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Abstract.1  Dynamic markets that call for customized products and 
shorter lead time in product development urge companies to apply 
technologies such as product configuration systems to leverage 
performance in product development and its related processes. 
Product configuration can be referred as a knowledge intensive 
technology that relies on the application of formalized product 
knowledge to enable automated reasoning. However, the related 
knowledge formalization is still considered a major obstacle for the 
integration of configuration technologies since often being 
conducted by non-domain experts. In this work, we present a 
method for the formalization of product configuration related 
knowledge as early as during development of an engineering 
system using the systems modelling language SysML. Based on a 
reference example from literature, it is shown how the required 
configuration knowledge can be formalized by the systems 
engineer to avoid costly and error prone knowledge acquisition in 
later stages of the product lifecycle. The yielded SysML model 
relies on graphical modelling, only, and can be directly integrated 
in existing system models. Thereby, the proposed method 
facilitates formalization of configuration knowledge for engineers 
and enables reuse of existing models so to save time and reduce 
errors when formalizing configuration models.  

1 INTRODUCTION 

Currently, engineering companies are facing two challenges that 

call for the application of new methods in the engineering and sales 

of their products: first, the complexity of engineering systems is 

growing with respect to the number of components and functions 

of a system as well as the involved disciplines [1]. Second, product 

development cycles tend to get shorter and customers ask for 

highly customized products with reduced engineering lead time [2]. 

In response to these needs, model-based systems engineering 

(MBSE) and product configuration can be considered as enabling 

methods that will allow industry to reconcile and meet the two 

conflicting challenges. MBSE is defined as “the formalized 

application of modelling to support system requirements, design, 

analysis, verification and validation activities beginning in the 

conceptual design phase and continuing throughout development 

and later life cycle phases” [3]. In this respect, the Systems 

Modelling Language (SysML)[4] has been established as 

modelling standard for MBSE and can be considered the most 

commonly applied language in MBSE [5]. SysML extends the 

unified modelling language (UML) [6] that is primarily applied in 
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the software engineering domain and features object-oriented 

modelling of multidisciplinary systems.   

Product configuration is applied to support the decision-making 

process in sales and engineering phases [7] based on reasoning 

among a set of predefined components and their relations, referred 

to as the configuration model [8]. Product configuration systems 

support the product configuration by automated reasoning based on 

customer requirements and the configuration model. However, a 

major obstacle in the application of product configuration systems 

is the knowledge acquisition that is required to enable 

formalization of the configuration model [9]. Reason for this is the 

current knowledge acquisition practice where knowledge engineers 

acquire and formalize the knowledge gained from domain experts 

[2] which is a costly process that is also considered critical since it 

is founded upon knowledge sharing and trust [10]. Regarding 

knowledge formalization, the application of object-oriented 

modelling supports the formalization of configuration models [11]. 

Hence, there is potential to integrate MBSE and product 

configuration so that knowledge that is defined in product 

development can be reused in later stages of the lifecycle to 

establish a product configuration system. This reuse of knowledge 

can facilitate the process of knowledge acquisition or even make it 

obsolete. However, currently the topics MBSE and product 

configuration are not linked [12]. Hence, there is a gap that 

integrates systems modelling and knowledge formalization for 

configuration models.  

In this paper we propose a method that closes this gap by 

linking MBSE and product configuration using SysML. The 

method demonstrates how standard modelling language syntax can 

be applied to formalize dependencies in the systems model to 

establish a configuration model. A systems model that already 

captures the constraints and dependencies regarding the product 

architecture can be adapted and extended so to reuse already 

formalized knowledge and ensure consistency among models. The 

resulting configuration model can then be applied in product 

configuration systems via model transformations [13]. 

Consequently, the focus and motivation of this work is to enable 

system engineers/domain experts to contribute to the definition of 

the configuration model, enable reuse of knowledge for 

configuration modelling and thereby ensure consistency of models 

and knowledge among different stages of the product lifecycle. 

Thus, the knowledge acquisition bottleneck is tackled, in particular 

for companies applying MBSE. The method presented in this paper 

is validated based on a case study of a configuration example for 

personal computers according to [8,11].  

The remainder of the paper is structured as follows: Section 2 

introduces the related background of MBSE and knowledge 
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formalization in the context of product configuration and SysML. 

Section 3 then introduces the method for modelling configuration 

knowledge during product development. Section 4 shows the 

validation of the proposed method based on a case study and 

discusses attained results. The paper closes by presenting 

concluding remarks in Section 5. 

2 BACKGROUND 

In this section, first the terminology of data, information and 

knowledge is clarified and ways to differentiate the types of 

knowledge are reviewed and put into context with product 

configuration. Next, basics of MBSE are introduced and existing 

efforts for application of the SysML modelling language as a 

standardized language for knowledge formalization are introduced 

and reviewed. Based thereon, the research gaps addressed in this 

work are presented. 

