
Facilitating Configuration Model Formalization based on
Systems Engineering

Eugen Rigger1 and Ruth Fleisch1 and Tino Stankovic2

Abstract.1 Dynamic markets that call for customized products and
shorter lead time in product development urge companies to apply
technologies such as product configuration systems to leverage
performance in product development and its related processes.
Product configuration can be referred as a knowledge intensive
technology that relies on the application of formalized product
knowledge to enable automated reasoning. However, the related
knowledge formalization is still considered a major obstacle for the
integration of configuration technologies since often being
conducted by non-domain experts. In this work, we present a
method for the formalization of product configuration related
knowledge as early as during development of an engineering
system using the systems modelling language SysML. Based on a
reference example from literature, it is shown how the required
configuration knowledge can be formalized by the systems
engineer to avoid costly and error prone knowledge acquisition in
later stages of the product lifecycle. The yielded SysML model
relies on graphical modelling, only, and can be directly integrated
in existing system models. Thereby, the proposed method
facilitates formalization of configuration knowledge for engineers
and enables reuse of existing models so to save time and reduce
errors when formalizing configuration models.

1 INTRODUCTION

Currently, engineering companies are facing two challenges that

call for the application of new methods in the engineering and sales

of their products: first, the complexity of engineering systems is

growing with respect to the number of components and functions

of a system as well as the involved disciplines [1]. Second, product

development cycles tend to get shorter and customers ask for

highly customized products with reduced engineering lead time [2].

In response to these needs, model-based systems engineering

(MBSE) and product configuration can be considered as enabling

methods that will allow industry to reconcile and meet the two

conflicting challenges. MBSE is defined as “the formalized

application of modelling to support system requirements, design,

analysis, verification and validation activities beginning in the

conceptual design phase and continuing throughout development

and later life cycle phases” [3]. In this respect, the Systems

Modelling Language (SysML)[4] has been established as

modelling standard for MBSE and can be considered the most

commonly applied language in MBSE [5]. SysML extends the

unified modelling language (UML) [6] that is primarily applied in

1 Digital Engineering, V-Research GmbH, Austria, eugen.rigger@v-
research.at

2 Engineering Design and Computing Laboratory, ETH Zurich,
Switzerland, tinos@ethz.ch

the software engineering domain and features object-oriented

modelling of multidisciplinary systems.

Product configuration is applied to support the decision-making

process in sales and engineering phases [7] based on reasoning

among a set of predefined components and their relations, referred

to as the configuration model [8]. Product configuration systems

support the product configuration by automated reasoning based on

customer requirements and the configuration model. However, a

major obstacle in the application of product configuration systems

is the knowledge acquisition that is required to enable

formalization of the configuration model [9]. Reason for this is the

current knowledge acquisition practice where knowledge engineers

acquire and formalize the knowledge gained from domain experts

[2] which is a costly process that is also considered critical since it

is founded upon knowledge sharing and trust [10]. Regarding

knowledge formalization, the application of object-oriented

modelling supports the formalization of configuration models [11].

Hence, there is potential to integrate MBSE and product

configuration so that knowledge that is defined in product

development can be reused in later stages of the lifecycle to

establish a product configuration system. This reuse of knowledge

can facilitate the process of knowledge acquisition or even make it

obsolete. However, currently the topics MBSE and product

configuration are not linked [12]. Hence, there is a gap that

integrates systems modelling and knowledge formalization for

configuration models.

In this paper we propose a method that closes this gap by

linking MBSE and product configuration using SysML. The

method demonstrates how standard modelling language syntax can

be applied to formalize dependencies in the systems model to

establish a configuration model. A systems model that already

captures the constraints and dependencies regarding the product

architecture can be adapted and extended so to reuse already

formalized knowledge and ensure consistency among models. The

resulting configuration model can then be applied in product

configuration systems via model transformations [13].

Consequently, the focus and motivation of this work is to enable

system engineers/domain experts to contribute to the definition of

the configuration model, enable reuse of knowledge for

configuration modelling and thereby ensure consistency of models

and knowledge among different stages of the product lifecycle.

Thus, the knowledge acquisition bottleneck is tackled, in particular

for companies applying MBSE. The method presented in this paper

is validated based on a case study of a configuration example for

personal computers according to [8,11].

The remainder of the paper is structured as follows: Section 2

introduces the related background of MBSE and knowledge

Copyright 2021 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0)

mailto:eugen.rigger@v-research.at
mailto:eugen.rigger@v-research.at
mailto:tinos@ethz.ch

formalization in the context of product configuration and SysML.

