
ROBUST: Deep Learning for Malware Detection
under Changing Environments
Adel Abusitta1, Talal Halabi2 and Omar Abdel Wahab3

1McGill University, 845 Sherbrooke St W, Montreal, Quebec H3A 0G4, Canada
2The University of Winnipeg, 515 Portage Ave, Winnipeg, MB R3B 2E9, Canada
3Université du Québec en Outaouais, 283 Alexandre-Taché Blvd, Gatineau, Quebec J8X 3X7, Canada

Abstract
Malware is one of the most notorious security threats in cyberspace today, and Artificial Intelligence is
playing a major role in pushing its design to the next level. Although several malware detection systems
(MDS) based on machine learning have recently been designed to cope with the updated malware nature,
most of these systems are still not mature enough to capture the modified malware using anti-analysis
techniques. Moreover, the patterns extracted and adopted by a machine learning-based MDS are limited
to the specific environment and infrastructure. Hence, they are not fully effective against anti-analysis
techniques (e.g., obfuscation techniques) and/or when tested in different execution environments (e.g.,
different machines). Motivated by this fact, this paper presents a new framework for detecting malware
in non-stationary environments by leveraging deep learning techniques to extract useful features that are
robust against changing environments. More specifically, the framework is based on a special version of an
Autoencoder, called a Denoising Autoencoder, which is adopted as a building block in an adaptable deep
neural network. The experimental results using a real-world dataset show that the framework improves the
detection accuracy compared to existing methods.

Keywords
Malware, malware detection, deep learning, changing environment

1. Introduction

For the last decade, Artificial Intelligence (AI) has been aggressively advancing many scientific,
technological, and social fields and becoming gradually rooted in our day-to-day life. Nonetheless,
it has also been extensively exploited by society’s bad actors to create powerful cyberweapons
and launch destructive cyberattacks. For instance, AI-enabled malware leverages machine and
deep learning techniques to explore hidden and zero-day vulnerabilities in computer systems
and networks, remain hidden from deployed security protocols and solutions, and improve
social engineering practices. This emerging facet of malicious AI can easily trick conventional
intrusion detection systems. Hence, without radically adapting these systems and substantially

AIofAI’21: 1st Workshop on Adverse Impacts and Collateral Effects of Artificial Intelligence Technologies, Montreal,
CA
" adel.abusitta@gmail.com (A. Abusitta); t.halabi@uwinnipeg.ca (T. Halabi); omar.abdulwahab@uqo.ca
(O. A. Wahab)
~ https://ca.linkedin.com/in/adel-abusitta-4606968a (A. Abusitta); https://sites.google.com/view/talalhalabi/
(T. Halabi); http://w4.uqo.ca/dii/dyn/profs/omar.abdulwahab.php (O. A. Wahab)
� 0000-0003-0860-3220 (A. Abusitta); 0000-0002-1922-5803 (T. Halabi); 0000-0002-3991-4673 (O. A. Wahab)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:adel.abusitta@gmail.com
mailto:t.halabi@uwinnipeg.ca
mailto:omar.abdulwahab@uqo.ca
https://ca.linkedin.com/in/adel-abusitta-4606968a
https://sites.google.com/view/talalhalabi/
http://w4.uqo.ca/dii/dyn/profs/omar.abdulwahab.php
https://orcid.org/0000-0003-0860-3220
https://orcid.org/0000-0002-1922-5803
https://orcid.org/0000-0002-3991-4673
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


increasing their intelligence [1], companies and organizations will not be able to face the future
generation of stealthy cybercriminals, especially that crafting malware using AI techniques will
become increasingly accessible and easy (e.g., using cloud-based Machine Learning-as-a-Service
(MLaaS) platforms [2]).

