
A Study on Misclassification of Software
Vulnerabilities when using Deep Learning and
Machine Learning Algorithms
Vishnu Ramesh1, Sara Abraham1, Vinod P2, Isham Mohamed1, Corrado A. Visaggio3

and Sonia Laudanna3

1SCMS School of Engineering & Technology, Ernakulam, Kerala, Indian
2Cochin University of Science and Technology, Kochi, Kerala, Indian
3Department of Engineering, University of Sannio, Benevento, Italy

Abstract
As the field of computer science has advanced over the years, there has been a tremendous increase in the
software being created, and this increase has been accompanied by a growth of software vulnerabilities.
A software vulnerability is a security flaw found in software that can potentially be exploited by attackers
to perform cyber attacks. Since automatic approaches for identifying and analyzing vulnerabilities has
become a trending topic in research community, the classification of vulnerability is still an open issue.
Machine and deep learning has been applied as promising approaches for automatically classifying
vulnerabilities; unfrotunately suche methods could produce errors due to misclassification. With this
paper we compare five shallow learning models and fourteen deep learning models with the aim of
characterizing quantitatively the differences in terms of classification’s errors.

Keywords
vulnerability, deep learning, machine learning, malware classification, cybersecurity

1. Introduction

The Skybox’s Vulnerability And Threat Trends Report of 2020 [1], highlights a considerable
growth of the volume of medium severity vulnerabilities and the related Common Vulnerability
Scoring System (CVSS) scores [2]. The report advises that the number of vulnerabilities in one
of the most widespread operating systems, Microsoft Windows OS, has increased by 66% in the
period between 2018 and 2019. Vulnerability descriptions are collected in publicly accessible
repositories, like the Common Vulnerability and Exposures (CVE) [3] database and the National
Vulnerability Database1, after a process of validation and classification. Classification of software
security vulnerability facilitates the understanding of security-related information and speeds up
the analysis of a vulnerability [4], improving the effectiveness and efficiency of the vulnerability
fixing process. It even helps analysts to identify new vulnerabilities. Since vulnerability

ITASEC21: Italian Conference on Cybersecurity, April 07–09, 2021, Online
Envelope-Open vishnu.ramesh@scmsgroup.org (V. Ramesh); sara.abraham@scmsgroup.org (S. Abraham); vinod.p@cusat.ac.in
(V. P); isham.mohamed@scmsgroup.org (I. Mohamed); visaggio@unisannio.it (C. A. Visaggio);
slaudanna@unisannio.it (S. Laudanna)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)
1https://nvd.nist.gov/search

mailto:vishnu.ramesh@scmsgroup.org
mailto:sara.abraham@scmsgroup.org
mailto:vinod.p@cusat.ac.in
mailto:isham.mohamed@scmsgroup.org
mailto:visaggio@unisannio.it
mailto:slaudanna@unisannio.it
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


descriptions are written in natural language, automatizing the process of classification is not
trivial, while manual classification is a time-consuming process and error-prone. For these
reasons, there are some attempts in literature for finding machine and deep learning approaches
for classifying vulnerabilities, as will be discussed in the section of related work. Unfortunately,
one of the main drawbacks of such an approach is the incidence of misclassification, i.e. the
case in which a vulnerability is associated with a wrong class.
For this reason, we built several machine and deep learning classifiers and evaluate the

proneness of misclassification of each one, aiming at establishing which are the classifiers
that are less affected by misclassification. We built fourteen deep learning models and five
shallow learning models and test them on two datasets, one with duplicates and the other one
without duplicates. The experiment allowed us to quantify the impact of misclassification in
each classifier, in order to provide research and industry community evidence about which are
the more robust classification algorithms.
The rest of the paper is organized as follows. Section 2 introduces some of the related

work performed in this field. Section 3 presents the methodology adopted in the study. The
experiments and results obtained, along with their analysis are presented in Section 4 while
conclusions and future work are provided in Section 5.