Section 3 then introduces the method for modelling configuration

knowledge during product development. Section 4 shows the

validation of the proposed method based on a case study and

discusses attained results. The paper closes by presenting

concluding remarks in Section 5.

2 BACKGROUND

In this section, first the terminology of data, information and

knowledge is clarified and ways to differentiate the types of

knowledge are reviewed and put into context with product

configuration. Next, basics of MBSE are introduced and existing

efforts for application of the SysML modelling language as a

standardized language for knowledge formalization are introduced

and reviewed. Based thereon, the research gaps addressed in this

work are presented.

2.1 Types of Engineering Knowledge

Knowledge can be classified as tacit and formal knowledge [14]

whereas the first refers to expert knowledge and intuition, formal

engineering knowledge corresponds to information embedded in

data, such as design guidelines, SysML and CAD models etc. To

further distinguish the terms “knowledge”, “information”, and

“data” in this work, the definition by the VDI 5610 [15] which is

aligned with other definitions found in literature, e.g. [16,17] is

applied:
• “Data are objective facts, they cannot be interpreted

without context and further backgrounds. They are to be

taken as “raw material”.

• Information are structured data with relevance and

purpose, which can be put into a context, categorized,

calculated and corrected.

• Knowledge is linked information, which enables to draw

comparisons, to establish links and to make decisions. “

In the context of computational support to automate tasks of

product development which is referred to as design automation,

various ways of structuring engineering knowledge are presented

in literature. The work from [18] differentiates process, task and

product knowledge. Product knowledge refers to the knowledge

about the specifics of the product, such as its architecture, its

components, and the related dependencies. Process knowledge

captures the knowledge on how to apply information in the context

of the product. The task knowledge considers knowledge on

algorithms and rules to update the product model. Similarly, [19]

distinguish between procedural and declarative knowledge, where

procedural refers to design process knowledge and declarative to

product knowledge. In the context of product configuration

systems that feature strict separation of the configuration model

and the related reasoning [20], product knowledge can be

considered the basis for the configuration model. A configuration

model captures all information about a product so that a constraint

satisfaction problem (CSP) can be formalized. The CSP forms the

basis of a product configuration systems which then deduces

configurations based on user input [8]. A basic CSP is described by

a set of variables, the related domains (ranges) and constraints that

limit the combination of variables.

2.2 SysML-based Knowledge Formalization

Regarding the usage of a standardized language for formalization

of engineering knowledge, SysML has recently been addressed by

multiple approaches identified in literature. SysML has evolved

since 2007 as a standardized model language to support model-

based systems engineering (MBSE) [21,22]. SysML as an object-

oriented modelling language aims to support communication and

understanding of formalized knowledge [22]. The language

provides the full semantic foundation for documentation of system

requirements, behavior, structure, and parametric relations. As a

standardized language, SysML features reuse of models to avoid

loss of knowledge between projects and reduce cost and risk in

design [1]. In the context of formalization of a configuration

model, the definition of hierarchical structures and relations among

these are of relevance. Figure 1 depicts the diagrams that are

considered relevant for the formalization of configuration models.

Figure 1. Excerpt of SysML diagram taxonomy [4]

First, package diagrams (PKG) can be used to organize the model

in containers referred to as packages. Packages aggregate other

model elements and are described by a name and URL (Uniform

Resource Locator) making them uniquely identifiable and

accessible so to foster reuse of models. For instance, model

libraries or distinct parts of a system model such as its functional or

logical architecture are organized within separate packages. The

block definition diagram (BDD) enables the definition of

hierarchical relations among the entities of a system called blocks.

Blocks are used to describe types of physical entities such as

components but also conceptual entities such as the functions of a

system. Blocks are described based on part, value and constraint

properties. Value properties account for quantifiable characteristics

of a block such as weight, speed, etc. and can be typed by primitive

types such as integers, reals or strings. Default values or default

range of values can be assigned to value properties upon definition

of a block. Part-of associations are used within block definition

diagrams among blocks to define the part properties describing the

composition of a block. In this context, multiplicities can be used to

indicate the total amount of child blocks of a specific type, e.g. a

car consist of four wheels. To model variance in a system,

generalizations can be used. For example, “SUV” or “Van” refer to

two different variants of the block “car” that both inherit the

properties of the more general parent block. For the case that a

block is used as a blueprint so to be reused by its specialized

variants, blocks can be typed as abstract. This is particularly useful

for definition of model libraries so that its elements can be reused

among various models [23]. The internal block diagram (IBD) is

used to detail the internal structure of a specific block, to for

example define interfaces and connections among nested blocks.