Malware is a software programmed to harm organizations, computer systems, and users [3]. It
can corrupt users’ applications and operating systems, damage networks and internet connections,
corrupt and steal sensitive data (e.g., user’s password), and/or encrypt users and organizations’
documents. Moreover, it can be used to launch large-scale attacks such as compromising hosts,
servers and clouds, bringing down sensitive government servers, and damaging critical infras-
tructures that are vital to many sectors including Information Technology, health, transportation,
power, and Education [4, 5, 6]. Nonetheless, the malware of the future will be significantly
empowered by AI, which greatly adds to its fundamental characteristics as illustrated in Figure
1. It can adapt to its environment by changing its behavior accordingly to thwart detection and
increase its impact. Moreover, it can perform deep targeting by stealthily learning the behavior of
its target system and determining the optimal time of attack that reduces detection chances.

Malware detection systems (MDS) can be divided into two types: signature-based and machine
learning-based approaches [3]. The former type compares suspicious malware against known
malware signatures. On the other hand, the machine learning-based MDS enables the detection
of unseen malware using machine learning techniques (e.g., SVM, NN). These techniques allow
the system to raise security alarms when unexpected behaviors are observed. However, a large-
enough dataset of malware and ’good’ software is required in order to guide or train the machine
learning model on how to distinguish malware among ’good’ software. The learned model can
then be used to detect whether a given activity or software component is malicious or not.

The last few years have shown substantial progress in the design of malware detection systems
that do not only detect malware but also deal with their evolution [3]. Nevertheless, the detection
of malware is becoming increasingly challenging. One of the reasons is that malware designers
have become experts at exploiting and building advanced anti-analysis techniques (e.g., obfus-
cation methods) that hide the malicious behavior of malware. Moreover, current and emerging
computer systems are becoming highly distributed, heterogeneous, and dynamic, which creates
many opportunities for the malware to take various forms depending on which machine it runs
on. Although machine learning-based MDS are efficient in detecting new threats, they are still
not able to detect malware under changing environments. The malware-related patterns extracted
and adopted by the existing machine learning methods are limited to the specific environment
and infrastructure and do not necessarily hold after applying complex obfuscating techniques on
malware and/or run the malware on different machines. These shortcomings may reduce malware
detection chances.

To address the above-mentioned challenges, we propose a robust MDS framework that inte-
grates a deep learning approach to enhance the detection accuracy under changing environments.
The proposed model learns a ’good’ representation of inputs (Malware), which is robust against
anti-analysis techniques and changing environments. The learned representation can then be
used to train a classifier on how to detect malware. More particularly, our framework is based on
Stacked Denoising Autoencoders (SDAE), where a Denoising Autoencoder (DA) is adopted as a
building block to train the deep neural network [7] [8]. The DA allows the MDS to learn how to
reconstruct original malware after being corrupted. This, in turn, enables the MDS to learn robust



Figure 1: Main characteristics of AI-enabled malware.

and useful features that enhance its accuracy. Our contributions are summarized as follows:

• Proposing a robust malware detection system framework that enables the detection of
complex malware under changing environments.

• Designing an efficient method to extract robust and useful features that lead to a better
MDS accuracy.

• Studying the effectiveness of the proposed framework using a real-world dataset and
comparing the proposed algorithm with the state-of-the-art methods.

The remainder of the paper is structured as follows. Section 2 discusses related work to
intelligent malware detection. Section 3 describes the proposed framework. Section 4 describes
the evaluation settings and analyses the obtained results. Finally, Section 5 concludes the paper
and recommends some future works.

2. Related work

The section discusses machine learning-based MDS. These models can be classified as traditional
machine learning models or deep learning models. Existing machine learning-based models can
also be categorized according to the learning style used as follows: supervised, unsupervised
or semi-supervised. In a supervised machine learning-based MDS [9, 10], the classification
technique usually learns on a labeled dataset, which allows the classifier to calculate its accuracy
on a training dataset. The unsupervised machine learning-based MDS [11, 12] provides unlabeled
data which the machine learning algorithm tries to understand by extracting features without
guidance. Finally, semi-supervised machine learning-based MDS [13, 14] use both types of data
(labeled and unlabeled) [3].

