CEUR-WS.org/Vol-2944/paper3.pdf

DEPSYM: A Lightweight Syntactic Text
Simplification Approach using Dependency Trees

Niladri Chatterjee, Raksha Agarwal

Indian Institute of Technology Delhi, Hauz Khas, Delhi-110016, India

Abstract

Syntactic Simplification typically involves sentence splitting, changing of voice from passive to active, and
resolving other ambiguities. The present work proposes a lightweight syntactic simplification algorithm,
named DEPSYM, which uses the dependency parse tree of a complex sentence for simplification and
splitting. Automatic and Human evaluations on two commonly used datasets indicate that the proposed
system produces structurally simpler outputs while preserving grammaticality and meaning. The
proposed system is designed for simplification of English sentences.

Keywords

Dependency Tree, Syntactic Simplification, Sentence Segmentation

1. Introduction

The task of Text Simplification (TS) aims at modifying textual content in order to improve its
readability while preserving the meaning. Text Simplification can be categorized as Lexical
Simplification, Syntactic Simplification, Explanation Generation, and Monolingual Machine Trans-
lation [1]. Lexical Simplification aims at identifying and replacing complex words (or phrases)
by an easier-to-read alternative. The alternative can be a single word or a phrase. Syntactic
Simplification (SS) simplifies the text by restructuring the words of the sentences, and/or rewrit-
ing it into smaller sentences. Explanation Generation systems take difficult concepts of a text
and augment it with extra information in order to improve the context and user understanding,
instead of just rewriting the input text. Monolingual Machine Translation based approaches
treat the simplification problem as a translation problem from complex language to simpler
language. This method usually simplifies both the lexicon and syntax of a text.

Long and syntactically complex sentences are difficult to understand for second language
learners [2] and people with reading difficulties [3, 4]. Syntactic Simplification typically involves
sentence splitting, changing passive voice to active and resolving other ambiguities. The aim
of the present work is to perform syntactic simplification of English sentences using their
respective dependency tree structure. The proposed system focuses on rewriting along with
splitting of sentences, if required, which contain passive voice, appositive, relative and conjoint
clauses. It is considered lightweight in the sense that it relies only on the dependency structure
of the sentence for syntactical transformations. It does not adopt more intensive simplification

Proceedings of the First Workshop on Current Trends in Text Simplification (CTTS 2021), co-located with SEPLN 2021.
September 21st, 2021 (Online). Saggion, H., Stajner, S. and Ferrés, D. (Eds).

& niladri.chatterjee@maths.iitd.ac.in (N. Chatterjee); raksha.agarwal@maths.iitd.ac.in (R. Agarwal)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

[+ == CEUR Workshop Proceedings (CEUR-WS.org)

42

mailto:niladri.chatterjee@maths.iitd.ac.in
mailto:raksha.agarwal@maths.iitd.ac.in
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

strategies, such as event-deletion, anaphora resolution, rhetorical structure theory that are
being carried out in many other syntactic simplification systems as discussed in Section 2.

The rest of the paper is organised as follows. Existing related works are briefly described
in Section 2. Section 3 presents the proposed approach. Experimental details are described in
Section 4, and Section 5 presents the results. The paper is concluded in Section 6.

2. Related Work

The earliest work on Syntactic Simplifcation by Chandrasekar et al. [5] developed rules for
transformation of sentences containing relative clauses or appositions. It used Finite State
Grammar to produce noun and verb groups, and a Supertagging model to produce dependency
linkages via partial parsing. Chandrasekar et al. [6] automated the rule generation system for
relative clauses using parallel data of 65 sentences. The transformation rules are identified using
a tree-comparison algorithm, and they are generalized by replacing specific words by tags.

PSET developed by Caroll et al. [7] is the first assistive simplification system aimed for
the benefit of people with aphasia. PSET applies both syntactic and lexical simplification on
English newspaper texts as available on the Internet. Here, the sentences are converted into
subject-verb-object order by replacing passive constructions with active ones. This was further
improved using SYSTAR [8] to split compound sentences. It also converted seven passive clause
types to active, and resolved and replaced eight frequently occurring anaphoric pronouns.

Previous research on text simplification did not account for the discourse level issues related
of conjunction and anaphora that arise from applying syntactic transforms at the sentence level.
In order to improve the cohesion in the simplified text, Siddharthan introduced a regeneration
step in addition to transformation step [9, 10]. It preserves conjunctive cohesion by using
rhetorical structure theory for cue-word selection, sentence ordering and choice of determiner.
Glavas et al. [11] performed simplification of sentences using an event-centered approach.
Their system extracted events from a given sentence; and discarded text that did not belong to
any of the factual events. However, it is an event-based simplification and conceptually different
from lexical or syntactic simplification.

REGENT [12] applied transformation rules for syntactic simplification to typed dependency
representations produced by the Stanford parser [13]. Simplification is performed for sentences
containing coordination, subordination, apposition, passive constructions, and relative clauses.
An overgenerate-and-rank approach was adopted by performing simplification on top-n parses
of a sentence in order to reduce errors due to inaccurate parsing. The outputs were evaluated
by determining the extent of simplification and level of accuracy in rule application.

