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Abstract
With the advances of deep learning techniques in Natural Language Processing, the last few years have
witnessed releases of powerful language models such as BERT and GPT-2. However, applying these
general-purpose language models to domain-specific applications requires further fine-tuning using
domain-specific private data. Since private data is mostly confidential, information that can be extracted
by an adversary with access to the models can lead to serious privacy risks. The majority of privacy
attacks on language models infer either targeted information or a few instances from the training dataset.
However, inferring the whole training dataset has not been explored in depth which poses far greater
risks than disclosure of some instances or partial information of the training data. In this work, we
propose a novel data reconstruction attack that also infers the informative words present in the private
dataset. Experiment results show that an adversary with black-box query access to a fine-tuned language
model can infer the informative words with an accuracy of about 75% and can reconstruct nearly 46.67%
of the sentences in the private dataset.
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1. Introduction

Language models (LMs) are fundamental to many natural language processing tasks, which
assign probability values to a sequence of words, allowing one to make probabilistic predictions
of the next word given preceding ones. The possible set of words known to the model is referred
to as vocabulary of the model. Recent LMs such as BERT [1], BioBERT [2] and GPT-2 [3],
are trained on massive text corpora generally collected from internet and are widely used
in various downstream applications such as language translation [4], question answering [5]
and search engines [6]. These high-capacity models are available publicly and are further
fine-tuned on smaller private data to adapt to domain-specific applications, without requiring
expensive re-training [7]. These private data are generally confidential and often contain
sensitive information. For example, the models fine-tuned using hospital data for deployment in
the medical domain may contain patients’ demographic particulars as well as treatment history.
If such information is extracted by an adversarial user of the model, then it would pose a severe
privacy threat. Therefore, it is inevitable to analyze the privacy risks of these models.
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Membership inference attack (MIA) introduced in [8] is one of the earlier lines of research
in the field of privacy risk analysis of machine learning models. The attack infers whether a
record is part of the data used to train a model. Any attack can be categorized into two scenarios
based on the knowledge of the adversary. One is white-box scenario, where the model structure
and parameters are known to the adversary. The other one is black-box scenario in which the
adversary can only query the model and observe the output [9, 10]. Following [8], the MIA
have been studied on generative models [11, 12] and LMs [13, 14, 15].

Recent works on privacy analysis of LMs focus on extracting information about the training
data. [16, 17, 18] analyze the disclosure of targeted information such as rare sequences [16],
sensitive terms [17] and patient information [18]. The works in [19, 20] perform quantitative
analysis to determine whether a generated sentence is a member of the training data. Also, a
common assumption made during this inference is that the attacker knows the vocabulary of
the private dataset. We formulate our attack without this assumption since it might not hold
true in many real-world applications (e.g. auto-completion in smartphones). Although these
attacks infer information about the training data, inferring the whole training data has higher
privacy risks and has not been explored in depth.

In this paper, we design a novel attack to reconstruct the entire private dataset used to
fine-tune a LM while inferring top informative words. To the best of our knowledge, this is
the first work that attempts reconstruction of the entire training data and informative words
extraction. Our attack is executed in a black-box setting, so the adversary is not aware of any
information about the updates of the LMs, which we refer to as generic and fine-tuned LMs.
Similar to [21], we base our attack on the hypothesis that observing and comparing the output
from two versions of the same model, trained on public and private datasets respectively, leaks
information about the private dataset. Three attack scenarios are explored in this work with
varying degrees of black-box access. This is based on whether the attacker is able to only
observe the generated words or their probabilities as well. We use GPT-2 [3] as the LM which
is trained and fine-tuned on datasets from the medical domain for the execution of the attack.
Comprehensive experiments and analysis show that our attack is able to infer top informative
words with an accuracy of about 75% and can reconstruct nearly 46.7% of the sentences in the
dataset. Experiments includes a case-study which analyzes the informative sentences in the
private dataset and their implications for data owners.

2. Related Works

Recent studies have demonstrated that machine learning models are vulnerable to several
privacy attacks as they remember information about the training data. Membership inference
attack (MIA) introduced by [8] shows that given black-box access to a classifier model, the
confidence in model prediction can reveal whether a record belongs to the training data. [8]
uses shadow training technique to train an attack model to distinguish between a member vs
non-member of the training data. Later, MIA has been studied on generative models [11, 12]
and LMs [13, 14, 15].