However, in the context of configuration modelling, the parametric

diagram (PAR) is more applicable since it enables the

formalization of constraints among properties of blocks. For this

purpose, SysML provides constraint blocks for the formalization of

equations and rules. Constraint blocks can be assigned as

constraint properties to blocks. Using a PAR, the constraint

property can be linked to the block’s properties using binding

connection. Figure 7 shows an example of a parametric diagram

representing a constraint property of type CalculatePrice with

rounded edges. The constraint property belongs to the owning

block HDUnit denoting the boundary of the PAR. Using binding

connections, the PAR puts into context the constraint property,

HDUnit’s value property price and the value properties price that

belong to hdcontroller and hdisk. To customize SysML for specific

domains, stereotypes can be introduced to define new modelling

elements. This can be used to define a domain specific language

for parametric CAD [24].

Relevant approaches in the context of design automation feature

systematics for definition of model-libraries for reuse [23,25],

formalization of parameter synthesis tasks [26], formalization of

CAD configuration tasks [24], formalization of simulation-based

design tasks [27] [28], or neutral modelling of simulation models

that can be then translated to the format of the desired simulation

tool [29]. Reason for the interest in SysML for design automation

task formalization is the aspect of integration of formalizations to

MBSE processes, and its means to support communication and

understanding of formalized knowledge. However, presented

approaches rely on customizations of SysML based on newly

introduced stereotypes hindering the integration to industrial

environments where models are defined following the SysML

standard. Further, focus is put on technological aspects of the

customization of the language rather than the possibility for

integration to workflows of engineers. For example, in [26]

stereotypes reflecting the characteristics of a mathematical

optimization problems are introduced. Hence, for successful

application, engineers require fundamental knowledge about

mathematical modelling.

Regarding the domain of product configuration, [12] show that

MBSE and product configuration are currently not linked an

suggest the usage of SysML models reflecting the modular product

architecture as a basis for development of the configuration model.

However, the suggested approach by [12] lacks details regarding

the integration of the system model and the configuration model,

such as consistency management.

Consequently, means to enable engineers to formalize product

knowledge in a reusable, intuitive manner that also ensures

consistency of models among the product lifecycle are missing. In

a literature review on knowledge levels required for the

formalization of design automation tasks, [30] proposed to use

SysML as a standardized language providing the full semantics

required for design automation task definition. Thus, in this work, a

method is proposed that facilitates knowledge formalization for

usage in product configurators following the SysML standard.

3 CONFIGURATION MODEL
FORMALIZATION USING SysML

In this section the method combining MBSE and product

configuration is presented. SysML semantics are overloaded to

account for the specifics of configuration modelling. Thus, the

formalization of a configuration model can take place early in

product development, and integrated to a (MBSE) process and the

related models. Thereby, a system model corresponding to the

“single source of truth” can be established integrating all relevant

information about the system for later processing during the

product lifecycle [1]

In the following, first, means to organize the configuration

model within a system model are introduced. Next, the semantics

for the formalization of a configuration model are introduced.

3.1 Organize the Configuration Model

To organize and structure the knowledge for establishing a

configuration model, the following packages are defined: the

package “product architecture” captures the information related to

the hierarchy of the system and used blocks. The package

“interconnections” is used to aggregate the definitions of

constraints among the blocks’ properties. Within the package

“model libraries”, model libraries can be defined or integrated to

foster the reuse of model elements. Further, the usage of abstract

blocks for instantiation of model libraries enables formalization of

constraints among abstract blocks rather than the specific children

blocks. Thereby, the formalization of generic CSPs [8] is rendered

feasible. Figure 2 shows the package diagram as a starting point for

formalizing the configuration model. It is shown how the package

“Configuration” aggregates the three packages used to define the

configuration model and how the package itself is integrated to the

system model. Therefore, the information about the system can be

captured within one model comprehensively. The organization of

the system model depicted in Figure 2 follows the structure

proposed in [22] enriched by the package “Configuration”.

Figure 2. PKG depicting the structure of a configuration model within

a systems model.

3.2 Define the Configuration Model

In the following it is shown how the packages depicted in Figure 2

can be enriched to fully define a configuration model by using

existing SysML syntax, only. First, the concept of model libraries

is briefly introduced so that the definition of generic components is

enabled (3.2.1). Afterwards, the instantiation of product

architectures is shown including the formalization of related

variables and constraints directly within the product architecture

using relations on a block definition diagram (3.2.2) and by

defining parametric relations using constraint blocks and

parametric diagrams (3.2.3).

3.2.1 Model Libraries

A model library can be defined using a block definition diagram.