The most popular traditional machine learning-based methods in the literature are Random
Forest [15, 16], Hidden Markov Models [17, 18], Support Vector Machine [19, 20], Naive Bayes
classifier [21, 20], decision tree [21, 11], rule-based classifier [20], K-nearest neighbors [10, 21],
Bayesian Network [22], and Neural Network [23, 24]. On the other hand, deep learning methods
for malware detection enables the abstraction and extraction of features automatically, which
allows to build reliable malware detection systems. To this end, several layers of abstraction can
be used to learn the ’good’ representation of the malware [8].

Saxe and Berlin [24] designed a deep neural network for malware detection. The proposed
method is based on a multi-layer perceptron (MLP), which is a class of feed-forward neural



networks. The activation functions that they used in the network are parametric rectified linear
units (PReLU), which enable the deep neural network to improve the detection accuracy compared
to other activation functions. The authors also adopted a Bayesian model to determine the
probability that a given binary is malware. Similarly, Dahl et al. [23] used a deep learning
approach to improve the malware detection accuracy. In particular, they used a restricted
Boltzmann machine (RBM) as a building block for their deep neural network. The use of RBM
allows to pre-train the model and obtain efficient initial weights to be used while applying the
back-propagation training algorithm.

Huang and Stokes [25] designed an artificial neural network to achieve multi-task training.
The first task is used to find whether an unknown binary is benign or malicious. The second task
is used to predict the malware family. Among other approaches, the authors adopted an efficient
projection layer, which is used to reduce and normalize the deep network’s dimension. They used
four layers (hidden layers) and applied the RELU activation function.

Kolosnjaji et al. [26] proposed a convolutional neural network (CNN) integrated with Long
Short-Term Memory (LSTM) networks to find the binary and malware families. To this end,
they adopted the sequence of extracted system calls. The convolution layers in the proposed
framework are used to capture the correlation between the malware’s dynamic features. The
CNN’s output layer is then used to train the LSTM layer in order to model the dependencies of
system calls.

Recently, Abusitta et al. [27] proposed a deep learning method for a proactive multi-cloud
cooperative intrusion detection system (IDS). The proposed framework is based on a Denoising
Autoencoder (DA), which is adopted as a building block to train the deep network. The DA
enhances the ability of one IDS in learning how to reconstruct the feedback of other IDSs. As
a result, the approach enables the IDSs to proactively decide about suspicious behaviour under
incomplete information about the feedback. Similarly, Abusitta et al. [28] proposed a proactive
cooperative MDS. They also used the DA to reconstruct all MDSs’ feedback from incomplete
feedback. This enabled them to enhance the detection accuracy in real-time [28].

The main limitation of the above-mentioned methods is that they assume that the security
patterns extracted using machine learning methods are limited to the specific environment. This
makes the detection method unable to detect malware when applying anti-analysis techniques
such as obfuscation techniques. This paper proposes a new method for detecting malware under
changing environments by adopting stacked denoising autoencoders to extract useful features
that are robust against noisy inputs.

3. ROBUST: The Proposed Framework

This section first presents the basic concepts of vanilla autoencoders then describes our proposed
framework.

3.1. Vanilla Autoencoders

An autoencoder is a method used to learn the representation of data using unsupervised learning
[29]. It can be adopted as a pre-training process in a deep neural network in order to get better



Figure 2: The proposed malware-related denoising autoencoder.

initial weights rather than random values [30]. Many works have shown that weight initialization
using an autoencoder can improve the performance of deep neural networks [30].

In fact, an autoencoder can be considered as a building block for deep networks [30]. Specifi-
cally, it takes an input vector (malware data) 𝑥 ∈ [0, 1]𝑣 , where 𝑣 is the dimension of the vector,
and maps it to a higher level representation (hidden representation) ℎ ∈ [0, 1]𝑣

′
as follows:

Algorithm 1: ROBUST: Training malware-related Denoising Autoencoder
procedure TRAINDA(𝑥, 𝑙𝑟, 𝑒𝑝, 𝑏𝑡, 𝜃)