Prior works have attempted to analyze leakage of sensitive information about the training
data of LMs. [16] performs a quantitative analysis on the risk of unintended disclosure of rare



sequence of words in the training data. [17] performs a similar analysis of the exposure of single
sensitive words on publicly available pre-trained LMs. [22] quantifies the toxic generation of
pre-trained LMs and illustrates the necessity to reconsider the content used in LM pre-training
to avoid toxicity in natural language generation. [18] designs an attack specific to clinical
records to infer information of target individuals.

LMs are often used as embedding models to extract the embedding representation, low
dimensional vector representation, of words for downstream tasks [23]. Works in [24, 23] design
attack against word embedding models. [24] train an attack model against publicly available
pre-trained LMs to predict the sensitive information, given embedding vector representation of
a word sequence obtained using the LM. [23] performs a similar attack to infer the sensitive
attributes of a word sequence using the embedding vector representation along with embedding
inversion attack and MIA. They show that with this inversion attack they can recover 50% to
70% of a word sequence from its embedding vector.

Recent works [19, 20] have focused on training data extraction attack against LMs. [19]
use perplexity of the generated sequences to choose the top 100 sequences as the extracted
training data of publicly available pre-trained LMs. [20] is closest to our work, as it analyses
the information leakage in fine-tuned LMs. It adapts the motivation brought in by [21], that
the behavioral changes in the snapshots of machine learning models may leak information
about the data used to update the model. [20] proposes differential score metric to capture the
difference between probabilities assigned to a word sequence by public and fine-tuned models.
Finally, they rank the sequences to conclude that word sequences with higher differential score
generally belong to the private data used to update the LM. Both data extraction attacks [19, 20],
assume that the attacker knows the vocabulary of the LM and the LM returns the probability
distribution over the vocabulary for the prediction of the next word.

Our work differs from existing training data extraction attacks in that, our attack focuses
on the reconstruction of the entire private dataset used to fine-tune the LM. In contrast, the
existing works only focus on either extraction of targeted information or quantitative analysis
of determining sentences that belong to the training data of the LM. Moreover, our attack
accommodates the real-world scenario of widespread deployment of LMs to end-user systems,
where the attacker does not have any information about the fine-tuned LM including the
vocabulary of words present in the private dataset. This enables our threat model to infer
informative words present in the private dataset along with the reconstruction of the private
dataset.

3. General Attack Pipeline

While there are several pre-trained LMs available publicly, applying them in specific downstream
tasks requires fine-tuning the model on task-specific datasets, which we refer to as private
dataset. Out attack accommodates such a realistic scenario, where the adversary with black-
box query access to a fine-tuned LM attempts to reconstruct the private dataset used for the
fine-tuning process. This section presents the problem setting and the threat model of our
attack.



Figure 1: Generic and Fine-tuned LMs with Black-box Access

3.1. Problem Setting

A LM 𝐿𝑔 is trained on a publicly available dataset 𝐷𝑔 and then fine-tuned on a private dataset
𝐷𝑓 to obtain a fine-tuned LM 𝐿𝑓 . We refer to 𝐿𝑔 and 𝐿𝑓 as generic and fine-tuned LMs
respectively. Here, the size of 𝐷𝑔 is extremely large compared to 𝐷𝑓 . Also, 𝐷𝑓 may contain
more specific information compared to 𝐷𝑔 . A common vocabulary 𝑉 is used to train both LMs,
where 𝑉 includes a limited number of words along with all the possible characters and a special
token 𝐸𝑂𝑆 indicating the end-of-sequence. This allows the LM to learn and generate any
word as a combination of characters appearing in its vocabulary. Given a sequence of words,
𝑆 = {𝑤1, 𝑤2, ....𝑤𝑛}, the generic and fine-tuned model return the next most probable word of
the sequence. A complete sentence can be obtained by querying the LMs until 𝐸𝑂𝑆 is predicted
as the next possible word. Figure 1 illustrates our problem setting.