2. Related Work

Proposals for extensions of the CVE for automated security management of the software
engineering process have been the focus of various work. Indeed, several studies use text mining
techniques on CVEs for retrieving textual information from this repository, in order to perform a
variety of tasks. Le et al. [5] presented an application of Natural Language Tool (NLT) to analyze
the text-based vulnerability descriptions to retrieve vulnerability properties and evaluate their
relationships. They suggested the use of text processing and natural language process to support
automatic derivation of Vulnerable Property Relation Graph (VPRG) model extraction from
text-based vulnerability descriptions. Simmons et al. [6] proposed an issue resolution system
(IRS) to detect and extract information from external vulnerability repositories and internal log
files to classify attack vector information from the national vulnerability database (NVD). The
percentage of correctly classified CVEs is about 92%. Yamamoto et al. [7] attempted to use CVE
documents to estimate the impact of vulnerability information. Their analysis was based on
machine learning techniques, on the descriptions in the dictionary to extract the base metrics,
and they found that there was a correlation between the estimation performance and temporal
distance of the CVE documents. Khazaei et al. [8] introduced an objective method for CVSS
score calculation. First, feature vectors were extracted using text mining tools and techniques
from CVE descriptions, and then the SVM and Random-Forest algorithms, as well as fuzzy
systems, were examined to predict the concerned CVSS score. In [9], the authors proposed a
novel automated system, so-called ThreatZoom, to estimate the CWE classes corresponding to
a CVE instance using both statistical and semantic features extracted from the description of a
CVE. ThreatZoom takes the CVE’s description as input and assigns a list of CWE classes along
with the path connecting the roots of the tree to the lowest possible level class. Tested on the
MITRE and NVD dataset, the tool achieved an accuracy of between 75-94%. Bozorgi et al. [10]



Table 1
number of samples in each class of the data set (dataset I)

Name of Vulnerability Class No of descriptions Percentage
Code Execution 32510 24.26
Denial Of Service 23569 17.59
Buffer Overflow 18501 13.80
Cross-Site Scripting 15046 11.23
Gain Information 10973 8.19
SQL Injection 7778 5.80
Authentication Bypass 6306 4.71
Memory Corruption 5318 3.97
Gain Privilege 5090 3.80
Directory Traversal 4060 3.03
Cross-Site Request Forgery 2471 1.84
File Inclusion 2232 1.67
Http Response,Splitting 165 0.12
Total number of descriptions 134019

proposed the first work that focused on textual information hidden in vulnerabilities databases.
Using tools from machine learning, they showed how to train classifiers that predict whether
vulnerabilities are likely to be exploited, and if so, how soon. Differently from these previous
works, we provide an investigation for evaluating misclassification produced by the different
machine and deep learning algorithms based on CVE description in order to support security
engineers and developers in making decisions.

3. The Methodology

The dataset used in the experiment is a collection of 134,019 vulnerability descriptions as shown
in Table 1, extracted from the CVE Mitre database2, through a web scraper developed by the
authors. Since the samples gathered in the first dataset, that we will call DATASET-I from here
on, showed redundancies, another dataset was created by removing the duplicates, DATASET-
II in the remaining of the paper. Duplicates were identified when the Levenshtein distance
between two descriptions was zero edit (100% similar). Since machine learning models can take
in only numerical inputs, the descriptions had to be converted into feature vectors that can
be used to train and test the models. For this purpose, the descriptions were tokenized first to
sentences and then to words. The tokenized words are then stemmed using Porter stemmer [11],
so as to obtain the root of every token. After stemming is done, vectors are created for each
vulnerability description. For shallow learning models, a count vectorization tool is used
to create feature vectors. Each vector represents the count of words in every vulnerability
description. Since the count of words in a vulnerability description does not provide enough
information, we employed Term Frequency-Inverse Document Frequency (TF-IDF) [12], for
differentiating various vulnerability descriptions. For deep learning models, the feature vectors

2https://cve.mitre.org/



Table 2
vulnerability descriptions count in each class of the dataset with duplicates removed (dataset II)