Once a model library is instantiated, it can be reused among

different projects. In this work, the systematics of model library

definition as proposed in [23,25] are applied as illustrated in Figure

3. In particular, the concepts of inheritance are applied to define

abstraction hierarchies [31]. With this respect, SysML provides

generalization relationships between blocks as well as the

definition of abstract elements. This enables the definition of

abstract components where generic constraints can be defined

upon. The information regarding variance of a product can be

already captured within the system model for description of

product families [32] and therefore can be directly reused within

the configuration model.

Table 1. Model elements used for definition of component libraries.

Model
elements

Model type Symbol Meaning

Block Block

Modular unit of a
system

Abstract
Block

Block

The block cannot be
instantiated and is used

for inheriting
properties, only.

Specializ
ation

Specialization
Relation

Inheritance of parent
block’s properties to

child block

Figure 3. Generic example of component library illustrating the

modelling concepts shown in Table 1.

3.2.2 Product Architecture

The product architecture in MBSE is defined using a block

definition diagram and captures all aspects regarding the

hierarchical organization of a system. Hence, the product

architecture can be directly reused for defining the configuration

model. According to the object-oriented paradigm of SysML [22],

the hierarchical structure of a system (the product architecture)

requires a main block that aggregates the parts (i.e. subsystems / -

assemblies / - components). In the context of the configuration

model, a main block ConfigurationModel is introduced so to

separate the configuration model from the remaining system model

and serve as a starting point. Further, characteristic input variables

are assigned to the ConfigurationModel itself, so that subsequently

constraints can be defined using these variables. For example, a

customer might want to specify a maximum price when

configuring a car. The block ConfigurationModel is then linked to

the block “System” using a part-of association.

Variables and dedicated types of constraints can be declared

directly within the product architecture using the modelling

elements listed in table 2: Abstract blocks are used to indicate

selection of components, multiplicities to define variability in the

number of a specific block and value properties to specify

(discrete) variables and the corresponding solution domain by

specifying the default value. Value properties of SysML blocks

that are not assigned any value or a specific value, respectively, are

considered as parameters and are not subject to the CSP. Within

Figure 4, the block LibraryElement refers to a component that

needs to be selected from the component library according to

requirements. The DiscreteVariable of Child1 refers to a variable

with indicated domain by assigning a value range to the value

property. The multiplicity of Child2 shows that this block needs to

be in the system at least once but can also be prevalent in a larger

amount within the final configuration, depending on customer

requirements. It must be noted that variable declaration can be

combined, e.g., a library element possibly contains a variable

which is to be determined when configuring the product.

Table 2. Key model elements used on BDD for definition of product

architectures including constraints.

Model
elements

Model type Symbol Meaning

Abstract
Block

Block

Indication of a discrete
variable for component

selection. Works in
conjunction with model

libraries, only.
Multiplicity Part-of

association

Indication of parts as
discrete variables with
multiplicity as lower
and upper bound of

variable

 Variable
range

Value
property

a,b,c,d,… Indication of (discrete)
variable domain.

Figure 4. Generic example of product architecture as well as possible

constraints using concepts shown in Table 2.

3.2.3 Interconnections

To define constraints related to interconnection of value and part

properties of the blocks, parametric diagrams can be used.

Thereby, constraints for the configuration model can be defined

based on linking constraint blocks to specific value and part

properties, e.g. if each block contains a value property indicating

the cost, a constraint can be defined stating the cost of all active

components needs to be below a specific threshold. For each

interconnection, first a constraint block is defined specifying all

variables used within the constraint by assigning value and part

properties to the constraint as well as a constraint expression. Next,

a parametric diagram depicting the constraint block is instantiated

that is then linked to the package “interconnections” to provide the

required overview of formalized constraints. Depending on the

type of constraint properties, the main different types of constraints

can be formalized as follows:

1. Parametric relations for two or more value properties.

2. Decision structure matrices [33] are used to define

compatibility among part properties: a .csv table

(comma-separated values) with semicolon as

separator and constraints expressions. Thereby, all

possible instances of the part properties build the

column and row headings. Incompatibilities are

indicated based on “0”, required combinations by “x”.

For the case of no entry, combinations of the part

properties are allowed.

3. Decision tables [34] are applied to formalize if-then

relations among different types of properties. In the

rows, first all conditions are listed followed by the

properties that need to be excluded (“0”) or are

required (“x”).

Examples of the formalization of interconnections are provided

in the following section where a case study for configuration of

personal computers is introduced. With the suggested types of

constraints, the provided case study can be formalized. However,

the list does not claim completeness and additional types will need

to be added for special cases.