We design our attack on various scenarios of black-box query access to the generic and
fine-tuned model as follows,

• restrictive - Given a sequence of input words 𝑆, 𝐿𝑔 and 𝐿𝑓 return the next word of the
sequence 𝑤𝑛+1

• relaxed - Given 𝑆, 𝐿𝑔 and 𝐿𝑓 return the next word of the sequence and its probability
(𝑤𝑛+1, 𝑝𝑛+1)

• relaxed++ - Given 𝑆, 𝐿𝑓 returns the next word of the sequence and its probability
(𝑤𝑛+1, 𝑝𝑛+1) while 𝐿𝑔 returns list of probabilities 𝑃 = {𝑝1, 𝑝2, ....𝑝𝑛} to generate the
sequence 𝑆 .

Generic LMs are usually trained using a large amount of publicly available training data
(mostly scraped from the internet) and have fewer privacy risks compared to the fine-tuned
LMs. Therefore, we include a more relaxed query access to the generic model in the relaxed++
scenario.



Figure 2: Flow of the Dataset Reconstruction Attack in restrictive Scenario

Table 1
List of Notations

Notation Description
𝐷𝑔 Public dataset used to train a LM
𝐷𝑓 Private dataset used to fine-tune a LM
𝐿𝑔 Generic LM trained on 𝐷𝑔

𝐿𝑓 Fine-tuned LM using 𝐷𝑓

𝑉 Vocabulary of the LMs 𝐿𝑔 and 𝐿𝑓

𝑆𝑥 A sentence generated using LM 𝐿𝑥

𝑆𝑥[𝑖 : 𝑗] Phrase obtained using 𝑖𝑡ℎ word to 𝑗𝑡ℎ word
𝐸𝑂𝑆 Word token indicating the end of sequence
𝑃𝑥 List of probabilities returned while generating 𝑆𝑥

𝐷𝑎 List of accepted reconstructed sentences of 𝐷𝑓

𝐷𝑟 Reconstructed dataset of 𝐷𝑓

𝐶(𝐷𝑎, 𝑤) #sentences from 𝐷𝑎 containing w

3.2. Threat Model

We consider an adversary who has unlimited concurrent black-box query access to generic
and fine-tuned models, 𝐿𝑔 and 𝐿𝑓 . The adversary can query these models to generate word
sequences in three different settings, restrictive, relaxed and relaxed++. The adversary does
not have any knowledge about the training datasets 𝐷𝑔 and 𝐷𝑓 including the words present
and size of the dataset. However, similar to the real-world scenario, where the user is aware of
the domain he or she is engaged in, we assume that the adversary is aware of the domain that
the private dataset belongs to e.g. medical, financial, product. The goal of the adversary is to
reconstruct a dataset 𝐷𝑟 such that it can well represent 𝐷𝑓 and infer the informative words
present in the same.

4. Dataset Reconstruction Attack

Our dataset reconstruction attack exploits the observation from previous works [21, 20] that
the behavioral change in snapshots of machine learning models can leak information about



the training data used to update the model. The objective of the adversary is to model such
behavioral changes between the generic and fine-tuned models in order to identify sentences
belonging to the private dataset. The adversary’s goal is to construct a representative dataset
𝐷𝑟 of the private dataset by iteratively constructing sentences belonging to the private dataset.
Figure 2 shows the flow of the attack in restrictive scenario and Table 1 lists key notations. The
first two steps for querying the LMs differ with the change in problem setting. The following
subsections explain our dataset reconstruction attack.

4.1. Reconstruct a Sentence from Private Dataset

Our attack begins by querying the fine-tuned model 𝐿𝑓 with an empty input sequence. A
complete sentence 𝑆𝑓 is constructed by iteratively querying 𝐿𝑓 until it predicts 𝐸𝑂𝑆 token as
the next possible word. Due to the fine-tuning of the LM, the generation of sentence 𝑆𝑓 would
have resulted due to the words learned from either the public or private dataset or both. We
refer to such important words that contribute to the generation of 𝑆𝑓 as context of the sentence.
Now the goal of the adversary is to determine the context origin of the sentence to either accept
the sentence if the context origin is a private dataset or reject it otherwise. To determine the
context origin of the sentence 𝑆𝑓 , we exploit the fact that the generic and fine-tuned models
may have a behavioral difference for the same input sequence due to the fine-tuning process.
We quantify such behavioral differences using a novel metric called Sensitivity. Sensitivity of a
sentence generated by a fine-tuned model for the three different problem settings is computed
as follows.
restrictive. In restrictive scenario, we query the generic model with the word sequence