Siddharthan et al. [14] developed a hybrid text simplification system using synchronous
dependency grammars with hand-written and automatically harvested rules. This allowed for a
linguistically sound treatment of complex sentences requiring reordering and morphological
changes, such as conversion of passive voice to active.

Ferrés et al. [15] developed a hybrid text simplifier for English. Their syntactic simplification
system used rule-based analysis and generation techniques based on PoS tags and dependency
trees. Intrinsic evaluation on a self-collected dataset of 500 sentences suggested that correct
simplifications were obtained for 74.2% sentences. In this system 66 rules have been used

43

Table 1
Examples

Complex Simple

Appositive Bob, 61 years old, will join the company. Bob will join the company. Bob is 61 years old.
Relative ~ Bob, who | live with, is a very nice man. Bob is a very nice man. | live with Bob.
Conjoint Bob does not have a cat but, has a parrot. Bob does not have a cat. Bob has a parrot.
Passive The letter is being written by Bob. Bob is writing the letter.

to simplify seven syntactic phenomena, namely appositive, relative, sentence coordination,
coordinated correlatives, subordination, adverbial, and passive voice.

Scarton et al. [16] developed a multilingual syntactic simplification tool (MUSST) using
dependecy based rules. The rules simplify sentences containing conjoint clauses, relative
clauses, appositive phrases and/or passive voice. The order of clauses were not taken into
consideration when complex marker, such as although is replaced by a simpler marker but. An
accuracy of 76% was reported for simplifying a set of 292 English sentences. However, system
evaluations of this work for standard datasets, such as PWKP [17] and TurkCorpus [18] are not
available.

Syntactic Simplification systems have also been developed for non-English languages, such
as Spanish [19], Italian [20], Portuguese [21]. The SIMPLEXT system [19] utilizes the de-
pendency structure of Spanish sentences to perform five types of syntactic transformation,
such as separation of participial modifiers, splitting relative and coordinating clauses, reorder-
ing of quoted objects. ERNESTA [20] performs simplification of Italian sentences using an
event-based approach and it focuses on anaphora resolution and syntactic simplification while
removing unnecessary events. PORSIMPLES [21] is a rule-based simplification system for
Brazilian Portuguese for simplifications of appositive, relative, coordinate and subordinate
clauses. Additionally, sentence splitting and reordering of clauses were also performed.

More recently, the focus of researchers has shifted to Hybrid and Neural Text Simplification
systems which perform both lexical and syntactic simplifications [22, 23, 24, 25, 26, 27]. In
the next section the proposed syntactic simplification algorithm, DEPSYM (DEpendency Parse
based SYntactic siMplification) is discussed.

3. The Proposed Approach: DEPSYM

In the present work, rules based on dependency trees extracted from spaCy! are utilized for
simplification of appositive clauses, relative clauses, conjoint clauses, and passive-to-active
conversion (See Table 1). Other dependency parsers for English (e.g. Stanford) may also be
utilised for extraction of dependency trees but, since the proposed system is developed using
Python, spaCy (version:2.2.4, en_core_web_sm) has been used for ease of implementation. It
uses a non-monotonic arc-eager transition-system [28] for parsing sentences. Below we explain
the different modules of the proposed approach.

'https://github.com/explosion/spaCy

44

https://github.com/explosion/spaCy

3.1. Appositive Clauses

In the first step, the appositive token, the one with appos tag, is extracted from the dependency
tree of the sentence. If such a token is not found then token with amod tag is extracted. If neither
of the two tags are found then appositive clause is not present in the sentence. The parent of the
appositive token may be subject (with nsubj tag) or the object (with dobj/pobj tag). An in-order
traversal in the sub-tree of the appositive token gives the appositive phrase. The noun phrase
is determined by taking the left sub-tree traversal of the parent of the appositive token. The
required auxiliary verb is determined using the tense of the root, and the singularity/plurality
of the main subject. The appositive token and its sub-tree are deleted from the main parse tree.
The first sentence is extracted by in-order traversal of the main tree. The second sentence is
formed by combining the noun phrase, auxiliary verb, and the appositive phrase (See Figure 1).

The jeans, my favourite pair, need to be washed.

ROOT

o

to be

12
) K—pair-\ \
[The jeans need to be washed

my favourite .

N\

The jeans are my favourite pair

[jeans
The

P, pOS

Figure 1: Simplification of sentence containing appositive clause

3.2. Relative Clauses

The relative token, the one with relcl tag, is extracted from the dependency tree of the sentence.
If such a token is not found then token with rcmod tag is extracted. If neither of the two tags are
found then it is concluded that relative clause is not present in the sentence. The parent of the
relative token gives the subject/object that the relative clause refers to. The left sub-tree of the
parent gives the noun phrase. Inorder traversal of the relative token’s sub-tree gives the relative
clause. The relative token is then deleted from the main tree, and subsequent inorder traversal
of the main tree gives the first sentence. The second sentence is formed by combining the noun
phrase and the relative phrase. The noun phrase is not inserted within the relative phrase but
the relative pronoun is retained in the relative phrase. The order of the two sentences is decided
on the basis of whether the relative clause is attached to the subject or to the object (See Figure
2).