• 𝑥= [𝑥1, 𝑥2, ...𝑥𝑛]: Input malware and benign data
• 𝑙𝑟: learning rate
• 𝑒𝑝: epoches
• 𝑏𝑡: batches
• 𝜃={𝑊, 𝑏, 𝑏ℎ}

for 𝑖 from 0 to 𝑒𝑝 do
for 𝑗 from 0 to 𝑏𝑡 do

• 𝑧 = 𝑎𝑑𝑑− 𝑛𝑜𝑖𝑠𝑒(𝑥, 𝑙): l is corruption level
• ℎ = 𝑆𝑖𝑔𝐹𝑢𝑛(𝑧 *𝑊 + 𝑏)

• 𝑥′ = 𝑆𝑖𝑔𝐹𝑢𝑛(ℎ *𝑊𝑇 + 𝑏ℎ)

• 𝐿𝑜𝑠𝑠(𝑥, 𝑥′)= −
∑︀𝑑

𝑖=1[𝑥𝑖𝑙𝑜𝑔𝑥
′
𝑖 + (1− 𝑥𝑖)𝑙𝑜𝑔(1− 𝑥′

𝑖)]

• 𝐶𝑜𝑠𝑡𝑉 𝑎𝑙𝑢𝑒 = 𝑚𝑒𝑎𝑛(𝐿𝑜𝑠𝑠(𝑥, 𝑥′))

• 𝑔=determining the gradients with respect to 𝜃

for 𝜃𝑖,𝑔𝑖 ∈ (𝜃,g) do
• 𝜃𝑖 = 𝜃𝑖 - 𝑙𝑟 * 𝑔𝑖

end
end
end

end procedure



ℎ = 𝑓𝜃(𝑥)

𝑓𝜃(𝑥) = 𝑆𝑖𝑔𝐹𝑢𝑛(𝑊 * 𝑥+ 𝑏)
(1)

𝑆𝑖𝑔𝐹𝑢𝑛 is the sigmoid function, and 𝜃 = {𝑊, 𝑏}, where 𝑊 is the neural network’s weight and 𝑏
is a bias [30].

The resulting hidden layer ℎ can be reconstructed to the layer 𝑥′ using a decoding function as
follows:

𝑥′ = 𝑔𝜃′(ℎ)

𝑔𝜃′(ℎ) = 𝑆𝑖𝑔𝐹𝑢𝑛(𝑊 ′ * ℎ+ 𝑏′)
(2)

𝜃′ = {𝑊 ′, 𝑏′}, where 𝑊 ′ and 𝑏′ are the neural network’s weight and a bias, respectively. The aim
of the autoencoder model is to optimize the parameters of the model so that the reconstruction
error between the input data and output data is minimized [31].

3.2. The Proposed Training Algorithm

In order to render the autoencoder robust against malware anti-analysis techniques and changing
environments, the autoencoder should be trained to reconstruct malware data even in the presence
of noise. The Vanilla autoencoder is not able to do that. The autoencoder that deals with noisy
inputs is called denoising autoencoder [7]. This is achieved by applying noise to the initial input
𝑥 before mapping it to the hidden layer. In other words, the objective is to reconstruct 𝑥, where 𝑥
represents the original data points (malware or benign). Hence, a corrupted version 𝑧 = 𝑛𝑜𝑖𝑠𝑒(𝑥)
will be obtained from 𝑥, where 𝑛𝑜𝑖𝑠𝑒 is a corruption mechanism [7]. In the proposed framework,
we use a Gaussian noise as the corruption method.

The autoencoder is then designed to map the noisy data 𝑧 to the hidden layer and attempt to
find the weights (learn) that can be used to reconstruct the original data 𝑥. This is achieved by
enabling the input 𝑧 to be mapped to a hidden representation as follows:

ℎ = 𝑓𝜃(𝑧)

𝑓𝜃(𝑧) = 𝑆𝑖𝑔𝐹𝑢𝑛(𝑊 ′ * 𝑧 + 𝑏′)
(3)

As can be seen, we choose 𝑧 as input instead of 𝑥. The hidden representation ℎ is then used to
reconstruct the original data 𝑥′ as follows:

𝑥′ = 𝑔𝜃′(ℎ)

𝑔𝜃′(ℎ) = 𝑆𝑖𝑔𝐹𝑢𝑛(𝑊 * ℎ+ 𝑏)
(4)