Name of Vulnerability Class No of descriptions Percentage
Code Execution 31166 33.81
Denial Of Service 17063 18.51
Buffer Overflow 3999 4.34
Cross-Site Scripting 14430 15.66
Gain Information 10137 11
SQL Injection 1324 1.44
Authentication Bypass 4837 5.25
Memory Corruption 80 0.09
Gain Privilege 3421 3.71
Directory Traversal 3547 3.85
Cross-Site Request Forgery 1946 2.11
File Inclusion 81 0.09
Http Response Splitting 136 0.15
Total number of descriptions 92167

are created by converting the text sequences to number sequences using pre-trained word
embedding which is obtained with Google’s Word2Vec which is a neural network consisting of
two layers of which the final layer is re-trained with the corpus. The window size taken is five,
and the network is trained for twenty iterations. The vectors formed here have a dimension
size of hundred. These vectors are used to obtain the contextual information of each word with
respect to its sentence. Once pre-processing has been completed, the feature vectors are used to
train the classifiers. After the model has been trained successfully, the model can then predict
the class labels associated with each vulnerability description when new instances are given
as input to the classification model. The performance of the classifiers is then evaluated using
the performance metrics such as accuracy, precision, recall and F1-score. Shallow classifiers
were realized with the following algorithms: Decision Tree, Random Forest, Support Vector
Machine, Naïve Bayes, XGBoost. For Deep Learning based classifiers, the following systems
were employed: Long Short Term, Memory (LSTM)M [13], Bidirectional-Long Short Term
Memory (BiLSTM) [14], Convolutional Neural Network (CNN), attention network [15], and
Graph Convolutional Neural Networks (GCN).
Both K -fold cross-validation and train-test split are performed on the dataset. In case of

train-test split, first the dataset is loaded and split into training and testing sets where 80% is
used for the training set, while the remaining 20% will constitute the test set. The train test split
method may sometimes result in overfitting of the model. In order to avoid this, cross-validation
(k-Folds where (K=5) is performed on the dataset. In 5-fold cross-validation, the entire dataset
is divided into five subsets each of size 𝑛/5, where 𝑛 is the size of the dataset. In each iteration,
there will be four training sets and one testing set. The classification model performance is
estimated as average accuracy computed after five iterations. Thirteen vulnerability classes
were extracted by the dataset and are showed in Table 2.



(a) Shallow Classifiers with DATASET I (b) Shallow Classifiers with DATASET II

Figure 1: The intersection of misclassified vulnerability descriptions between the best shallow classifier
(stacking-XGBoost) and other shallow classifiers when trained and tested using: (a) DATASET I, (b)
DATASET II

4. Misclassification Analysis

The shallow classifier with the highest F1-score was stacking-XGBoost in both the datasets. In
DATASET I the number of samples misclassified is 3,301. Figure 1a shows the intersection of
misclassified vulnerability descriptions between the best shallow classifier (stacking-XGBoost)
and other shallow classifiers when trained and tested using DATASET I. It emerges that the
highest intersection (80%), was obtained with random forest, i.e. among the 13,108 samples
incorrectly predicted by random forest, 2637 samples were found to be commonly misclassified
by both stacking-XGBoost and random forest. The lowest intersection (69%), was obtained with
decision tree i.e. out of 8,918 samples were incorrectly classified by decision tree, 2,266 samples
were classified wrongly by both shallow classifiers.

1) Stacking Classifier and Random Forest: The class to which the highest number of samples
were wrongly predicted by stacking classifier is “Code Execution”. Out of 878 wrongly classified
samples to the class “Code Execution” by stacking classifier, 363 samples were commonly
misclassified by both the classifiers by 41%. Likewise, the next highest classes to which stacking
classifier incorrectly classifies are, “DOS” (714 samples) and “Memory Corruption” (572 samples)
respectively. Ot was found that 336 samples were commonly misclassified by both stacking
and random forest towards DOS class which amounts to 47%, and 31% (182 samples) for the
class “Memory Corruption”. The class to which the least number of samples were incorrectly
predicted by stacking classifier is “HTTP Response Splitting” which amounts to 6 samples out
of which 5 samples (83%) were commonly misclassified by both.
2) Stacking classifier and decision tree: Similarly, it is observed that out of 878 wrongly

classified samples to the class ”Code Execution” by stacking classifier, 565 (64%) samples were
commonly misclassified by both the classifiers. Likewise, the next highest classes to which
stacking classifier incorrectly classifies are, “DOS” (714 samples) and “Memory Corruption” (572
samples) respectively. It was found that 355 samples were commonly misclassified by both



stacking and decision tree towards “DOS” which amounts to 50%, and 9% (50 samples) for the
class “Memory Corruption”. The class to which the least number of samples that were classified
wrongly by stacking classifier is “HTTP Response Splitting” which amounts to 6 samples out of
which both commonly misclassified one sample (17%).