For illustration, the sentence Bob, who I live with in Delhi, is a nice man. is simplified as Bob

45

who I live with in Delhi. Bob is a nice man., and the sentence Bob lives in Delhi, where his
brother lives. is simplified as Bob lives in Delhi. Delhi is where his brother lives.

The bike, which I have had for ten years, is falling apart.

- ROOT

[falling?
is .

apart

’ had
1
which 1 have fOF

f years

ten

The bike is falling apart

N\

The bike which I have had for ten years

Figure 2: Simplification of sentence containing relative clause

3.3. Conjoint Clauses

Conjoint clauses may contain a variety of conjunctions, such as though, although, when, because.
A sentence with a conjoint structure is typically made of two clauses? connected by a conjunction
or an adverbial modifier. The dependency tags, namely conj, advcl, parataxis, and ccomp, connect
the root of the sentence to the root of the second clause. The conjunction term or adverbial
modifier is connected to the root of the second clause with a cc or advmod or mark tag. This
token and root of the conjoint clause is removed from the main tree. If the conjoint clause has
no subject then it is given the subject of the main clause (sentence). Inorder traversal of the
main tree and the sub-tree of conjoint clause root gives the two separate sentences. The order
of the two sentences depends on the type of conjunction and the position of the conjunction
in the sentence. Conjunctions, such as although, whereas, however are replaced with but.
Conjunctions because and as are replaced with the conjunction so. Further, the order of the two
related sentences (clauses) are reversed. For conjunctions before, after, once, since and when,
the phrase this + auxiliary verb is inserted in the second sentence as shown in Figure 3.

3.4. Passive Voice

Passive to active voice algorithm contains three modules, namely subject-object detection, verb
tense transform, and pronoun form transform. To identify a passive sentence, the algorithm
searches for a token with auxpass tag in the dependency tree. This token is a verb, but not the
main verb, of the clause which contains the passive information. This is followed by a search for
tokens with tag agent and nsubjpass. Absence of any of these results in no simplification. All

%as observed in the development phase

46

I went back because they returned home. I went back, so they returned home.

advc]

Y Y
mas——returned returned
PN N

because | they home . they home
They returned home . So I went back . I went back . So they returned home

I went back after they returned home.

advc]

N
ark

———ret d
m/ (re urne \

after | they home .

I went back . This was after they returned home

Figure 3: Simplification of sentences containing conjoint clause

the auxiliary verbs (token with aux tag) of the sentence and auxpass token are removed from
the tree. Inorder traversal of nsubjpass tag token determines the object phrase for the active
voice sentence. The subject phrase for the active voice sentence is obtained by first finding pobj
dependency in agent token’s children and then carrying out an inorder-traversal of its subtree.
After that, agent and nsubjpass tokens are removed from the main tree.

The second module takes as input five parameters, namely the main verb (root), auxiliary
verbs, auxpass token, subject token and subject POS tag. These are used to determine the tense
of the sentence as described in Figure 4a, and also helps to decide the new form for the verb and
the auxiliary verbs. Transformation of verb forms due to presence of pronouns and modal verbs
are also performed. The third module is used to change the form of pronouns that are moving
from subject to object or vice-versa. A dictionary containing common pronoun pairs, such as
he: him, she: her, we: us, is used to carry out the transformation. Finally, the new sentence is
constructed by interchanging the positions of subject-object in the tree and inserting the new
verb. Other dependencies of the root are maintained in their positions; but any prepositional
phrases to the right of root are moved to the end (See Figure 4b). Simplification of a complex
sentence is performed recursively in the order appositive phrases, conjoint clauses, relative
clauses and then passive voice. Finally, true casing® is performed.

Susing https://pypi.org/project/truecase/

47

auxpass auxpass auxpass auxpass auxpass

been being was/were is/am/are will/would
aux aux aux aux aux

will/would has/have = had is/am/are was/were
Future Present Past Present Past Simple Simple Simple

Prefect Perfect Perfect Continuous Continuous Past Present Future

(a) Rules for Sentence Tense Identification

John and his sister were being rewarded by him for catching the thief.

nsubjpass ROOT

rewarded
/ Mass agem \
Johnﬁ were being bY‘\ for ~ ;

and sister him catchlng\V
(] .
. ¢ thief
his
the

He was rewarding John and his sister for catching the thief

(b) Passive to Active conversion

Figure 4: Simplification of Passive voice sentences

4. Experimental Details

This section discusses experimental details about the datasets, baseline systems, automatic
evaluation metrics and human evaluation procedure.