The architecture of the proposed framework is shown in Figure 2. As shown in the traditional
autoencoder, the model is trained to find the parameters (weights and bias) that lead to minimize
the reconstruction error as follows:

𝜃*, 𝜃′* = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝜃,𝜃′

∑︀𝑛
𝑗=1 𝐿𝑜𝑠𝑠(𝑧

(𝑗), 𝑥′(𝑗))

𝑛

=

∑︀𝑛
𝑖=1 𝐿𝑜𝑠𝑠(𝑧

(𝑗), 𝑔𝜃′(𝑓𝜃(𝑧
(𝑗))))

𝑛

(5)



Figure 3: Deep Network.

The training algorithm of the proposed denoising autoencoder-based MDS is described in
Algorithm 1. The algorithm first takes an input 𝑥 from the dataset and applies noises on it to
produce a corrupted version 𝑧. The corrupted version 𝑧 is then mapped to the hidden layer,
which is then used to reconstruct the output 𝑥′. The aim here is to optimize the parameters
of the model so that the reconstruction error between 𝑥 and 𝑥′ can be minimized. The neural
network’s parameters are randomly initialized and then optimized using stochastic gradient
descent algorithms. This algorithm is applied to each layer added within the proposed framework.
To enable the model to classify malware from benign software, a logistic regression classifier is
added to the last layer. Thereafter, the parameters of all the layers will be fine-tuned to minimize
the error of predicting the target label using a back-propagation algorithm [32] [33] [30] [8][7].
Figure 3 shows the complete architecture of the proposed malware detection framework after
adding the last layer.

4. Evaluation Results

To experimentally evaluate the proposed framework, we use the CCCS-CIC-AndMal-2020 dataset
[34], which is the most suitable dataset to represent unstable and changing environments. This is

Figure 4: Experimentation parameters.



100 150 200 250 300 350

Number of hidden units per layer

50

55

60

65

70

75

80

85

90

95

100

C
la

s
s
if
ic

a
ti
o
n
 a

c
c
u
ra

c
y
 (

%
)

ROBUST (Our model)

1 layer

2 layers

3 layers

(a)

100 150 200 250 300 350

Number of hidden units per layer

50

55

60

65

70

75

80

85

90

95

100

C
la

s
s
if
ic

a
ti
o
n
 a

c
c
u
ra

c
y
 (

%
)

MLP-based Malware Detection

1 layer

2 layers

3 layers

(b)

Figure 5: Classification accuracy performance for ROBUST (a) and MLP-based MDS(b) (95%
confidence intervals).

100 150 200 250 300 350

Number of hidden units per layer

50

55

60

65

70

75

80

85

90

95

100

C
la

s
s
if
ic

a
ti
o
n
 a

c
c
u
ra

c
y
 (

%
)

ROBUST (Our model)

1 layer

2 layers

3 layers

(a)

100 150 200 250 300 350

Number of hidden units per layer

50

55

60

65

70

75

80

85

90

95

100

C
la

s
s
if
ic

a
ti
o
n
 a

c
c
u
ra

c
y
 (

%
)

SAE-based Malware Detection

1 layer

2 layers

3 layers

(b)

Figure 6: Classification accuracy performance for ROBUST (a) and SAE-based MDS (b) (95%
confidence intervals).

due to the fact that the dataset was collected in the presence of different obfuscations scenarios. We
train our model on this dataset using the 10-fold cross-validation. We used the same parameters
used in [3] [27] as shown in Figure 4. We compared our model with the state-of-the-art learning
representation approaches: Multi-layers perception (MLP), Stacked Autoencoder (SAE) and
Variational autoencoder (VAE).