2.1 Types of Engineering Knowledge 

Knowledge can be classified as tacit and formal knowledge [14] 

whereas the first refers to expert knowledge and intuition, formal 

engineering knowledge corresponds to information embedded in 

data, such as design guidelines, SysML and CAD models etc. To 

further distinguish the terms “knowledge”, “information”, and 

“data” in this work, the definition by the VDI 5610 [15] which is 

aligned with other definitions found in literature, e.g. [16,17] is 

applied: 
• “Data are objective facts, they cannot be interpreted

without context and further backgrounds. They are to be

taken as “raw material”.

• Information are structured data with relevance and

purpose, which can be put into a context, categorized,

calculated and corrected.

• Knowledge is linked information, which enables to draw

comparisons, to establish links and to make decisions. “

In the context of computational support to automate tasks of 

product development which is referred to as design automation, 

various ways of structuring engineering knowledge are presented 

in literature. The work from [18] differentiates process, task and 

product knowledge. Product knowledge refers to the knowledge 

about the specifics of the product, such as its architecture, its 

components, and the related dependencies. Process knowledge 

captures the knowledge on how to apply information in the context 

of the product. The task knowledge considers knowledge on 

algorithms and rules to update the product model. Similarly, [19] 

distinguish between procedural and declarative knowledge, where 

procedural refers to design process knowledge and declarative to 

product knowledge. In the context of product configuration 

systems that feature strict separation of the configuration model 

and the related reasoning [20], product knowledge can be 

considered the basis for the configuration model. A configuration 

model captures all information about a product so that a constraint 

satisfaction problem (CSP) can be formalized. The CSP forms the 

basis of a product configuration systems which then deduces 

configurations based on user input [8]. A basic CSP is described by 

a set of variables, the related domains (ranges) and constraints that 

limit the combination of variables. 

2.2 SysML-based Knowledge Formalization 

Regarding the usage of a standardized language for formalization 

of engineering knowledge, SysML has recently been addressed by 

multiple approaches identified in literature. SysML has evolved 

since 2007 as a standardized model language to support model-

based systems engineering (MBSE) [21,22]. SysML as an object-

oriented modelling language aims to support communication and 

understanding of formalized knowledge [22]. The language 

provides the full semantic foundation for documentation of system 

requirements, behavior, structure, and parametric relations. As a 

standardized language, SysML features reuse of models to avoid 

loss of knowledge between projects and reduce cost and risk in 

design [1]. In the context of formalization of a configuration 

model, the definition of hierarchical structures and relations among 

these are of relevance. Figure 1 depicts the diagrams that are 

considered relevant for the formalization of configuration models.  

Figure 1.  Excerpt of SysML diagram taxonomy [4] 

First, package diagrams (PKG) can be used to organize the model 

in containers referred to as packages. Packages aggregate other 

model elements and are described by a name and URL (Uniform 

Resource Locator) making them uniquely identifiable and 

accessible so to foster reuse of models. For instance, model 

libraries or distinct parts of a system model such as its functional or 

logical architecture are organized within separate packages. The 

block definition diagram (BDD) enables the definition of 

hierarchical relations among the entities of a system called blocks. 

Blocks are used to describe types of physical entities such as 

components but also conceptual entities such as the functions of a 

system. Blocks are described based on part, value and constraint 

properties. Value properties account for quantifiable characteristics 

of a block such as weight, speed, etc. and can be typed by primitive 

types such as integers, reals or strings.  Default values or default 

range of values can be assigned to value properties upon definition 

of a block. Part-of associations are used within block definition 

diagrams among blocks to define the part properties describing the 

composition of a block. In this context, multiplicities can be used to 

indicate the total amount of child blocks of a specific type, e.g. a 

car consist of four wheels. To model variance in a system, 

generalizations can be used. For example, “SUV” or “Van” refer to 

two different variants of the block “car” that both inherit the 

properties of the more general parent block. For the case that a 

block is used as a blueprint so to be reused by its specialized 

variants, blocks can be typed as abstract. This is particularly useful 

for definition of model libraries so that its elements can be reused 

among various models [23]. The internal block diagram (IBD) is 

used to detail the internal structure of a specific block, to for 



example define interfaces and connections among nested blocks. 

However, in the context of configuration modelling, the parametric 

diagram (PAR) is more applicable since it enables the 

formalization of constraints among properties of blocks. For this 

purpose, SysML provides constraint blocks for the formalization of 

equations and rules. Constraint blocks can be assigned as 

constraint properties to blocks. Using a PAR, the constraint 

property can be linked to the block’s properties using binding 

connection. Figure 7 shows an example of a parametric diagram 

representing a constraint property of type CalculatePrice with 

rounded edges. The constraint property belongs to the owning 

block HDUnit denoting the boundary of the PAR. Using binding 

connections, the PAR puts into context the constraint property, 

HDUnit’s value property price and the value properties price that 

belong to hdcontroller and hdisk. To customize SysML for specific 

domains, stereotypes can be introduced to define new modelling 

elements. This can be used to define a domain specific language 

for parametric CAD [24].  