4.1. Dataset

The proposed simplification algorithm has been evaluated on two commonly used test sets*
extracted from English Wikipedia (EW) and Simple English Wikipedia (SEW) namely, PWKP
[17] and TurkCorpus [18].

« PWKP/WikiSmall: The test set for this dataset contains 100 sentences with only one
simplification reference per original sentence. The references are extracted by aligning
sentences of EW and SEW.

« TurkCorpus (TC): The test set for this dataset contains 359 complex sentences. The
following reference sets have been considered for this dataset:

“Retrieved from https://github.com/feralvam/easse/tree/master/easse/resources/data/test_sets

48

https://github.com/feralvam/easse/tree/master/easse/resources/data/test_sets

— In MTurk [18], eight mannually written references focused on Lexical simplification
are collected using Amazon Mechanical Turk for each sentence of TC . Here, the
annotators were instructed to rewrite sentences by reducing the number of difficult
words or idioms, but without deleting content or splitting the sentences.

— HSplit [29] provides four reference simplifications for TC specifically for assessing
sentence splitting. Two annotators were instructed to perform two tasks: (1) split
the original sentence as much as possible, while preserving grammaticality, fluency
and meaning, (2) split the sentence only when it simplifies the original sentence.

— ASSET [30] contains ten references for TC focusing on several rewriting transfor-
mations, e.g. lexical simplification and reordering, sentence splitting, compression.

4.2. Baselines

The following baselines® have been considered in the present work.

Identity: This refers to the system where output is identical to the input.

TSM: It aims at finding the best sequence of transformation of the constituency parse
tree of the complex sentence to produce the target simplification [17]. It is trained on the
train subset of PWKP.

PBSMT-R: It uses Phrase Based Statistical Machine translation along with a dissimilarity-
based (measured using edit distance) reranking mechanism to chose among possible
simplifications [31].

HYBRID: It combines deep semantics and monolingual machine translation to derive
simple sentences from complex sentences [23]. Semantic role information is used to
determine events in the sentence for performing splitting and deletion. For substitution
of complex words and sentence reordering a PBSMT-based model is used.

DSS: 1t is a sentence splitting algorithm which uses the UCCA semantic parser [32] to
decompose a sentence to its main semantic constituents [26].

YATS: It is a hybrid text simplification system which also uses a rule-based syntactic
simplification system along with lexical simplification [15].

DRESS: It uses a Reinforcement Learning (RL) architecture with standard attention-based
encoder-decoder as an agent. The reward function uses a weighted sum of SARI [18],
cosine similarity of input and output, and language model probability of output [24].
ACCESS: It uses a discrete parametrization mechanism to improve performance of
Seq2Seq models for the task of simplification. It adds control tokens corresponding
to four attributes, namely amount of compression, amount of paraphrasing, lexical com-
plexity and syntactical complexity [27].

4.3. Evaluation

For automatic evaluation of system outputs commonly used metrics, namely FKGL, BLEU and
SARI have been utilized.

SBaseline system outputs obtained from https://github.com/eliorsulem/simplification-acl2018/tree/master/All_
system_outputs for DSS, http://able2include.taln.upf.edu/ for YATS, and https://github.com/feralvam/easse/tree/
master/easse/resources/data/system_outputs for the rest

49

https://github.com/eliorsulem/simplification-acl2018/tree/master/All_system_outputs
https://github.com/eliorsulem/simplification-acl2018/tree/master/All_system_outputs
http://able2include.taln.upf.edu/
https://github.com/feralvam/easse/tree/master/easse/resources/data/system_outputs
https://github.com/feralvam/easse/tree/master/easse/resources/data/system_outputs

Table 2
Questions for Human Evaluation

Fluency (FI) Is the output grammatical and well formed?
Adequacy (Aq) Does the simplification preserve the meaning of the original sentence?
Simplicity (Sp) Is the simplification easier to understand than the input?

Structural Simplicity (StS) Is the output simpler than the input, ignoring the complexity of the words?

« Flesch-Kincaid Grade Level (FKGL) [33]: This metric corresponds to the grade level of a
sentence. Lower FKGL implies simpler outputs and lower level of difficulty.

« BiLingual Evaluation Understudy (BLEU) [34]: This is a precision-oriented metric used
to measure the correctness of the generations by measuring n-grams overlaps between
the generated sentences and (multiple) references.

+ System output Against References and Input sentence (SARI) [18]: This metric compares
model-generated simplifications with both the input sentence and the gold references. It
measures “how good” the words added, deleted, and kept by a simplification model are.