Figure 5 shows the detection accuracy of the proposed framework (ROBUST). We compared
our framework with multi-layers perception (MLP)-based MDS. MLP-based MDS is a traditional
deep neural network which does not include a pre-training process during the training. Instead,
random numbers are used to initialize the weight of the deep neural network. Our study was
done with a different number of layers. As for the first layer (1-layer), Figure 5a shows the
accuracy (average) reported by the proposed framework at different numbers of hidden units.
The results reported are better than the results reported using one layer in MLP-based MDS (5a).
Our framework also improved the detection accuracy compared to MLP-based MDS when we



100 150 200 250 300 350

Number of hidden units per layer

50

55

60

65

70

75

80

85

90

95

100

C
la

s
s
if
ic

a
ti
o
n
 a

c
c
u
ra

c
y
 (

%
)

ROBUST (Our model)

1 layer

2 layers

3 layers

(a)

100 150 200 250 300 350

Number of hidden units per layer

50

55

60

65

70

75

80

85

90

95

100

C
la

s
s
if
ic

a
ti
o
n
 a

c
c
u
ra

c
y
 (

%
)

VAE-based Malware Detection

1 layer

2 layers

3 layers

(b)

Figure 7: Classification accuracy performance for ROBUST (a) and VAE-based MDS (b) (95%
confidence intervals).

applied two and three layers. This is justified by the fact that the proposed framework adopts
a pre-training process. This, in turn, allows the deep network to have better initialization of
parameters, which helps during the training of the deep neural network.

Figure 6 shows our results compared to Stacked Auto Encoder (SAE)-based MDS (SAE-based
MDS). SAE-based MDS applies traditional autoencoders (as building blocks) when training the
deep neural networks. We consider different numbers of layers and hidden nodes in the study.
As can be seen in Figure 6, our model enhanced the accuracy compared to SAE-based MDS.
In particular, Figure 6a shows the accuracy reported when applying the proposed framework
(ROBUST). These results are better than the results reported using SAE-based MDS (6a).

The above results are justified by the fact that our framework uses a denoising autoencoder
instead of a vanilla autoencoder as a building block when training the deep neural networks. The
DA enables us to extract robust and useful features that increase the chances of obtaining good
results despite the noisy and complex malware given as inputs to the deep neural network [7] [8].
More specifically, the denoising autoencoder allows us to learn how to reconstruct the original
malware from obfuscated inputs. In contrast, the vanilla autoencoder is not able to produce robust
features against noisy inputs.

We also compared the proposed framework against the variational autoencoder-based MDS
(VAE-based MDS). In VAE-based MDS, a variational autoencoder is used as a building block
during the training [8]. Different numbers of hidden units and layers have been considered in
the experiments. As can be seen in Figure 7, our model improved the accuracy compared to
VAE-based MDS. This is justified by the fact that the proposed framework adopts a denoising
criterion during the training process. This, in turn, allows our mode to extract useful features that
enhance the detection under the changing environment.

We also compared the proposed framework with two other frameworks, namely training with
noisy inputs: TWNI(1) and TWNI(2) (Figures 8 and 9). TWNI(1) is a stacked autoencoder-based
deep neural network, where noisy data are only used for the pre-training. However, TWNI(2)
uses noisy data for training in both pre-training and fine-tuning. Both TWNI(1) and TWNI(2) use
3-hidden layers. As can be seen in Figures 8 and 9, the proposed framework is much more robust



0 5 10 15 20 25 30 35 40

Fraction of corrupted input (%)

40

50

60

70

80

90

100

C
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y
 (

%
)

ROBUST (Our model)

TWNI(1)

TWNI(2)

Figure 8: ROBUST (Our model) vs. TWNI(2).

0 5 10 15 20 25 30 35 40

Fraction of corrupted input (%)

5

10

15

20

25

30

35

40

45

50

55

60

T
e

s
t 

c
la

s
s
if
ic

a
ti
o

n
 e

rr
o

r 
(%

)

ROBUST (Our model)

TWNI(1)

TWNI(2)

Figure 9: ROBUST (Our model) vs. TWNI(2).

against noisy inputs compared to TWNI(1) and TWNI(2). All models (TWNI(1), TWNI(2) and
ROBUST) reported the same error rate and classification accuracy when setting the percentage of
corrupted data (input) at zero. This is because when no noise is applied, the three models will
become the same as a vanilla stacked autoencoder.