4 CASE STUDY

In [8] a configuration model of a personal computer (PC) is

described using UML and for some of the constraints a textual

representation is applied. In the following, the formalization of the

configuration model using SysML syntax, only, is presented.

Similar to Section 3, the model is introduced by first showing the

package structure of the configuration model in relation to the

personal computer system model. Following this, the model

libraries are presented as well as the product architecture. Finally,

representative interconnections are depicted detailing the three

different types of constraints according to Section 3.2.3. All

models were defined using the Papyrus 5.0.0 open-source

modelling environment.

4.1 Organizing the PC Configuration Model

In a first step, the PC configuration model is integrated to the

existing system model of a personal computer as depicted in Figure

2. Since the configuration model is integrated on the same level as

the system model, reuse of elements from the system model is

enabled.

4.2 Defining the PC Configuration Model

Figure 5 shows the model library that is used for defining the

components of the PC that need to be selected based on customers’

requirements. It shows that different variants for the hard disk

(HDisk), the related controller (HDController), the central

processing unit (CPU), the operating system (OS), the motherboard

(MB) and screens exist.

Figure 6 shows the product architecture of the PC. Multiplicities

define the domain of decision variables of the amount of each child

component. The value properties in the configuration model

(maxPrice, usage, efficiency) denote customer requirements which

are linked to properties of other blocks via interconnections as

detailed below.

Figure 5. Model library of the PC configuration example.

Figure 6. Product architecture of the configuration model.

Regarding the definition of interconnections among the blocks’

properties, Figure 7 shows an example of a parametric relation:

The defined constraint links several value properties denoting that

the price of the hard disk unit (HDUnit) is defined by the prices of

the hard disks and controllers. It must be noted that multiplicities

are considered implicitly by multiplying the value properties with

the amount defined by the multiplicities of the owning blocks.

Similarly, the computation of the price of the PC can be defined as

the sum of the prices of the hard disk units, the motherboard, the

CPUs, the operating system, the screens, applications, and the

internet connection (InternetConn). Additional interconnections

are: One linking the price limit defined by the customer (maxPrice)

with the price of the PC, one ensuring that the capacity of all hard

disks in total is larger than the required capacities (value properties

hdcapacity) of the operating system and selected applications, and

two others equating the efficiency of the PC with the efficiency of

the motherboard and of the screens, respectively. Interconnections

among two part properties are used to denote restrictions and

requirements regarding the selection of CPUs, motherboards and

operating systems. Figure 8 shows the definition of the decision

table for CPUs and motherboards. The constraint property

highlights the formalization of the constraint as a .csv table.

Finally, interconnections between a value property and part

properties are applied to link the customer input regarding the

selection of efficiency classes to the respective motherboards and

screens. In this case, the .csv-table lists the instances of the value

properties as column headings and all possible instances of the part

properties. Figure 9 show the respective parametric diagram.

Similarly, internet and multimedia usage are linked to the internet

connection so to define that for these cases an internet connection

must be prevalent. Further, for the case of scientific usage, a CPU

of type CPUD needs to be selected.

Figure 7. Interconnection among value properties defining the price of

the HDUnit.

Figure 8. Interconnection among two part properties defining

compatibilities among blocks.

5 DISCUSSION

The discussion of the proposed method for formalization of

configuration models using SysML is based on the findings from

the case study presented in Section 4 and split into two parts: First,

the knowledge representation yielded by application of SysML is

reviewed according to the nine criteria introduced in [8]. Second,

the integration within MBSE is critically reviewed.

Figure 9. Interconnection among value and part properties.

5.1 Benchmark of Knowledge Representation

In the following the criteria for assessment of knowledge

representations for configuration models [8] are introduced using

italic letters. Each criterion is then discussed separately:

Standard graphical modelling concepts?

The approach presented in this work builds upon the SysML, an

established standard. Recent reviews show that (1) model-based

systems engineering is gaining popularity [35], and (2) SysML is

the dominating modelling language for MBSE [5]. The case study

shows that a configuration model can be fully formalized using

SysML-based graphical modelling, only. No coding is required for

formalization of additional constraints. Thereby, the presented

approach adds up to existing formalization relying on UML.

Component-oriented modelling?

Being an object-oriented modelling language developed for the

modelling of complex systems, SysML enables the representation

of hierarchical component structures facilitating the

communication of configuration models. Additionally, the

integration of the configuration model directly within the system

model fosters reuse of components mitigating efforts and reducing

errors for formalization of configuration models.

Automated consistency maintenance?