The above-mentioned metrics have been calculated using EASSE implementation [35]. Addi-
tionally, ten human annotators were asked to evaluate the system outputs on a 5-point Likert
scale on the basis of Fluency, Adequacy, Simplicity, and Structural Simplicity as described in
Table 2. Structural Simplicity is distinguished from Simplicity in order to ignore the effect of
lexical simplification performed by the baseline systems. The annotators were non-native but
fluent English speakers. Each annotator scored 260 system outputs® correponding to 20 input
sentences of each test dataset. YATS system was evaluated by two of the above annotators’.
Fluency and Adequacy were measured using a 1 to 5 scale. Following previous works [26, 25], a
five point scale [-2, 2] is used to measure Simplicity and Structural Simplicity, where a 0 score
indicates that the input and the output are equally complex. A score of 1 (-1) indicates that the
output is slightly simple (complex) than input, and score of 2 (-2) indicates that the output is
very simple (complex) than input. The advantage of using a -2 to 2 scale is that the sign of the
score could indicate the efficiency of the simplification system. Negative scores indicate that
the output is more complex than the input sentence.

5. Results and Analysis

The results for PWKP test set and TC test set are presented in Table 3 and Table 4, respectively.
The DEPSYM system® proposed in this work performs well in terms of FKGL for both the test
sets. The FKGL is reduced nearly by 50 percent with respect to the input sentences (Identity) for
both the test sets for DEPSYM. However, since DEPSYM does not perform lexical simplifications
or phrase deletions, BLEU and SARI scores are lower for PWKP, MTurk, and ASSET data. For
TurkCorpus, BLEU scores for the DEPSYM system are consistent throughout the three reference
sets. Moreover, it is higher than DSS and HYBRID systems. The BLEU and SARI scores obtained

SPWKP: 120 (6 x 20) +TurkCorpus: 140 (7 x 20)
"as on 2 September 2021
8Code and System Outputs are available at https://github.com/RakshaAg/DEPSYM

50

https://github.com/RakshaAg/DEPSYM

Table 3
Results for PWKP/WikiSmall test set

System FKGL BLEU SARI FI Aq Sp StS

Identity 1310 49.07 2227 4.92%0.10 5%0.00 0+0.00 0+0.00

PBSMT-R 12.26 45.49 35.49 4.65+0.18 4.55+0.19 0.31+0.12 0.05+0.10
HYBRID 10.29 44.20 54.67 3.28+0.60 3.47+0.53 -0.05+0.29 -0.19+0.38

YATS 9.12 37.99 35.87 3.88+0.18 3.78+0.18 -0.20+0.14 0.78+0.39
DRESS 7.48 3453 2748 4.83+020 3.15+058 0.59+0.35 0.52+0.38
TSM 6.40 30.75 39.02 3.46+053 3.19+057 -0.14+0.30 0.03%0.44

DEPSYM 6.67 36.84 33.78 4.14+051 4.55%0.46 0.27+0.49 0.54+0.65

by DEPSYM is competitive with the YATS system. DEPSYM significantly increases the SARI
score with respect to the input sentences for both the test sets. For HSplit, the proposed DEPSYM
system achieves the second highest BLEU and SARI score among all the baselines.

Out of the 459 sentences belonging to the two test datasets, PWKP and TC, DEPSYM performed
simplification of 295 sentences, 79% of which were correctly simplified. Out of 100 sentences of
PWKEP test set, 80 were simplified. The simplifications were correct for 57 input sentences. For
the TC test set out of 215 simplifications, 176 sentences were correct.

Human Evaluation indicates that in terms of Adequacy, the proposed system outperforms
other baseline systems. With respect to Structural Simplicity DEPSYM performs the best for
TurkCorpus, and for PWKP it came second highest. For Fluency and Simplicity, the values
achieved by DEPSYM is highly competitive beating most of the baseline systems comfortably.

ACCESS and DRESS systems perform lexical substitution of the complex words, and thereby
achieved higher scores with respect to simplicity. The outputs of DRESS are also rated as most
fluent by the annotators. However, these systems perform poorly with respect to Adequacy
as they often delete important phrases from the original sentence. Moreover, sometimes the
lexical changes performed by these system lead to semantic errors in the output. For illustration,
consider the simplified outputs for DEPSYM and baseline systems in Table 5. Here, HYBRID
system omits important information, while other baseline systems replaces the word distributes
incorrectly by collects or deals or sells. It can also be observed that the output obtained using the
neural ACCESS system contain incorrect repetition of the phrase present location. The output
of DSS system, which is developed for sentence splitting, contains an incomplete sentence ‘was
added in 1938-39’. The YATS system failed to simplify the conjoint clause present in the second
example. In both the examples mentioned in Table 5, DEPSYM produces structurally simpler
outputs with two or more smaller sentences.