𝑆𝑓 [: 𝑙/2], where 𝑙 indicates the length of the sentence 𝑆𝑓 and 𝑆[𝑝 : 𝑞] indicates the partial
sequence of 𝑆 from 𝑝𝑡ℎ word to the 𝑞𝑡ℎ word. The partial sentence 𝑆𝑓 [: 𝑙/2] would represent the
partial context of the sentence 𝑆𝑓 . The corresponding sentence 𝑆𝑔 is constructed by querying
the generic model with the input sequence 𝑆𝑓 [: 𝑙/2] until the model predicts 𝐸𝑂𝑆 as the
next probable word. Both 𝑆𝑓 and 𝑆𝑔 share the same partial context of 𝑙/2 number of words.
Therefore, the information gap between the remaining sentences (𝑆𝑓 [𝑙/2 :] and 𝑆𝑔[𝑙/2 :]) would
reveal whether the context origin of 𝑆𝑓 is public or private dataset. We develop a novel notion
of Sensitivity score to quantify the information gap between 𝑆𝑓 and 𝑆𝑔 . Sensitivity of a sentence
𝑆𝑓 is computed as a fraction of new words in the second half of 𝑆𝑓 with respect to the word
sequence predicted by the generic model given 𝑆𝑓 [: 𝑙/2] as follows,

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑆𝑓 ) =
|𝑆𝑓 [𝑙/2 :]− 𝑆𝑔[𝑙/2 :]|

|𝑆𝑓 [𝑙/2 :]|
∈ [0, 1] (1)

where |𝑆| denotes the number of words in a sequence 𝑆 and 𝑆𝑓 − 𝑆𝑔 denotes the word
sequence obtained by removing the words appearing in 𝑆𝑔 from 𝑆𝑓 . A higher Sensitivity score
indicates that there is a high chance that 𝑆𝑓 is generated based on the context seen in the private
dataset.
relaxed. In the relaxed scenario, both the fine-tuned and generic models return the next word

and it’s probability, indicating the confidence of the model. We generate 𝑆𝑓 and 𝑆𝑔 similar to
restrictive scenario along with their corresponding list of probabilities 𝑃𝑓 and 𝑃𝑔 . The Sensitivity
of 𝑆𝑓 in relaxed scenario is computed as a multiplication of fraction of new words present in



𝑆𝑓 [𝑙/2 :] and the log-likelihood of the new words as follows,

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑆𝑓 ) =
|𝑆𝑓 [𝑙/2 :]− 𝑆𝑔[𝑙/2 :]|

|𝑆𝑓 [𝑙/2 :]|
* 𝑙𝑜𝑔(

∏︁
𝑤∈𝑆𝑓 [𝑙/2:],𝑤/∈𝑆𝑔 [𝑙/2:]

𝑃𝑓 (𝑤)) ∈ [−∞, 0] (2)

relaxed++. In the final problem setting of our attack, the adversary can query the generic
model with a word sequence to obtain a list of probabilities. Hence, once we generate 𝑆𝑓 and
𝑃𝑓 using the fine-tuned model and we query the generic model with 𝑆𝑓 to obtain 𝑃𝑔 . In this
problem setting, the Sensitivity of 𝑆𝑓 can be computed as a log likelihood ratio of 𝑃𝑓 and 𝑃𝑔 as
follows,

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑆𝑓 ) = 𝑙𝑜𝑔(
∏︁

𝑤∈𝑆𝑓

𝑃𝑓 (𝑤)

𝑃𝑔(𝑤)
) ∈ [−∞,+∞] (3)

In all three problem settings, 𝑆𝑓 is accepted if it’s Sensitivity score is higher than a threshold
𝛿 and rejected otherwise. By iteratively constructing a list of accepted sentences, 𝐷𝑎 can be
obtained for further inference of informative words and reconstruction of the private dataset.
Note that 𝐷𝑎 may contain duplicate or similar sentences as we accept all the sentence with
Sensitivity above 𝛿.