Commercial modelling applications provide basic support for

model validation. However, integration of support for the

formalization of configuration models requires model

transformations to other representations where evaluation of

constraints is rendered feasible. This topic is considered a potential

line of future work.

Modularization concepts available?

The concept of package diagrams allows to organize a model in

modules. Further, the presented approach presents a concept for

organizing the configuration model according to the type of

knowledge that is being formalized: product architecture, model

libraries and interconnections.

Support of easy knowledge base evolution and maintenance?

SysML is intended to support formalization and communication of

complex knowledge. Therefore, the proposed approach aims to

enable knowledge engineers to reuse essential product knowledge

from the system model. Preliminary usability studies with

engineers from industry indicate the potential of the approach to

enable domain experts to formalize essential parts of a

configuration model themselves. Therefore, the proposed approach

fosters collaboration of domain experts and knowledge engineers.

Model-based knowledge representation?

Using SysML, the configuration model is represented in a

declarative manner that needs to be transformed to a representation

that can be linked to reasoning mechanisms. Hence, the

configuration model and problem-solving logic are strictly

separated as required in a model-based approach [36].

Efficient reasoning?

Using model transformations, the SysML configuration model can

be transferred to various representations such as CSP models.

However, model transformation potentially yields sub-optimal

formalizations leading to losses in performance when compared to

formalizations done directly within the solver’s environment.

Able to solve generative problem settings?

No, however, when using nested configuration models, generative

problem configuration scenarios where the constraints are added to

the configuration model on demand could be enabled. Future work

needs to elaborate on concepts enabling nested configuration when

using SysML modelling.

Able to provide explanations?

Since the configuration model needs to be transformed to a

representation for solving the configuration problem, explanations

are potentially enabled when using appropriate representations [8].

5.2 Systems Engineering Integration

The introduced method builds upon SysML syntax without

modifications or extensions of the modelling language. Therefore,

the configuration model can be defined reusing essential parts of

the system model. When combining MBSE and product

configuration, domain experts implicitly formalize parts of the

configuration model and knowledge engineers can directly build

upon the system model, respectively. The integration of already

validated knowledge allows saving time and reducing errors in

modelling. Further, having one representation for different stages

of the product lifecycle ensures consistency of data, such as

propagation of modifications in product families after engineering

change requests. However, in the presented approach the

organization of models within packages needs to be strictly

followed so that reasoning among models is confined to the content

available within the package. In this respect, future work needs to

elaborate on means to assure the correct formalization of

configuration models in existing system models. For example,

processes need to be elaborated to define collaboration among

domain experts and knowledge engineers.

Considering model transformations, a next step corresponds to

the elaboration of transformations from the SysML configuration

model to different problem-solving domains such as CSP or

Boolean satisfiability problem [8]. In this context, future work also

needs to address the comprehensiveness of the proposed method

for formalization of configuration models based on additional

examples from engineering industry as well as the integration of

means to facilitate knowledge base debugging [37]. Regarding the

latter, a key challenge is to establish a link the two representations,

so that identified faulty constraints within the computational model

can be correctly modified within the SysML model. Finally, future

work should investigate the extension of the proposed modelling

techniques so to enable knowledge formalization for design

automation methods in general. This will facilitate integration of

computational methods in product development so to enable a

vision of digital engineering, where computational methods can be

rapidly defined and integrated by engineers themselves.

6 CONCLUSION

In this paper a method to integrate MBSE and configuration

modelling is presented. Based on SysML, the method builds upon a

standardized language and enables integration of system and

configuration models so to ensure consistency of product

knowledge along the product lifecycle. Thereby, reuse of models is

enabled to save time when modelling, reduce errors when relying

on already validated models and facilitate collaboration of domain

experts and knowledge engineers. Evaluation of the proposed

method based on a reference example from literature shows that a

full configuration model can be defined using existing SysML

syntax, only. The application of the method does not require the

use of coding techniques for formalization of the configuration

model. Future work needs to investigate the broader validation of

the approach based on additional use cases as well as the

assessment of the usability with domain experts and knowledge

engineers. The focus of these investigations will be on the

extension of the method towards the formalization of design

automation tasks and debugging of knowledge bases. The vision is

that facilitated knowledge formalization will foster the application

of design automation in industrial practice.

ACKNOWLEDGEMENTS

We would like to thank the referees for their comments, which

helped improve this paper considerably.

This work has been partially supported and funded by the

Austrian Research Promotion Agency (FFG) via the “Austrian

Competence Center for Digital Production” (CDP) no. 881843, the

K2 centre InTribology, no. 872176 as well as ASID, no. 856326.