6. Conclusion

Simplification of long and syntactically complex sentences is an important NLP task in order to
facilitate accessibility to a larger set of audience. In the present work, syntactic simplification
is performed by analyzing the dependency tree structure of a complex English sentence. The
relationship between words in the dependency tree is utilised to split sentences containing any of

51

Table 4
Results for TurkCorpus test set

MTurk ASSET HSplit
System FKGL BLEU SARI BLEU SARI BLEU SARI FlI Aq Sp StS

Identity 10.02 99.36 26.29 92.56 20.73 81.53 30.11 4.93+0.08 5+0.00 0+0.00 0+0.00

PBSMT-R 8.85 81.81 38.04 7856 34.63 62.42 35.24 4.30+0.34 4.38+0.33 0.42+0.19 0.06+0.21
YATS 7.65 4699 38.43 7051 36.72 65.57 44.48 4.3320.18 4.43+0.25 -0.03%0.11 0.70%0.07
DRESS 7.53 77.47 36.84 83.32 37.07 48.69 37.21 4.83+0.11 3.75%0.34 0.45+0.26 0.35%0.25
ACCESS 7.29 75.77 41.38 75.39 40.13 57.97 38.22 4.49+0.37 3.91+049 0.49+0.33 0.19+0.15
DSS 6.22 59.66 36.30 56.68 35.24 5851 48.59 3.16+0.80 4.20+0.49 -0.17+0.40 -0.05+0.38
HYBRID 5.18 49.76 31.50 56.07 34.65 24.70 2590 3.01+0.57 2.57+0.58 -0.45+0.44 -0.29%0.48
DEPSYM 5.69 68.64 34.68 65.15 31.07 62.85 45.27 4.09+046 4.61+0.36 0.43+0.41 0.8210.49

appositive, relative or conjoint clauses. Furthermore, sentence rewriting from passive to active
voice is also performed. Automatic and Human evaluations indicate that the proposed system
produces structurally simpler outputs while preserving grammaticality and meaning. The
proposed simplification system may be applicable to other languages having similar dependency
structure as English. For languages where the dependency structures are different the rules will
have to be fine-tuned in keeping with the linguistic properties of the language concerned.

The proposed DEPSYM algorithm uses the dependency parsing of the input sentence. Hence,
parsing errors induced by SpaCy lead to some errors in simplification albeit inadvertently. In
future, the passive to active voice conversion may be further improved to handle negative
sentences. For illustration, He was not chased by the the police is incorrectly simplified as The
police not chased him as it is unable to perform the transformation was not chased — did not
chase. For sentences with relative clauses, the relative pronouns are retained in the simplified
sentence. This can be improved by curating rules for insertion of the noun phrase within the
relative phrase. For illustration, Bob, who I live with in Delhi, is a nice man. may be simplified
as I live with Bob in Delhi. Bob is a nice man. In future we would also like to append a lexical
simplification module with the current syntactic simplification algorithm.

Acknowledgments

The authors thank Daanish Bansal and Siddhant for helpful discussions. Raksha Agarwal
acknowledges Council of Scientific and Industrial Research (CSIR), India for supporting the
research under Grant no: SPM-06/086(0267)/2018-EMR-I. We thank Prof. Horacio Saggion for
providing a working demo of YATS system. We also thank the reviewers for their valuable
suggestions and constructive criticism.

References

[1] M. Shardlow, A survey of automated text simplification, International Journal of Advanced
Computer Science and Applications 4 (2014) 58-70.

52

Table 5

System Outputs

System Output

Identity This array distributes data across multiple disks, but the array is seen by the computer user

(PWKP) and operating system as one single disk.

PBSMT-R This array distributes data across multiple disks, but the array is seen by the computer user
and operating system as a single disk.

HYBRID this array releases data across disks, but the array is seen by the user and computer operating
system.

DRESS This array collects data across multiple disks, but the array is seen by the computer user
and operating system.

TSM This array sells data across multiple disks but the array is seen. The computer user and
operating as one disk.

YATS This array deals data across multiple disks, but the computer user and operating system
sees the array as one single disk.

DEPSYM This array distributes data across multiple disks. But, the computer user and operating
system sees the array as one single disk.

Identity The fourth ring is decorated with golden garlands and was added in 1938-39 when the

(TC) column was moved to its present location.

PBSMT-R The fourth ring is decorated with golden garlands was added in 1938-39 when the column
was moved to its present location.

DRESS The fourth ring is decorated with golden garlands.

ACCESS The fourth ring was added in 1938 when the column was moved to its present location, and
was added to its present location.

DSS the fourth ring is decorated with golden garlands. was added in 1938-39. the column was
moved to its present location.

HYBRID The ring is decorated and was added the column was moved.

YATS The fourth ring is decorated with golden Garlands. And the fourth ring was added in 1938 -
39 when the column was moved to its present location.

DEPSYM The fourth ring is decorated with golden garlands. And ring was added in 1938-39. This

was when the column was moved to its present location.

[2] H. Saggion, Automatic text simplification, Synthesis Lectures on Human Language
Technologies 10 (2017) 1-137.

[3] S.Devlin, G. Unthank, Helping aphasic people process online information, in: Proceedings
of the 8th International ACM SIGACCESS Conference on Computers and Accessibility,
2006, pp. 225-226.

[4] V. Yaneva, I. Temnikova, R. Mitkov, Evaluating the readability of text simplification
output for readers with cognitive disabilities, in: Proceedings of the Tenth International
Conference on Language Resources and Evaluation (LREC’16), 2016, pp. 293-299.