4.2. Inference of Informative Words of Private Data

The private dataset may contain words that convey useful information about the dataset. Among
such informative words, we attempt to infer top K informative words which can be revealed by
the fine-tuned model. We quantify the information revealed by a word by defining a word-info
(𝑊𝐼) score for each word present in 𝐷𝑎. We assume that a word appearing in most sensitive
sentences are more informative, hence we define the word-info score using the Sensitivity of
the sentences as follows,

𝑊𝐼(𝑤) =

∑︀
𝑖 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝐷𝑎𝑖)𝑛𝑜𝑟𝑚

𝐶(𝐷𝑎, 𝑤)
*Θ𝐷𝑎(𝑤) (4)

where, 𝐷𝑎𝑖 indicates the 𝑖𝑡ℎ sentence in 𝐷𝑎, 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑆)𝑛𝑜𝑟𝑚 indicates normalized Sen-
sitivity score of a sentence, 𝐶(𝐷𝑎, 𝑤) indicates the count function to obtain the number of
sentences from 𝐷𝑎 containing the word 𝑤 and Θ𝐷𝑎 indicates the word distribution of 𝐷𝑎. We
choose top K words with highest word-info score as the most informative words of the private
dataset.

4.3. Reconstruction of Private Data.

The accepted sentences 𝐷𝑎 may contain duplicate information as we iteratively query the fine-
tuned model with an empty sequence. Moreover, larger the size of 𝐷𝑎, more accurate will be
the informative words we infer. Therefore, it is necessary to carefully choose the representative
sentences from 𝐷𝑎 to reconstruct the private data. In order to choose the sentences, we use
the existing technique called submodular optimization [25] which greedily chooses the content
sequentially to maximize an objective function. In addition to the 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 score of a
sentence, we define the following criteria to develop the final objective function to choose
sentences for the reconstruction.



Table 2
Statistics of the Datasets

Public Private Shadow
Dataset PubMed MIMIC-III Kaggle

#Sentences 1445679 7452 10000
#Unique Words 209099 6098 21585

Avg. Sentence Length 22.12 10.48 23.18

Coverage - Let the function Θ denotes word distribution of a sentence or a collection of
sentences, defined over a set of words, then the Coverage of 𝑆𝑓 is computed as follows,

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑆𝑓 ) = 1−𝐷𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒(Θ𝐷𝑟∪𝑆𝑓
||Θ𝐷𝑎

)𝑛𝑜𝑟𝑚 (5)

where 𝐷𝑟 ∪ 𝑆𝑓 indicates the state of the reconstructed dataset 𝐷𝑟 after adding the sentence 𝑆𝑓

to the dataset. 𝐷𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒𝑛𝑜𝑟𝑚 indicates normalized value of Kullback-Leibler (KL) divergence
[26] between two distributions Θ1 and Θ2 as follows,

𝐷𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒(Θ1||Θ2) =
∑︁
𝑤

𝑝(𝑤|Θ1)𝑙𝑜𝑔
𝑝(𝑤|Θ1)

𝑝(𝑤|Θ2)
(6)

A lower KL divergence score indicates a higher similarity between the two distributions Θ1

and Θ2.
Novelty - Novelty of 𝑆𝑓 indicates how much novel information it can add to 𝐷𝑟 during the

reconstruction process. We define Novelty of a sentence as follows,

𝑁𝑜𝑣𝑒𝑙𝑡𝑦(𝑆𝑓 ) = 𝐷𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒(Θ𝐷𝑟 ||Θ𝑆𝑓
)𝑛𝑜𝑟𝑚 (7)

Finally, the overall objective function to choose members of 𝐷𝑟 is obtained as a weighted
combination of 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦, 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 and 𝑁𝑜𝑣𝑒𝑙𝑡𝑦 as follows,

𝑆𝑐𝑜𝑟𝑒𝑟(𝑆𝑓 ) = 𝜔1 * 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑆𝑓 )𝑛𝑜𝑟𝑚+

𝜔2 * 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑆𝑓 ) + 𝜔3 *𝑁𝑜𝑣𝑒𝑙𝑡𝑦(𝑆𝑓 )
(8)

where 𝜔1, 𝜔2, and 𝜔3 are the weights controlling the contribution of each criteria with∑︀
𝑖 𝜔𝑖 = 1. Using the above objection function (Equation-8), 𝑁 sentences from𝐷𝑎 are iteratively

chosen to reconstruct the private data.

5. Experimental Set-up

In this section, we explain the experimental setup used for the execution of our attack. Our
attack simulates the real-world scenario of the application of LMs for downstream tasks in
specific domains. As such, we choose the medical domain for our experiment and attempt to
reconstruct the patient notes. The following subsections explain the datasets we used, training,
and fine-tuning of the LM, and parameter selection.