REFERENCES

[1] B. Beihoff, C. Oster, S. Friedenthal, Paredis, Christiaan, D. Kemp,

H. Stoewer, D. Nichols, J. Wade, A World in Motion – Systems

Engineering Vision 2025, INCOSE, San Diego, California, 2014.

[2] C. Forza, F. Salvador, Product information management for mass

customization, Palgrave Macmillan New York, 2007.

[3] INCOSE-TP-2004, Systems Engineering Vision 2020, INCOSE,

2004.

[4] OMG SysML, (n.d.). http://www.omgsysml.org/.

[5] J. Lu, G. Wang, J. Ma, D. Kiritsis, H. Zhang, M. Törngren, General

Modeling Language to Support Model‐based Systems Engineering

Formalisms (Part 1), INCOSE Int. Symp. 30 (2020) 323–338.

https://doi.org/10.1002/j.2334-5837.2020.00725.x.

[6] Object Management Group, UML, UML - Unified Model. Lang.

(n.d.). https://www.omg.org/spec/UML/About-UML/.

[7] L. Hvam, N.H. Mortensen, J. Riis, Product customization, Springer,

Berlin, 2008.

[8] L. Hotz, A. Felfernig, M. Stumptner, A. Ryabokon, C. Bagley, K.

Wolter, Configuration Knowledge Representation and Reasoning,

in: Knowl.-Based Config., Elsevier, 2014: pp. 41–72. (2015).

[9] K. Kristjansdottir, S. Shafiee, L. Hvam, C. Forza, N.H. Mortensen,

The main challenges for manufacturing companies in implementing

and utilizing configurators, Comput. Ind. 100 (2018) 196–211.

https://doi.org/10.1016/j.compind.2018.05.001.

[10] M. Asrar-ul-Haq, S. Anwar, A systematic review of knowledge

management and knowledge sharing: Trends, issues, and

challenges, Cogent Bus. Manag. 3 (2016).

https://doi.org/10.1080/23311975.2015.1127744.

[11] A. Felfernig, G.E. Friedrich, D. Jannach, UML AS DOMAIN

SPECIFIC LANGUAGE FOR THE CONSTRUCTION OF

KNOWLEDGE-BASED CONFIGURATION SYSTEMS, Int. J.

Softw. Eng. Knowl. Eng. 10 (2000) 449–469.

https://doi.org/10.1142/S0218194000000249.

[12] S. Florian, S. Lea-Nadine, K. Dieter, MBSE-basierte

Produktkonfiguratoren zur Analyse der Modularisierung bei der

Entwicklung modularer Baukastensysteme, in: R.H. Stelzer, J.

Krzyzwinski (Eds.), Entwerf. Entwick. Erleb. Produktentwicklung

Des. 2019 Band 2, TUDpress, Dresden, 2019: pp. 55–70.

[13] M. Brambilla, J. Cabot, M. Wimmer, Model-Driven Software

Engineering in Practice: Second Edition, Synth. Lect. Softw. Eng. 3

(2017) 1–207.

https://doi.org/10.2200/S00751ED2V01Y201701SWE004.

[14] S.K. Chandrasegaran, K. Ramani, R.D. Sriram, I. Horváth, A.

Bernard, R.F. Harik, W. Gao, The evolution, challenges, and future

of knowledge representation in product design systems, Comput.-

Aided Des. 45 (2013) 204–228.

https://doi.org/10.1016/j.cad.2012.08.006.

[15] Verein Deutscher Ingenieure, VDI 5610 - Blatt 1 -

Wissensmanagement im Ingenieurswesen - Grundlagen, Konzepte,

Vorgehen, 2009.

[16] B.J. Hicks, S.J. Culley, R.D. Allen, G. Mullineux, A framework for

the requirements of capturing, storing and reusing information and

knowledge in engineering design, Int. J. Inf. Manag. 22 (2002)

263–280. https://doi.org/10.1016/S0268-4012(02)00012-9.

[17] J. Stjepandić, W.J.C. Verhagen, H. Liese, P. Bermell-Garcia,

Knowledge-Based Engineering, in: J. Stjepandić, N. Wognum,

W.J.C. Verhagen (Eds.), Concurr. Eng. 21st Century, Springer

International Publishing, Zürich, 2015: pp. 255–286. 10.1007/978-

3-319-13776-6_10 (2015).

[18] D. Baxter, J. Gao, K. Case, J. Harding, B. Young, S. Cochrane, S.

Dani, An engineering design knowledge reuse methodology using

process modelling, Res. Eng. Des. 18 (2007) 37–48.

https://doi.org/10.1007/s00163-007-0028-8.