[5] R. Chandrasekar, C. Doran, S. Bangalore, Motivations and methods for text simplifica-

tion,

in: COLING 1996 Volume 2: The 16th International Conference on Computational

Linguistics, 1996.
[6] R. Chandrasekar, B. Srinivas, Automatic induction of rules for text simplification,

53

(7]

(8]

(9]

[10]

[14]

[16]

[17]

Knowledge-Based Systems 10 (1997) 183-190.

J. Carroll, G. Minnen, Y. Canning, S. Devlin, J. Tait, Practical simplification of english
newspaper text to assist aphasic readers, in: Proceedings of the AAAI-98 Workshop on
Integrating Artificial Intelligence and Assistive Technology, 1998, pp. 7-10.

Y. Canning, J. Tait, J. Archibald, R. Crawley, Cohesive generation of syntactically simplified
newspaper text, in: International Workshop on Text, Speech and Dialogue, Springer, 2000,
pp- 145-150.

A. Siddharthan, Syntactic simplification and text cohesion, Research on Language and
Computation 4 (2006) 77-109.

A. Siddharthan, An architecture for a text simplification system, in: Language Engineering
Conference, 2002. Proceedings, 2002, pp. 64-71. doi:10.1109/LEC.2002.1182292.

G. Glavas, S. Stajner, Event-centered simplification of news stories, in: Proceedings of the
Student Research Workshop associated with RANLP 2013, 2013, pp. 71-78.

A. Siddharthan, Text simplification using typed dependencies: A comparision of the
robustness of different generation strategies, in: Proceedings of the 13th European
Workshop on Natural Language Generation, 2011, pp. 2-11.

M.-C. De Marneffe, B. MacCartney, C. D. Manning, Generating typed dependency parses
from phrase structure parses, in: Proceedings of the Fifth International Conference on
Language Resources and Evaluation (LREC’06), European Language Resources Association
(ELRA), Genoa, Italy, 2006. URL: http://www.lrec-conf.org/proceedings/Irec2006/pdf/440
pdf.pdf.

A. Siddharthan, A. Mandya, Hybrid text simplification using synchronous dependency
grammars with hand-written and automatically harvested rules, in: Proceedings of the
14th Conference of the European Chapter of the Association for Computational Linguistics,
2014, pp. 722-731.

D. Ferrés, M. Marimon, H. Saggion, A. AbuRa’ed, Yats: yet another text simplifier, in:
International Conference on Applications of Natural Language to Information Systems,
Springer, 2016, pp. 335-342.

C. Scarton, A. P. Aprosio, S. Tonelli, T. M. Wanton, L. Specia, MUSST: a multilingual
syntactic simplification tool, in: Proceedings of the IJJCNLP 2017, System Demonstrations,
2017, pp. 25-28.

Z.Zhu, D. Bernhard, I. Gurevych, A monolingual tree-based translation model for sentence
simplification, in: Proceedings of the 23rd International Conference on Computational
Linguistics (Coling 2010), Coling 2010 Organizing Committee, Beijing, China, 2010, pp.
1353-1361. URL: https://www.aclweb.org/anthology/C10-1152.

W. Xu, C. Napoles, E. Pavlick, Q. Chen, C. Callison-Burch, Optimizing statistical machine
translation for text simplification, Transactions of the Association for Computational
Linguistics 4 (2016) 401-415.

H. Saggion, S. Stajner, S. Bott, S. Mille, L. Rello, B. Drndarevic, Making it simplext: Imple-
mentation and evaluation of a text simplification system for spanish, ACM Transactions
on Accessible Computing (TACCESS) 6 (2015) 1-36.

G. Barlacchi, S. Tonelli, Ernesta: A sentence simplification tool for children’s stories in
italian, in: International Conference on Intelligent Text Processing and Computational
Linguistics, Springer, 2013, pp. 476-487.

54

http://dx.doi.org/10.1109/LEC.2002.1182292
http://www.lrec-conf.org/proceedings/lrec2006/pdf/440_pdf.pdf
http://www.lrec-conf.org/proceedings/lrec2006/pdf/440_pdf.pdf
https://www.aclweb.org/anthology/C10-1152

[21]

[22]

[23]

[26]

[30]

[31]

[32]

S. Aluisio, C. Gasperin, Fostering digital inclusion and accessibility: the porsimples project
for simplification of portuguese texts, in: Proceedings of the NAACL HLT 2010 Young
Investigators Workshop on Computational Approaches to Languages of the Americas,
2010, pp. 46-53.

T. Angrosh, Mandaya Nomoto, A. Siddharthan, Lexico-syntactic text simplification and
compression with typed dependencies, in: 25th International Conference on Computational
Linguistics, 2014.

S. Narayan, C. Gardent, Hybrid simplification using deep semantics and machine transla-
tion, in: The 52nd annual meeting of the association for computational linguistics, 2014,
pp. 435-445.