5. Conclusion

In this paper, we proposed a new framework for detecting malware under changing environments.
The proposed framework is based on a denoising autoencoder, which allows us to extract robust
and useful features to enhance the detection accuracy under changing environments. In particular,
the denoising autoencoder is used as a building block during the training of deep neural networks.
The proposed model is used to learn how to reconstruct malware after applying noise on it.
This is useful to extract features that are robust against anti-analysis techniques and unstable
environments. Our model was implemented using a real-world dataset. The results demonstrate
the effectiveness of the proposed framework compared to the state-of-the-art malware detection
methods.

In the future, we would like to study the prediction of future attacks for new generation
malware detection and analysis. Although promising results have already been achieved through
layers of abstraction, the existing solutions are still largely vulnerable to zero-day attacks. In
fact, compared to malware analysts, malware designers have the advantage of knowing current
anti-malware measures and thus novel variants can be designed accordingly. A novel trend in
malware analysis is investigating the feasibility to fill that gap by predicting how future malware
will look like, so as to allow analysts to proactively update anti-malware measures and remain
one step ahead in this arms race.

References

[1] S. M. Devine, N. D. Bastian, Intelligent systems design for malware classification under
adversarial conditions, arXiv preprint arXiv:1907.03149 (2019).

[2] M. Ribeiro, K. Grolinger, M. A. Capretz, Mlaas: Machine learning as a service, in: 2015
IEEE 14th International Conference on Machine Learning and Applications (ICMLA),
IEEE, 2015, pp. 896–902.

[3] A. Abusitta, M. Q. Li, B. C. Fung, Malware classification and composition analysis: A
survey of recent developments, Journal of Information Security and Applications 59 (2021)
102828.

[4] Z. Xu, H. Wang, Z. Xu, X. Wang, Power attack: An increasing threat to data centers., in:
NDSS, 2014.

[5] K. Kimani, V. Oduol, K. Langat, Cyber security challenges for iot-based smart grid networks,
International Journal of Critical Infrastructure Protection 25 (2019) 36–49.

[6] M. Jakobsson, Z. Ramzan, Crimeware: understanding new attacks and defenses, Addison-
Wesley Professional, 2008.

[7] P. Vincent, H. Larochelle, Y. Bengio, P.-A. Manzagol, Extracting and composing robust
features with denoising autoencoders, in: Proceedings of the 25th international conference
on Machine learning, ACM, 2008, pp. 1096–1103.

[8] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.-A. Manzagol, Stacked denoising autoen-
coders: Learning useful representations in a deep network with a local denoising criterion,
Journal of machine learning research 11 (2010) 3371–3408.

[9] S. S. W. Piyanuntcharatsr, S. Adulkasem, C. Chantrapornchai, On the comparison of



malware detection methods using data mining with two feature sets, International Journal
of Security and Its Applications 9 (2015) 293–318.

[10] E. Raff, C. Nicholas, An alternative to ncd for large sequences, lempel-ziv jaccard dis-
tance, in: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ACM, 2017, pp. 1007–1015.

[11] A. Mohaisen, O. Alrawi, M. Mohaisen, Amal: High-fidelity, behavior-based automated
malware analysis and classification, computers & security 52 (2015) 251–266.

[12] M. Polino, A. Scorti, F. Maggi, S. Zanero, Jackdaw: Towards automatic reverse engineering
of large datasets of binaries, in: International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, Springer, 2015, pp. 121–143.

[13] A. Tamersoy, K. Roundy, D. H. Chau, Guilt by association: large scale malware detection
by mining file-relation graphs, in: Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining, ACM, 2014, pp. 1524–1533.

[14] L. Chen, T. Li, M. Abdulhayoglu, Y. Ye, Intelligent malware detection based on file relation
graphs, in: Proceedings of the 2015 IEEE 9th International Conference on Semantic
Computing (IEEE ICSC 2015), IEEE, 2015, pp. 85–92.

[15] W. Mao, Z. Cai, D. Towsley, X. Guan, Probabilistic inference on integrity for access
behavior based malware detection, in: International Symposium on Recent Advances in
Intrusion Detection, Springer, 2015, pp. 155–176.