[19] J.H. Panchal, M.G. Fernández, C.J.J. Paredis, J.K. Allen, F.

Mistree, A Modular Decision-centric Approach for Reusable

Design Processes, Concurr. Eng. Res. Appl. 17 (2009) 5–19.

https://doi.org/10.1177/1063293X09102251.

[20] J. Tiihonen, A. Felfernig, An introduction to personalization and

mass customization, J. Intell. Inf. Syst. 49 (2017) 1–7.

https://doi.org/10.1007/s10844-017-0465-4.

[21] S. Friedenthal, R. Griego, M. Sampson, INCOSE model based

systems engineering (MBSE) initiative, in: INCOSE 2007 Symp.,

2007. (2016).

[22] S. Friedenthal, A. Moore, R. Steiner, A practical guide to SysML:

the systems modeling language, Morgan Kaufmann, (2014).

[23] B. Kruse, A Library-based Concept Design Approach for Multi-

Disciplinary Systems in SysML, Dissertation, ETH Zürich, 2016.

[24] P. Klein, J. Lützenberger, K.-D. Thoben, A Proposal for

Knowledge Formailization in Product Development Processes, in:

Proc. Int. Conf. Eng. Des. ICED15, Design Society, Milano, Italy,

2015: pp. 261–272.

[25] S. Wölkl, Model Libraries for Conceptual Design, Dissertation, TU

München, (2012).

[26] A.A. Shah, C.J.J. Paredis, R. Burkhart, D. Schaefer, Combining

Mathematical Programming and SysML for Automated Component

Sizing of Hydraulic Systems, J. Comput. Inf. Sci. Eng. 12 (2012)

https://doi.org/10.1115/1.4007764.

[27] R.S. Peak, R.M. Burkhart, S.A. Friedenthal, M.W. Wilson, M.

Bajaj, I. Kim, Simulation-Based Design Using SysML Part 1: A

Parametrics Primer, in: INCOSE Int. Symp., Wiley Online Library,

San Diego, California, 2007: pp. 1516–1535.

http://onlinelibrary.wiley.com/doi/10.1002/j.2334-

5837.2007.tb02964.x

[28] R.S. Peak, R.M. Burkhart, S.A. Friedenthal, M.W. Wilson, M.

Bajaj, I. Kim, Simulation-Based Design Using SysML Part 2:

Celebrating Diversity by Example, in: INCOSE Int. Symp., Wiley

Online Library, San Diego, California, 2007: pp. 1536–1557.

http://onlinelibrary.wiley.com/doi/10.1002/j.2334-

5837.2007.tb02965.x

[29] C. Bock, R. Barbau, I. Matei, M. Dadfarnia, An Extension of the

Systems Modeling Language for Physical Interaction and Signal

Flow Simulation, Syst. Eng. 20 (2017) 395–431.

https://doi.org/10.1002/sys.21380.

[30] E. Rigger, T. Stanković, K. Shea, Task Categorization for

Identification of Design Automation Opportunities, J. Eng. Des.

(2018). https://doi.org/10.1080/09544828.2018.1448927.

[31] C.L. Dym, R.E. Levitt, Knowledge-based systems in engineering,

McGraw-Hill, New York, (1991).

[32] H.P.L. Bruun, N.H. Mortensen, U. Harlou, M. Wörösch, M.

Proschowsky, PLM system support for modular product

development, Comput. Ind. 67 (2015) 97–111.

https://doi.org/10.1016/j.compind.2014.10.010.

[33] T.R. Browning, Design Structure Matrix Extensions and

Innovations: A Survey and New Opportunities, IEEE Trans. Eng.

Manag. 63 (2016) 27–52.

https://doi.org/10.1109/TEM.2015.2491283.

[34] E. Hering, Entscheidungstabelle nach DIN 66241, in: Softw.-Eng.,

Vieweg+Teubner Verlag, Wiesbaden, 1984: pp. 18–25.

https://doi.org/10.1007/978-3-322-86222-8_3.

[35] A.M. Madni, M. Sievers, Model-based systems engineering:

Motivation, current status, and research opportunities, Syst. Eng. 21

(2018) 172–190. https://doi.org/10.1002/sys.21438.

[36] S. Mittal, F. Frayman, Towards a Generic Model of Configuraton

Tasks., in: IJCAI, Citeseer, (1989) pp. 1395–1401.

[37] L.L. Zhang, Product configuration: a review of the state-of-the-art

and future research, Int. J. Prod. Res. 52 (2014) 6381–6398.

https://doi.org/10.1080/00207543.2014.942012.