X. Zhang, M. Lapata, Sentence simplification with deep reinforcement learning, arXiv
preprint arXiv:1703.10931 (2017).

S. Nisioi, S. Stajner, S. P. Ponzetto, L. P. Dinu, Exploring neural text simplification
models, in: Proceedings of the 55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), Association for Computational Linguistics,
Vancouver, Canada, 2017, pp. 85-91. URL: https://www.aclweb.org/anthology/P17-2014.
doi:10.18653/v1/P17-2014.

E. Sulem, O. Abend, A. Rappoport, Simple and effective text simplification using semantic
and neural methods, in: Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), Association for Computational Lin-
guistics, Melbourne, Australia, 2018, pp. 162-173. URL: https://www.aclweb.org/anthology/
P18-1016. doi:10.18653/v1/P18-1016.

L. Martin, B. Sagot, E. de la Clergerie, A. Bordes, Controllable sentence simplification,
arXiv preprint arXiv:1910.02677 (2019).

M. Honnibal, M. Johnson, An improved non-monotonic transition system for dependency
parsing, in: Proceedings of the 2015 Conference on Empirical Methods in Natural Lan-
guage Processing, Association for Computational Linguistics, Lisbon, Portugal, 2015, pp.
1373-1378. URL: https://aclanthology.org/D15-1162. doi:10.18653/v1/D15-1162.

E. Sulem, O. Abend, A. Rappoport, BLEU is not suitable for the evaluation of text simpli-
fication, in: Proceedings of the 2018 Conference on Empirical Methods in Natural Lan-
guage Processing, Association for Computational Linguistics, Brussels, Belgium, 2018, pp.
738-744. URL: https://www.aclweb.org/anthology/D18-1081. doi:10.18653/v1/D18-1081.
F. Alva-Manchego, L. Martin, A. Bordes, C. Scarton, B. Sagot, L. Specia, ASSET:
A dataset for tuning and evaluation of sentence simplification models with multiple
rewriting transformations, in: Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, Association for Computational Linguistics, On-
line, 2020, pp. 4668-4679. URL: https://www.aclweb.org/anthology/2020.acl-main.424.
doi:10.18653/v1/2020.acl-main.424.

S. Wubben, A. van den Bosch, E. Krahmer, Sentence simplification by monolingual machine
translation, in: Proceedings of the 50th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), Association for Computational Linguistics,
Jeju Island, Korea, 2012, pp. 1015-1024. URL: https://www.aclweb.org/anthology/P12-1107.
O. Abend, A. Rappoport, Universal Conceptual Cognitive Annotation (UCCA), in: Pro-
ceedings of the 51st Annual Meeting of the Association for Computational Linguistics

55

https://www.aclweb.org/anthology/P17-2014
http://dx.doi.org/10.18653/v1/P17-2014
https://www.aclweb.org/anthology/P18-1016
https://www.aclweb.org/anthology/P18-1016
http://dx.doi.org/10.18653/v1/P18-1016
https://aclanthology.org/D15-1162
http://dx.doi.org/10.18653/v1/D15-1162
https://www.aclweb.org/anthology/D18-1081
http://dx.doi.org/10.18653/v1/D18-1081
https://www.aclweb.org/anthology/2020.acl-main.424
http://dx.doi.org/10.18653/v1/2020.acl-main.424
https://www.aclweb.org/anthology/P12-1107

(Volume 1: Long Papers), Association for Computational Linguistics, Sofia, Bulgaria, 2013,
pp- 228-238. URL: https://www.aclweb.org/anthology/P13-1023.

[33] J. P. Kincaid, R. P. Fishburne Jr, R. L. Rogers, B. S. Chissom, Derivation of new readability

formulas (automated readability index, fog count and flesch reading ease formula) for navy
enlisted personnel, Technical Report, Naval Technical Training Command Millington TN
Research Branch, 1975.

K. Papineni, S. Roukos, T. Ward, W.-]J. Zhu, Bleu: a method for automatic evaluation of
machine translation, in: Proceedings of the 40th annual meeting of the Association for
Computational Linguistics, 2002, pp. 311-318.

F. Alva-Manchego, L. Martin, C. Scarton, L. Specia, EASSE: Easier automatic sen-
tence simplification evaluation, in: Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations, As-
sociation for Computational Linguistics, Hong Kong, China, 2019, pp. 49-54. URL:
https://www.aclweb.org/anthology/D19-3009. doi:10.18653/v1/D19-3009.

56

https://www.aclweb.org/anthology/P13-1023
https://www.aclweb.org/anthology/D19-3009
http://dx.doi.org/10.18653/v1/D19-3009

	1 Introduction
	2 Related Work
	3 The Proposed Approach: DEPSYM
	3.1 Appositive Clauses
	3.2 Relative Clauses
	3.3 Conjoint Clauses
	3.4 Passive Voice

	4 Experimental Details
	4.1 Dataset
	4.2 Baselines
	4.3 Evaluation

	5 Results and Analysis
	6 Conclusion