Similarly for DATASET II, the shallow classifier with F1-Score is stacking-XGBoost, which
wrongly predicts 300 vulnerability descriptions. The intersection of misclassified vulnerability
descriptions between the best shallow classifier (stacking-XGBoost) and other shallow classifiers
when trained and tested using DATASET II, is depicted in Figure 1b. It is observed that the
highest intersection (79%), was obtained with naïve bayes, i.e. out of the 1556 samples wrongly
classified by naïve bayes, 237 samples were found to be misclassified by both stacking-XGBoost
and naïve Bayes. The least intersection (54%) was obtained with decision tree.

1) Stacking Classifier and Naïve Bayes: The class to which the highest number of samples were
wrongly classified by stacking classifier is “Gain Information”. Out of 78 wrongly classified
samples to the class “Gain Information” by stacking classifier, 40 samples were commonly
misclassified by both by 51%. Likewise, the next highest classes to which stacking classifier in-
correctly classifies are, “Code Execution” (55 samples) and “Authentication Bypass” (39 samples)
respectively. On further analysis, it was found that 31 samples were commonly misclassified by
both stacking and naïve bayes towards “Code Execution” which amounts to 56% and amounts to
69% (27 samples) for “Authentication Bypass”. The class to which the least number of samples
were predicted incorrectly by stacking classifier is “File Inclusion” which amounts to one sample.
None of the samples was commonly misclassified by both.

2) Stacking Classifier and Decision Tree: Likewise, it is observed that out of 78wrongly classified
samples to the class “Gain Information” by stacking classifier, 46 samples were commonly
misclassified by both the classifiers by 59%. The next highest classes to which stacking classifier
incorrectly classifies are, “Code Excution” (55 samples) and “Authentication Bypass” (39 samples)
respectively. It was found that 22 samples were commonly misclassified by both stacking and
decision tree towards “Code Execution” class which amounts to 40%, and 54% (21 samples) for
“Authentication Bypass” class. The class to which the least number of samples were misclassified
by stacking classifier is “File Inclusion” which amounts to one sample, and none of the samples
was commonly misclassified to this class.

The deep classifier with the highest F1-score is found to be CNN+LSTM in DATASET-I
and stacking-DNN in DATASET-II. In DATASET I the number of samples wrongly classified
by CNN+LSTM model is 8343. Figure 2a graphically represents the intersection of wrongly
predicted vulnerability descriptions between CNN+LSTM and other deep classifiers when
trained and tested using DATASET I. It is observed that the highest intersection (82%), was
obtained with deep classifier (E+C+C+P+FC+FC+FC+O), i.e. among the 8771 wrongly predicted
samples by the deep classifier (E+C+C+P+FC+FC+FC+O), 6864 samples were found to be
predicted wrongly by both the deep classifiers. The lowest intersection (49%), was obtained
with E+C+C+C+P+FC+FC+O, i.e. out of 8607 samples, 4079 were classified incorrectly.

1) CNN+LSTM and E+C+C+P+FC+FC+FC+O: It was found that the wrongly classified samples
by both classifiers to the same class are as follows. The class to which the highest number
of samples were predicted incorrectly by CNN+LSTM is “Memory Corruption”. Out of 2219,
wrongly classified samples to the class “Memory Corruption” by CNN+LSTM, 1219 samples were
commonly misclassified by both by 55%. Likewise, the next highest classes to which CNN+LSTM



(a) Deep Classifiers with DATASET I (b) Deep Classifiers with DATASET II

Figure 2: The intersection of misclassified vulnerability descriptions between the best deep classifier
and other deep classifiers when trained and tested using: (a) DATASET I, (b) DATASET II

incorrectly classifies are, “DOS” (1819 samples) and “Buffer Overflow” (1408 samples) respec-
tively. On further analysis, it was found that 1091 samples were commonly misclassified by
both CNN+LSTM and E+C+C+P+FC+FC+FC+O towards “DOS”, which amounts to 60% and
amounts to 83% (1168 samples) for “Buffer Overflow”. The class to which the least number of
samples were misclassified by CNN+LSTM is HTTP Response Splitting which amounts to 6
samples out of which 5 (84%) of them are incorrectly predicted by both deep classifiers.

