on enabling technologies, protocols, and applications, IEEE Communications
Surveys Tutorials 17 (2015) 2347–2376. doi:10.1109/COMST.2015.2444095.

[11] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, S. Clarke, Middleware for internet of
things: A survey, IEEE Internet of Things Journal 3 (2016) 70–95. doi:10.1109/JIOT.
2015.2498900.

[12] A. Banks, R. Gupta, MQTT version 3.1.1 plus errata 01, 2014. http://docs.oasis-open.org/
mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html.

[13] Dave Locke, IBM UK Labs, MQTT Past, Present and Future: 20 Years of MQTT, 2019. https:
//info.thingstream.io/hubfs/IBMWatsonMQTT,MQTT-SNpresentation.pdf, last accessed:
28/02/2021.

[14] M. Houimli, L. Kahloul, S. Benaoun, Formal specification, verification and evaluation of the
mqtt protocol in the internet of things, in: 2017 International Conference on Mathematics
and Information Technology (ICMIT), 2017, pp. 214–221. doi:10.1109/MATHIT.2017.
8259720.

[15] K. Hofer-Schmitz, B. Stojanović, Towards formal methods of iot application layer protocols,

12

http://dx.doi.org/10.1109/SysEng.2017.8088251
http://dx.doi.org/10.1109/CCNC.2015.7158101
https://www.iso.org/standard/69466.html
https://mqtt.org/faq/
https://doi.org/10.1145/3205977.3205986
http://dx.doi.org/10.1145/3205977.3205986
http://dx.doi.org/10.1145/3205977.3205986
https://www.mdpi.com/2076-3417/9/5/848
https://www.mdpi.com/2076-3417/9/5/848
http://dx.doi.org/10.3390/app9050848
http://dx.doi.org/10.1109/JIOT.2017.2683200
http://dx.doi.org/10.1109/COMST.2015.2444095
http://dx.doi.org/10.1109/JIOT.2015.2498900
http://dx.doi.org/10.1109/JIOT.2015.2498900
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://info.thingstream.io/hubfs/IBM Watson MQTT , MQTT-SN presentation.pdf
https://info.thingstream.io/hubfs/IBM Watson MQTT , MQTT-SN presentation.pdf
http://dx.doi.org/10.1109/MATHIT.2017.8259720
http://dx.doi.org/10.1109/MATHIT.2017.8259720


Edoardo Di Paolo et al. CEUR Workshop Proceedings 1–13

in: 2019 12th CMI Conference on Cybersecurity and Privacy (CMI), 2019, pp. 1–6. doi:10.
1109/CMI48017.2019.8962139.

[16] M. Collina, M. Bartolucci, A. Vanelli-Coralli, G. E. Corazza, Internet of things application
layer protocol analysis over error and delay prone links, in: 2014 7th Advanced Satellite
Multimedia Systems Conference and the 13th Signal Processing for Space Communications
Workshop (ASMS/SPSC), 2014, pp. 398–404. doi:10.1109/ASMS-SPSC.2014.6934573.

[17] Ferrara, Pietro and Mandal, Amit Kr and Cortesi, Agostino and Spoto, Fausto, Static
analysis for discovering IoT vulnerabilities, International Journal on Software Tools for
Technology Transfer 23 (2021) 71–88. doi:10.1007/s10009-020-00592-x.

[18] S. Hernández Ramos, M. T. Villalba, R. Lacuesta, MQTT Security: A novel fuzzing ap-
proach, Wireless Communications and Mobile Computing 2018 (2018). doi:10.1155/
2018/8261746.

[19] I. Vaccari, M. Aiello, E. Cambiaso, Slowite, a novel denial of service attack affecting mqtt,
Sensors (Basel, Switzerland) 20 (2020).

[20] L. G. Araujo Rodriguez, D. Macêdo Batista, Program-aware fuzzing for mqtt applications,
in: Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2020, Association for Computing Machinery, New York, NY, USA,
2020, p. 582–586. URL: https://doi.org/10.1145/3395363.3402645. doi:10.1145/3395363.
3402645.

[21] G. Casteur, A. Aubaret, B. Blondeau, V. Clouet, A. Quemat, V. Pical, R. Zitouni, Fuzzing
attacks for vulnerability discovery within MQTT protocol, in: 16th International Wireless
Communications and Mobile Computing Conference, IWCMC 2020, Limassol, Cyprus,
June 15-19, 2020, IEEE, 2020, pp. 420–425. URL: https://doi.org/10.1109/IWCMC48107.2020.
9148320. doi:10.1109/IWCMC48107.2020.9148320.

[22] H. Sochor, F. Ferrarotti, R. Ramler, Automated security test generation for mqtt using attack
patterns, in: Proceedings of the 15th International Conference on Availability, Reliability
and Security, ARES ’20, Association for Computing Machinery, New York, NY, USA, 2020,
pp. 1–9. URL: https://doi.org/10.1145/3407023.3407078. doi:10.1145/3407023.3407078.

[23] K. Tanabe, Y. Tanabe, M. Hagiya, Model-based testing for mqtt applications, in: M. Virvou,
H. Nakagawa, L. C. Jain (Eds.), Knowledge-Based Software Engineering: 2020, Springer
International Publishing, Cham, 2020, pp. 47–59.

[24] T. Dierks, C. Allen, et al., The tls protocol version 1.0, 1999.
[25] MITRE, CVE-2015-4458., Available from MITRE, CVE-ID CVE-2015-4458., 2015. URL:

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4458.

13

http://dx.doi.org/10.1109/CMI48017.2019.8962139
http://dx.doi.org/10.1109/CMI48017.2019.8962139
http://dx.doi.org/10.1109/ASMS-SPSC.2014.6934573
http://dx.doi.org/10.1007/s10009-020-00592-x
http://dx.doi.org/10.1155/2018/8261746
http://dx.doi.org/10.1155/2018/8261746
https://doi.org/10.1145/3395363.3402645
http://dx.doi.org/10.1145/3395363.3402645
http://dx.doi.org/10.1145/3395363.3402645
https://doi.org/10.1109/IWCMC48107.2020.9148320
https://doi.org/10.1109/IWCMC48107.2020.9148320
http://dx.doi.org/10.1109/IWCMC48107.2020.9148320
https://doi.org/10.1145/3407023.3407078
http://dx.doi.org/10.1145/3407023.3407078
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4458

	1 Introduction
	2 Related works
	2.1 MQTT overview

	3 Methodology
	4 Experimental results
	4.1 Brokers
	4.1.1 Experiments and results

	4.2 Clients
	4.3 Physical device
	4.4 Discussion

	5 Conclusions