5.1. Dataset

We use PubMed [27] which has 200,000 abstracts of medical journals as the public dataset for
training a LM. To obtain the fine-tuned LM, we use MIMIC-III [28] dataset as our private dataset
which contains doctors’ notes pertaining to over 40,000 patients. Along with these two datasets,
we use clinical notes published in Kaggle1 as a shadow dataset to choose the 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
threshold, 𝛿. The following subsections explains how an adversary can use a shadow dataset to
determine 𝛿. Table 2 summarizes the statistics of all three datasets. We drop all the sentences
with a word count less than 3 before the inference.

5.2. Model

We use GPT-2 [3] as our model, which is one of the largest LMs with 1.5 billion parameters. We
train the GPT-2 model on the public dataset for 2000 epochs and then fine-tune it on the private
data for 100 epochs to obtain the generic and fine-tuned LMs respectively.

Table 3
Parameter Setting

Parameter Value
Training epochs - 𝐿𝑔 , 𝐿𝑓 2000, 200

𝛿 - restrictive 0.736
𝛿 - relaxed -10.225
𝛿 - relaxed++ 150.22
𝜔1, 𝜔2, 𝜔3 1/3

5.3. Parameter Setting

The key parameter of our reconstruction attack is the Sensitivity threshold 𝛿, which is used to
determine whether we accept or reject a sentence as a member or non-member of the private
dataset respectively. While the adversary can accept all the sentences (𝛿 = 0) or choose an
arbitrary value for 𝛿, carefully determining the value of 𝛿 is necessary for an efficient and
successful attack. In-order to determine 𝛿 we execute the attack with a shadow dataset that is
accessible to the adversary. Since the adversary is aware of the domain, we choose a shadow
dataset from the same domain. We train a shadow model 𝐿𝑠 by fine-tuning our generic model
𝐿𝑔 .

We generate 10,000 sentences by querying the shadow model 𝐿𝑠 and compute their Sensitivity
scores in all three problem settings. Now the goal of the adversary is to determine whether the
generated sentences are present in the shadow dataset. We use the ROUGE metric [29], which
is a widely used metric to compute the similarity between two text sequences to determine
the presence of a model-generated sentence in the shadow dataset. ROUGE metric is available
in different variations and we use ROUGE-L for the similarity computation. We consider a
generated sentence as a member of the shadow dataset if there exists a sentence in the shadow
dataset with a similarity above 0.5. We compute the average Sensitivity scores of the successfully

1https://www.kaggle.com/rsnayak/hackathon-disease-extraction-saving-lives-with-ai



Figure 3: Acceptance Rate of Generated Sentences in all Three Problem Settings

reconstructed sentences as the threshold 𝛿. Table 3 lists all the parameters of our experiment
setup.

6. Results

In this section, we present the results of our experiments to evaluate the effectiveness of the
proposed attack.

6.1. Acceptance of Generated Sentence

The rate of acceptance of sentences generated by the fine-tuned model over time is a good
indicator of the probability of 𝐿𝑓 generating 𝑆𝑓 with the context from the private dataset. We
generate 20,000 sentences in each problem setting and report the acceptance rate of generated
sentences after every 50 sentence generation. Figure 3 shows the acceptance rate for the three
different settings. We observe that the acceptance rate converges with time in all three settings.
For example, in the restrictive scenario the acceptance rate converges to 0.777. This indicates
that the fine-tuned model is generating sentences with the Sensitivity level of 0.736 (𝛿) from the
private data with a probability of 0.777.

We can see that the acceptance rate in relaxed and relaxed++ are almost close to zero. This
could be mainly due to the different distribution of Sensitivity values obtained using the like-
lihood of the fine-tuned and shadow models. Figure 4 shows the Sensitivity distribution of
generated sentences using both fine-tuned and shadow models. We observe that in the re-
strictive scenario, the Sensitivity distribution of sentences generated using the fine-tuned and
shadow models are more similar and the majority of the sentences’ Sensitivity value is above
0.7. However, for the other two settings, the Sensitivity distributions vary a lot for fine-tuned
and shadow models. This results in a Sensitivity threshold value which does not well represent
the sentences to be accepted while querying the fine-tuned model. Therefore, following the
restrictive setting, we accept 77.7% of the sentences with the highest Sensitivity values in the



(a) restrictive - fine-tuned (b) restrictive - shadow

(c) relaxed - fine-tuned (d) relaxed - shadow

(e) relaxed++ - fine-tuned (f) relaxed++ - shadow

Figure 4: Sensitivity distribution of sentences generated using fine-tuned and shadow LMs

relaxed and relaxed++ settings instead of using the threshold values obtained using the shadow
training.