2) CNN+LSTM and E+C+C+C+P+FC+FC+O: Likewise, it is observed that out of 2,219 wrongly
classified samples to the class “Memory Corruption” by CNN+LSTM classifier, 526 samples
were commonly misclassified by both the classifiers by 24%. The next highest classes to which
LSTM+CNN incorrectly classifies are, DOS (1819 samples) and “Buffer Overflow” (1408 samples)
respectively. On further analysis, it was found that 604 samples were commonly misclassified
by both CNN+LSTM and E+C+C+C+P+FC+FC+O towards “DOS” class which amounts to 33%,
and 9% (130 samples) for “Buffer Overflow” class. The class to which CNN+LSTM misclassified
the least number of samples is “HTTP Response Splitting” which amounts to 6 samples out
which both deep classifiers misclassified 4 samples (67%).

For DATASET II, the deep classifier with the highest F1-Score is stacking-DNNwhich wrongly
predicts 225 vulnerability descriptions. Figure 2b graphically represents the intersection of
misclassified vulnerability descriptions between the best deep classifier (stacking-DNN) and
other deep classifiers when trained and tested using DATASET II. It is observed that the highest
intersection (90%), was obtained with deep classifier (E+C+P+C+FC+FC+FC+O), i.e. among the
349 samples incorrectly predicted by (E+C+P+C+FC+FC+FC+O), 203 of them were found to
be misclassified by both the deep classifiers. The lowest intersection (66%) was observed with
BILSTM, i.e. out of the 277 samples wrongly classified by BILSTM, both commonly misclassified
148 samples.

1) Stacking-DNN and E+C+P+C+FC+FC+FC+O: It was found that the wrongly classified
samples by both classifiers to the same class are as follows. The class to which stacking-



DNN misclassified the highest number of samples is “Gain Information”. Out of 69 wrongly
classified samples to the class “Gain Information” by stacking-DNN, 51 samples were commonly
misclassified by both by 74%. Likewise, the next highest classes to which stacking-DNN
incorrectly classifies are, “Buffer overflow” (39 samples) and “Authentication bypass” (32 samples)
respectively. On further analysis, it was found that 135 samples were commonly misclassified
by both stacking-DNN and E+C+P+C+FC+FC+FC+O towards “Buffer overflow”, which amounts
to 90%, and 97% (31 samples) for “Authentication Bypass”. The class to which stacking-DNN
incorrectly classified the least number of samples is “Memory Corruption” which amounts to 2
samples out of which both deep classifiers incorrectly predict 1 (50%) of them.

2) Stacking-DNN and BILSTM: Likewise, it is observed that out of 69 wrongly classified sam-
ples to the class “Gain Information” by stacking-DNN classifier, 48 samples were commonly
misclassified by both the classifiers by 70%. The next highest classes to which stacking-DNN in-
correctly classifies are, “Buffer Overflow” (39 samples) and “Authentication Bypass” (32 samples)
respectively. It was found that 12 samples were commonly misclassified by both stacking-DNN
and BILSTM towards “Buffer Overflow” class which amounts to 31%, and 84% (27 samples)
for “Authentication Bypass” class. The class to which stacking-DNN misclassified the least
number of samples is “Memory Corruption” which amounts to 2 samples out which 2 (100%)
were misclassified by both deep classifiers. The intersection of misclassified vulnerability de-
scriptions between the best shallow classifier (stacking-XGBoost) and other shallow classifiers
when trained and tested using DATASET II, is depicted in Figure 1b. It is observed that the
highest intersection (79%), was obtained with naïve bayes, i.e. among the misclassified samples,
79% of them were found to be misclassified by both stacking-XGBoost and naïve bayes. Fig-
ure 3a indicates the classes to which various proportions of misclassified samples in DATASET I
actually belong to. It is found that 31% of the vulnerability descriptions that are misclassified
actually belong to class 1 (Code Execution) (Refer to Table X). It is also noticed that none of
the vulnerability descriptions belonging to class 9 (HTTP Response Splitting) is misclassified.
Figure 3b shows the classes to which various proportions of misclassified vulnerability descrip-
tions in DATASET I, were classified to. It is observed that 33% of the misclassified samples were
classified to class 1 incorrectly. It is also observed that none of the samples was misclassified
to class 9. Figure 4a depicts the classes to which various proportions of incorrectly classified
samples in DATASET II actually belong to. It is found that 22% of the vulnerability descriptions
that are misclassified actually belong to class 7. It is also noticed that none of the vulnerability
descriptions belonging to class 6 (HTTP Response Splitting) is predicted incorrectly.The classes
to which various proportions of misclassified vulnerability descriptions were classified to in
DATASET II, is represented in figure 4b. It is observed that 23% of the misclassified samples were
classified to class 1 incorrectly. It is also observed that none of the vulnerability descriptions
was wrongly classified to class 9.

