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Abstract. The eHealth-KD 2021 is the automatic extraction of knowl-
edge challenge from health documents written in Spanish with a small
selection of sentences from different domains and languages to encourage
cross-lingual and transfer learning approaches, we use the pre-trained
Language Model (LM), namely XML-RoBERTa-base, to provide a Cross-
lingual representation of tokens and the ability to transfer learning from
general domains. Our group participated in all the proposed scenarios;
the main one (F1 0.499), Entity Recognition (ER) (F1 0.653) and Re-
lation Extraction (RE) (F1 0.430). The present system was designed
as a pipeline of generic sequence labellers, each of them independently
fine-tuned for each subtask. The generic sequence labeller consists of a
feed-forward network that learns how to align a sequence of tokens into a
sequence of labels regardless of the language and domain. This simple
straightforward system ranked in the third position in the main and
Entity recognition scenario and widely outperformed the other systems
in the relation extraction scenario.
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1 Introduction

eHealthKD series provide nice scenarios to build and evaluate Natural Language
Processing systems on the medical domain. This year eHealthKD2021 [1] includes
a selection of sentences not exclusively from medical texts but from other domains
and different languages. In the last years, the amount of medical texts, regardless
of format, has grown exponentially and accordingly, the interest in its processing
for several clinical purposes. In this paper, we propose a system to extract entity
mentions and their semantic relation type occurring in Spanish texts in the
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context of the eHealthKD2021 evaluation task. The system was built in two steps.
We first identify and classify entity mentions in the sentence, and afterwards,
we classify the relation type of identified entity pairs. Sentences are encoded
using fine-tuned XLM-RoBERTa [2], which is a neural language model trained in
multiple languages including Spanish. We transfer the general knowledge using a
pre-trained model of the XLM-RoBERTa-base language model and fine-tuning it
for the tasks of identifying entities and relations. We propose a simple yet robust
model, where each component is trained separately. This strategy, contrary to
joint models, makes learning easier and faster (focusing on one task at a time)
and gives flexibility for domain and language adaptation. With this system, we
hypothesize the idea that generic sequence labellers could competitively handle
the relation extraction task while defining suitable formats to represent the
problems and accurate ways to conditionate LM.

2 State Of The Art

Actual systems focus on retrain LM for span detection and entity detection
[3, 4], LM we use for the task is highly related with the result we achieve for
specific domains [5, 6], since LMs have appeared we see that performance of
NLP tasks are directly related to the LM we use to represent textual data.
Relation Extraction (RE) approaches faced the first revolution on [7] reaching
high-performance systems [8–10] those are mainly based on BERT technologies
and derivatives. In the clinical domain RE [11, 12] we can encounter a high-
performance system based on specific techniques such as novel architectures of
Bi-LSTM cells. SOTA Domain-agnostic approaches [13, 14] follow the idea of
improving the LM representation using adaptive techniques for required task
Sequence Labelling (SL) or RE. Cross-Lingual performance [15] is mainly derived
from the appearance of the BERT model and the cross-lingual features it provides.
SL [16, 17] even is an extensively researched field, is nowadays widely used in
new application fields such as clinical data mining.

3 System Description

Generic sequence labelling The 2-stage system to extract entity mentions and
their semantic relation type occurring in Spanish texts is based on a pipeline of
fine-tuned generic sequence labellers as described in 1. We use a feed-forward
network (FFN) to compute the probability ỹi = FFN(xi) for each token, where
each value in ỹi represents the score for a tag in a target tag set. Equation 1
shows how we formalized the the feedforward network.

FFN(xi) = softmax(Wexi + be) (1)



We decided to apply a pipeline of sequence labellers to 1) keep the model
as simple as possible and 2) avoiding over-fitting of the model, as it could
learn specific dependencies in training. For the final prediction, we apply an
argmax function over the label probability distribution obtained for each token.
The sequence labelling is learned minimizing the cross-entropy loss shown in
Equation 2.

Lt = − 1

N

N∑
i=1

yi log ỹi (2)

Where yi is the true label vector for the input token xi, and N is the
number of instances in the training set for the task. As you deduce, the input
file format is composed of two columns, containing xi and yi pairs per line, the
different examples are separated by empty lines. Finally, we use the special token
”jump line” to define the end of a text.

Fig. 1. 2-step relation extraction.

Subtask A: Entity recognition The input provided by the organizer as BRAT
standoff format (.ann), was split into texts keeping line jumps, then texts were



divided into tokens keeping white spaces. Those tokens were aligned with the
labels following Inside Outside Beginning format (IOB). This format does not
capture overlapped and disjoint entities. The output of the system was converted
again into (.ann) files.

Subtask B: Relation extraction We applied once again the same tokenization
strategy exposed for entity recognition. In this case, as we already have the
entities identified in the previous step, we pairwise each possible combination
generating a repeated example per pair, entity markers [18] are added surrounding
entities to avoid overfitting. In this case, we align the entities with the relation
type. The output of the system was transformed into final (.ann) files.

Training setup We used huggingface transformers [19] for default training param-
eters setup, both systems were trained over respective train set and fine-tunned
with respective dev set, both performed 40 epochs with a batch size of 40 exam-
ples, each fine-tune maximized the f1 score described in Conll2005 shared task
[20]. The best model of 11 / 12 checkpoints out of 1100 / 12000 total steps were
respectively used for entity recognition / relation extraction. Both models were
calculated in 30 minutes each using a single NVIDIA Titan V.

4 Results

In the following Table 1 we summarize the results in the three different scenarios
over the official Test set, the best results for each metric are highlighted with
bold characters. The system gets competitive remarks in whole scenarios winning
the third one (Relation extraction) with outstanding results. Although the good
results we encounter low precision stats, this is due to the generic Language
model we used (XLM-RoBERTa), we encountered similar issues in the previous
series [21]. .

Scenario 1 Scenario 2 Scenario 3
Model Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1
Vicomtech 0.541 0.535 0.531 0.700 0.747 0.684 0.542 0.283 0.372
PUCRJ-PUCPR-UFMG 0.568 0.503 0.528 0.715 0.697 0.706 0.367 0.205 0.263
uhKD4 0.485 0.374 0.423 0.518 0.537 0.527 0.556 0.222 0.318
Baseline 0.337 0.177 0.232 0.350 0.272 0.306 0.438 0.017 0.033
IXA 0.465 0.539 0.499 0.614 0.698 0.653 0.454 0.409 0.430

Table 1. Results of eHealth-KD 2021 task. We summarize the top fourth systems:
Vicomtech [22], PUCRJ-PUCPR-UFMG [23], uhKD4 [24] and ours



5 Conclusions

Simple compositions of fine-tunned FFN and LM can accurately describe the
target language, this is sufficient to perform competitively in prediction tasks via
sequence labelling regardless of domain and language, in this way we define generic
sequence labelling. We conclude that the sequence labelling task is extensible to
many tasks like seq2seq or classification with competitive performance at low
cost as we have seen in several approaches [25, 21]. This time we expand the
idea enforcing the necessity of new simple mathematical modelling techniques to
handle huge amount of complex data as we have seen in RE task.
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