Table 4
Performance of Vocabulary Inference

Setting Vocabulary
Size Precision Recall F1-Score

restrictive (𝛿 = 0) 5919 0.549 0.533 0.541
restrictive (𝛿 = 0.736) 5321 0.579 0.505 0.54
relaxed 4285 0.634 0.446 0.5234
relaxed++ 4309 0.633 0.447 0.524

6.2. Inference of Private Dataset Vocabulary

As the adversary is not aware of any word present in the private dataset, 𝐷𝑎 reveals the possible
set of words present in the private dataset. In this section, we analyze the percentage of words
of the private dataset that has been successfully inferred by the adversary. We use NLTK2

library for tokenizing the sentences and removing stopwords to obtain the final vocabulary of
the private dataset and accepted sentences 𝐷𝑎. Table 4 shows the performance of the inference
in all three settings. We can observe that the restrictive setting performs better compared
to the other two and we were able to infer 50.5% of the vocabulary of the private dataset.
Moreover, the smaller vocabulary of accepted sentences in the relaxed and relaxed++ indicates
that both settings accept sentences with similar words which result in smaller vocabulary,
whereas restrictive setting accepts sentences with decisive information which results in larger
vocabulary.

We also report the performance for the restrictive setting when all the sentences generated
are accepted (𝛿 = 0). However, there is no significant increase in the F1-Score observed when
all the sentences are accepted. This indicates that the Sensitivity value of the sentences enables
the adversary to correctly classify the context origin of the sentences.

Figure 5: Accuracy of Top K Informative Words Inference

2https://www.nltk.org/



6.3. Inference of Informative Words

Inference of informative words poses more privacy threat as a small amount of informative
words can leak sensitive information about the dataset and may enable further targeted attacks.
In this section, we analyze how accurately the informative words can be inferred as explained
in section 4.2. As there is no ground truth, we use TF-IDF [30] score of the words present
in the private dataset to obtain the ground truth informative words. TF-IDF is a widely used
statistical measure in the field of information retrieval to determine how important a word is
to a document in a collection of documents. Figure 5 shows the accuracy of up to top 1000
informative words inferred in all three problem settings. We observe that for 𝐾 value above
450, the restrictive setting outperforms the other two in a small margin and we are able to infer
the informative words with nearly 75% accuracy.

(a) precision (ROUGE-L) (b) precision (ROUGE-3)

(c) recall (ROUGE-L) (d) recall (ROUGE-3)

Figure 6: Reconstruction Performance for a Range of N



6.4. Dataset Reconstruction

We sample 𝑁 number of sentences from the accepted sentences 𝐷𝑎 to obtain the reconstructed
dataset 𝐷𝑟. To evaluate the dataset reconstruction, we use ROUGE [29] score similar to the
shadow training explained in 5.3. We use both ROUGE-L and ROUGE-3 scores with the threshold
of 𝛾𝐿 = 0.5 and 𝛾3 = 0.4 respectively to determine whether a reconstructed sentence is present
in the private dataset. Figure 6 shows the performance for a range of 𝑁 value from 1000
to 15000 in a step size of 1000. We observe that unlike the performance of vocabulary and
informative words inference, relaxed and relaxed++ settings are obtaining a slightly higher
precision compare to restrictive setting. This could be due to the relaxed and relaxed++ settings
generating similar sentences that are appearing in the private dataset, hence it results in
relatively smaller vocabulary and higher precision.