Figure 6a represents the confusion matrix of the predictions related to DATASET I. Cell C
i,j represents the number of observations known to be in group i and misclassified to group j.
For example, for the cell (12,1), it is seen that 95% of samples taken from class 12 for testing is
wrongly classified to class 1. Additionally, it is also noticed that most number of vulnerability
descriptions are being predicted wrongly to class 1, while the least number of vulnerability
descriptions were incorrectly classified to classes 4,8,9,12.

Figure 5a represents the similarity graph for DATASET I derived from the confusion heat map



(a) Actual proportions of misclassified samples (b) Predicted proportions of misclassified samples

Figure 3: Proportions of misclassified samples of DATASET I: (a) Actual, (b) Predicted

(a) Actual proportions of misclassified samples (b) Predicted proportions of misclassified samples

Figure 4: Proportions of misclassified samples of DATASET II: (a) Actual, (b) Predicted

of DATASET I (6a). Using cosine similarity, the similarity between the misclassified samples of
the testing data and the data used for training the misclassified class is approximated. For this
purpose, first, the required data from the respective training and testing classes are obtained and
summarized. Extractive summarization using Natural Language Processing has been employed.
This process consists of tokenizing the text first into sentences then to words. After this, the
sentences are scored based on the scored assigned to the words in that particular sentence.
Words are scored using the normalized frequency of each word. Finally, the summary consists
of top 𝑛 sentences. Approximately the size of a summary is half the size of the original text. The
summarized text is then represented in a vector form which is used for finding the similarity
measure. It can be observed that among the wrongly classified samples which actually belong
to class 0, 29% were being mapped to class 1 and 24% were being mapped to class 7 (top 2 values
from each row of the confusion heat map is taken into consideration). Thus it can be inferred
that the 29% of samples from class 0 which is incorrectly classified to class 1 has high similarity
to the samples used for training class 1, and 24% of the samples belonging to class 0 which



(a) The similarity graph for DATASET I (b) The similarity graph for DATASET II

Figure 5: Intersection of misclassified descriptions obtained through various classifiers compared with
misclassified instances of best classifiers similarity in percentage

is incorrectly classified to class 7 has high similarity with the vulnerability descriptions used
for training class 7. Similarly, the similarity between the vulnerability descriptions used for
testing and training for various classes has been depicted. Figure 6b represents the confusion
matrix of the predictions related to DATASET II. Here it is observed that most of the samples
were wrongly classified to Classes 1 and 7, almost equally. On the other hand, the least number
of samples were predicted incorrectly to classes 9 and 10, respectively. Figure 5b depicts the
similarity graph for DATASET II obtained from the confusion heat map of DATASET II (6b). It
can be observed that among the wrongly classified samples which actually belong to class 0,
26% were being mapped to class 1 and 45% were being mapped to class 7 (top 2 values from
each row of the confusion heat map is taken into consideration). Thus it can be concluded that
the 26% of samples from class 0 has high similarity to the samples used for training class 1, and
45% of the samples belonging to class 0 has high similarity with the vulnerability descriptions
used for training class 7. The similarity between the samples used for testing and training for
different classes has been depicted.