[16] T. Wüchner, M. Ochoa, A. Pretschner, Robust and effective malware detection through
quantitative data flow graph metrics, in: International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment, Springer, 2015, pp. 98–118.

[17] A. Kalbhor, T. H. Austin, E. Filiol, S. Josse, M. Stamp, Dueling hidden markov models for
virus analysis, Journal of Computer Virology and Hacking Techniques 11 (2015) 103–118.

[18] A. Raghavan, F. Di Troia, M. Stamp, Hidden markov models with random restarts versus
boosting for malware detection, Journal of Computer Virology and Hacking Techniques 15
(2019) 97–107.

[19] M. Ahmadi, D. Ulyanov, S. Semenov, M. Trofimov, G. Giacinto, Novel feature extraction,
selection and fusion for effective malware family classification, in: Proceedings of the sixth
ACM conference on data and application security and privacy, ACM, 2016, pp. 183–194.

[20] J. Sexton, C. Storlie, B. Anderson, Subroutine based detection of apt malware, Journal of
Computer Virology and Hacking Techniques 12 (2016) 225–233.

[21] N. Kawaguchi, K. Omote, Malware function classification using apis in initial behavior, in:
2015 10th Asia Joint Conference on Information Security, IEEE, 2015, pp. 138–144.

[22] I. Santos, F. Brezo, X. Ugarte-Pedrero, P. G. Bringas, Opcode sequences as representation
of executables for data-mining-based unknown malware detection, Information Sciences
231 (2013) 64–82.

[23] G. E. Dahl, J. W. Stokes, L. Deng, D. Yu, Large-scale malware classification using random
projections and neural networks, in: Acoustics, Speech and Signal Processing (ICASSP),
2013 IEEE International Conference on, IEEE, 2013, pp. 3422–3426.

[24] J. Saxe, K. Berlin, Deep neural network based malware detection using two dimensional
binary program features, in: Malicious and Unwanted Software (MALWARE), 2015 10th
International Conference on, IEEE, 2015, pp. 11–20.

[25] W. Huang, J. W. Stokes, Mtnet: a multi-task neural network for dynamic malware classifica-



tion, in: International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment, Springer, 2016, pp. 399–418.

[26] B. Kolosnjaji, A. Zarras, G. Webster, C. Eckert, Deep learning for classification of malware
system call sequences, in: Australasian Joint Conference on Artificial Intelligence, Springer,
2016, pp. 137–149.

[27] A. Abusitta, M. Bellaiche, M. Dagenais, T. Halabi, A deep learning approach for proactive
multi-cloud cooperative intrusion detection system, Future Generation Computer Systems
98 (2019) 308–318.

[28] A. Abusitta, O. A. Wahab, T. Halabi, Deep learning for proactive cooperative malware
detection system, in: Edge Intelligence Workshop, volume 711, 2020, p. 7.

[29] C.-Y. Liou, W.-C. Cheng, J.-W. Liou, D.-R. Liou, Autoencoder for words, Neurocomputing
139 (2014) 84–96.

[30] Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, Greedy layer-wise training of deep
networks, in: Advances in neural information processing systems, 2007, pp. 153–160.

[31] I. Goodfellow, Y. Bengio, A. Courville, Y. Bengio, Deep learning, volume 1, MIT press
Cambridge, 2016.

[32] G. E. Hinton, R. R. Salakhutdinov, Reducing the dimensionality of data with neural
networks, science 313 (2006) 504–507.

[33] G. E. Hinton, S. Osindero, Y.-W. Teh, A fast learning algorithm for deep belief nets, Neural
computation 18 (2006) 1527–1554.

[34] S. Mahdavifar, A. F. A. Kadir, R. Fatemi, D. Alhadidi, A. A. Ghorbani, Dynamic android
malware category classification using semi-supervised deep learning, in: 2020 IEEE Intl
Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence
and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science
and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), IEEE, 2020, pp. 515–
522.


	1 Introduction
	2 Related work
	3 ROBUST: The Proposed Framework
	3.1 Vanilla Autoencoders
	3.2 The Proposed Training Algorithm

	4 Evaluation Results
	5 Conclusion