Figure 7: Distribution of Rouge-L Values of Accepted Sentences

Moreover, there is a significant drop in recall observed when the ROUGE version used for
similarity computation is changed from ROUGE-L to ROUGE-3. This is mainly due to the
shorter sentences appearing in the private dataset compared to the public or shadow datasets
(refer Table 2), which result in higher ROUGE-L. However, even with ROUGE-3 metric, the
recall obtained is 46.68% which indicates the adversary can reconstruct nearly 46.68% of the
dataset without knowing any information of the model or private dataset, except the domain of
the private dataset. Figure 7 shows the distribution of ROUGE-L values obtained for accepted
sentences. We observe that majority of the sentences’ ROUGE-L values are higher than 0.3
which indicates that most of the generated sentences contain nearly 30% of consecutive terms
appearing in the private dataset. Moreover, 3090 sentences from 𝐷𝑎 are the same (ROUGE-L =
1) as the sentences appearing in the private dataset which shows that the fine-tuned LMs pose
a realistic threat, which needs to be considered during its deployment.

7. Case-Study

The informative words that are easily leaked by the model can be used either by the adversary
for further targeted attacks or by the data owner for the execution of prevention mechanisms



Table 5
Sample informative sentences from the private data with informative words and their corresponding
word-info score.

Top Informative Sentences Informative Words Word-info Score
The patient is a NUM year old right-handed
african american man with past medical history of
stroke in date with right arm weakness, treated
at doctor hospital, with complete resolution and
no residual symptoms, iddm, tobacco abuse, obesity,
who presented to hospital ed on date at NUM as a
code stroke.

date, ed, history,
hospital, medical,
NUM, old, patient,
presented, right,
treated, year.

0.00558, 0.00342,
0.02613, 0.00939,
0.00482, 0.06515,
0.00484, 0.10477,
0.00501, 0.00690,
0.00287, 0.00447

History of present illness: patient is an NUM who
is a retired former gm worker who has cardiac his-
tory that dates back to information when he was
admitted to an outside hospital with chest pain,
shortness of breath and diaphoresis after shoveling
snow at which time ecg was consistent with an acute
inferior mi with a ck peaking at NUM with NUM mb.

acute, admitted,
cardiac, history, hos-
pital, information,
NUM, pain, patient.

0.00673, 0.00351,
0.00393, 0.02613,
0.00939, 0.00417,
0.06515, 0.00472,
0.10477

to minimize the information leakage. In this case study, we determine the most informative
sentences of the private dataset which are more vulnerable to the targeted attacks due to the
presence of highly informative words. Determining the informative sentences will enable the
data owner to come up with prevention mechanisms such as masking sensitive terms appearing
in the highly informative sentences or removing the entire sentence to minimize the information
leakage. To determine the highly informative sentences, we compute Info-Leak (IL) score for
each sentence present in the private dataset based on the Word-info (WI) score (Equation 4). Let
𝐼𝑘 be the top K informative words inferred and 𝐷𝑓𝑖 ∩ 𝐼𝑘 denotes the top K informative words
present in the 𝑖𝑡ℎ sentence of the private dataset 𝐷𝑓 . Then the Info-Leak score of a sentence
𝐷𝑓𝑖 is given by,

𝐼𝐿(𝐷𝑓𝑖) =
∑︁

𝑤∈𝐷𝑓𝑖
∩𝐼𝑘

𝑊𝐼(𝑤) (9)

Table 5 portrays two highly informative sentences detected in the restrictive setting for 𝐾
value of 50 along with the informative words and their WI score. Here, NUM is the token used
to mask numerical values in the private dataset. We observe that both sentences are more
informative as they contain details regarding the patient history or patient description. For
example, the first sentence describes a patient along with the medical conditions. Although
the age, hospital name and date are masked out, the detailed description about the patient
(right-handed african american man) with the detailed medical diagnosis (stroke with right arm
weakness, etc) leads to information leakage. This is especially useful for targeted attacks where
an adversary is aiming to gain access to the medical details of a particular person.



8. Conclusion

In this study, we design a novel attack, i.e., dataset reconstruction attack and inference of
informative words against LMs, to demonstrate the possible information leakage from fine-
tuned LM with black-box query access. We have shown that the behavioral difference between
LM updates can reveal the context origin of a word sequence generated. We quantify this
behavioral difference using a novel metric, Sensitivity for three different problem settings. Our
experiment shows, we are able to successfully infer 50.5% of the vocabulary of the private dataset
and the informative words can be predicted with an accuracy of nearly 75%. Moreover, our
experiments validate that only with the black-box query access to a fine-tuned LM, an adversary
can reconstruct the private dataset with sentences that are similar to 46.67% of the sentences
available in the private data. Future works include reconstruction attack with white-box query
access to LMs and targeted attack using the informative words inferred.
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