(a) Confusion matrix of the predictions
DATASET I

(b) Confusion matrix of the predictions
DATASET II

Figure 6: Information misclassification rate of vulnerability descriptions in 13 different classes: (a)
DATASET I, (b) DATASET II

5. Conclusion

The growing number of vulnerabilities makes it urgent to have mechanisms for automatic
classification of their descriptions. Since vulnerability reports are written in natural language,
CVEs are usually classified manually which is a very time-consuming process. Machine and
deep learning methods are increasingly adopted for automatically classifying vulnerabilities.
Unfortunately, these approaches are prone to misclassification. In this paper, we provide
an investigation over a dataset of 134,019 vulnerability descriptions extracted from the CVE
repository for evaluating misclassification produced by different machine and deep learning
algorithms. Our failure analysis showed that among the incorrectly classified samples most
of the descriptions were being wrongly predicted to the classes “Code Execution”, “Denial of
Service” and “Gain Information”. In the future, this work will be extended by evaluating the
classification of newly discovered software vulnerabilities fetched from different websites where
they are publicly announced. We will leverage our machine learning models for discovering
new classes which can be included as the sub-class of the existing ones. This information would
then be used to update our database which is then made publicly available. Since descriptions
are too general, the code snippets attached with the vulnerability report can also be used to
train our models so as to improve threat intelligence.

References

[1] Skybox security, https://lp.skyboxsecurity.com/WICD-2020-02-Vulnerability\
-and-Threat-Trends-Report_01Reg.html, 2020. Accessed: 2021-03-10.

[2] Common vulnerability scoring system (SIG), https://www.first.org/cvss/, 2020. Accessed:
2021-03-10.

https://lp.skyboxsecurity.com/WICD-2020-02-Vulnerability\-and-Threat-Trends-Report_01Reg.html
https://lp.skyboxsecurity.com/WICD-2020-02-Vulnerability\-and-Threat-Trends-Report_01Reg.html
https://www.first.org/cvss/


[3] Common vulnerabilities and exposures (CVE), https://cve.mitre.org/, 2020. Accessed: 2021-
03-10.

[4] S. Rehman, K. Mustafa, Software design level vulnerability classification model, Interna-
tional Journal of Computer Science and Security (IJCSS) 6 (2012) 238.

[5] H. T. Le, P. K. K. Loh, Using natural language tool to assist vprg automated extraction from
textual vulnerability description, in: 2011 IEEE Workshops of International Conference on
Advanced Information Networking and Applications, IEEE, 2011, pp. 586–592.

[6] C. B. Simmons, S. Shiva, V. Phan, V. Shandilya, L. Simmons, Irs: An issue resolution system
for cyber attack classification and management, SAM, Los Vegas (2012).

[7] Y. Yamamoto, D. Miyamoto, M. Nakayama, Text-mining approach for estimating vulner-
ability score, in: 2015 4th International Workshop on Building Analysis Datasets and
Gathering Experience Returns for Security (BADGERS), IEEE, 2015, pp. 67–73.

[8] A. Khazaei, M. Ghasemzadeh, V. Derhami, An automatic method for cvss score prediction
using vulnerabilities description, Journal of Intelligent & Fuzzy Systems 30 (2016) 89–96.

[9] E. Aghaei, W. Shadid, E. Al-Shaer, Threatzoom: Hierarchical neural network for cves to
cwes classification, in: International Conference on Security and Privacy in Communica-
tion Systems, Springer, 2020, pp. 23–41.

[10] M. Bozorgi, L. K. Saul, S. Savage, G. M. Voelker, Beyond heuristics: learning to classify
vulnerabilities and predict exploits, in: Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining, 2010, pp. 105–114.

[11] M. F. Porter, et al., An algorithm for suffix stripping., Program 14 (1980) 130–137.
[12] J. Han, J. Pei, M. Kamber, Data mining: concepts and techniques, Elsevier, 2011.
[13] J. Cheng, L. Dong, M. Lapata, Long short-term memory-networks for machine reading,

arXiv preprint arXiv:1601.06733 (2016).
[14] W. Wang, S. Hosseini, A. H. Awadallah, P. N. Bennett, C. Quirk, Context-aware intent

identification in email conversations, in: Proceedings of the 42nd International ACM SIGIR
Conference on Research and Development in Information Retrieval, 2019, pp. 585–594.

[15] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, I. Polo-
sukhin, Attention is all you need, in: Advances in neural information processing systems,
2017, pp. 5998–6008.

https://cve.mitre.org/

	1 Introduction
	2 Related Work
	3 The Methodology
	4 Misclassification Analysis
	5 Conclusion