Relevant approaches in the context of design automation feature 

systematics for definition of model-libraries for reuse [23,25], 

formalization of parameter synthesis tasks [26], formalization of 

CAD configuration tasks [24], formalization of simulation-based 

design tasks  [27] [28], or neutral modelling of simulation models 

that can be then translated to the format of the desired simulation 

tool [29]. Reason for the interest in SysML for design automation 

task formalization is the aspect of integration of formalizations to 

MBSE processes, and its means to support communication and 

understanding of formalized knowledge. However, presented 

approaches rely on customizations of SysML based on newly 

introduced stereotypes hindering the integration to industrial 

environments where models are defined following the SysML 

standard. Further, focus is put on technological aspects of the 

customization of the language rather than the possibility for 

integration to workflows of engineers. For example, in [26] 

stereotypes reflecting the characteristics of a mathematical 

optimization problems are introduced. Hence, for successful 

application, engineers require fundamental knowledge about 

mathematical modelling.  

Regarding the domain of product configuration, [12] show that 

MBSE and product configuration are currently not linked an 

suggest the usage of SysML models reflecting the modular product 

architecture as a basis for development of the configuration model. 

However, the suggested approach by [12] lacks details regarding 

the integration of the system model and the configuration model, 

such as consistency management. 

Consequently, means to enable engineers to formalize product 

knowledge in a reusable, intuitive manner that also ensures 

consistency of models among the product lifecycle are missing. In 

a literature review on knowledge levels required for the 

formalization of design automation tasks, [30] proposed to use 

SysML as a standardized language providing the full semantics 

required for design automation task definition. Thus, in this work, a 

method is proposed that facilitates knowledge formalization for 

usage in product configurators following the SysML standard. 

3 CONFIGURATION MODEL 
FORMALIZATION USING SysML  

In this section the method combining MBSE and product 

configuration is presented. SysML semantics are overloaded to 

account for the specifics of configuration modelling. Thus, the 

formalization of a configuration model can take place early in 

product development, and integrated to a (MBSE) process and the 

related models. Thereby, a system model corresponding to the 

“single source of truth” can be established integrating all relevant 

information about the system for later processing during the 

product lifecycle [1]   

In the following, first, means to organize the configuration 

model within a system model are introduced. Next, the semantics 

for the formalization of a configuration model are introduced. 

3.1 Organize the Configuration Model 

To organize and structure the knowledge for establishing a 

configuration model, the following packages are defined: the 

package “product architecture” captures the information related to 

the hierarchy of the system and used blocks. The package 

“interconnections” is used to aggregate the definitions of 

constraints among the blocks’ properties. Within the package 

“model libraries”, model libraries can be defined or integrated to 

foster the reuse of model elements. Further, the usage of abstract 

blocks for instantiation of model libraries enables formalization of 

constraints among abstract blocks rather than the specific children 

blocks. Thereby, the formalization of generic CSPs [8] is rendered 

feasible. Figure 2 shows the package diagram as a starting point for 

formalizing the configuration model. It is shown how the package 

“Configuration” aggregates the three packages used to define the 

configuration model and how the package itself is integrated to the 

system model. Therefore, the information about the system can be 

captured within one model comprehensively. The organization of 

the system model depicted in Figure 2 follows the structure 

proposed in [22] enriched by the package “Configuration”. 

Figure 2.  PKG depicting the structure of a configuration model within 

a systems model. 

3.2 Define the Configuration Model 

In the following it is shown how the packages depicted in Figure 2 

can be enriched to fully define a configuration model by using 

existing SysML syntax, only. First, the concept of model libraries 

is briefly introduced so that the definition of generic components is 

enabled (3.2.1). Afterwards, the instantiation of product 

architectures is shown including the formalization of related 

variables and constraints directly within the product architecture 

using relations on a block definition diagram (3.2.2) and by 



defining parametric relations using constraint blocks and 

parametric diagrams (3.2.3).  

3.2.1 Model Libraries 

A model library can be defined using a block definition diagram. 

Once a model library is instantiated, it can be reused among 

different projects. In this work, the systematics of model library 

definition as proposed in [23,25] are applied as illustrated in Figure 

3. In particular, the concepts of inheritance are applied to define 

abstraction hierarchies [31]. With this respect, SysML provides 

generalization relationships between blocks as well as the 

definition of abstract elements. This enables the definition of 

abstract components where generic constraints can be defined 

upon. The information regarding variance of a product can be 

already captured within the system model for description of 

product families [32] and therefore can be directly reused within 

the configuration model. 

 
Table 1. Model elements used for definition of component libraries. 

Model 
elements 

Model type Symbol Meaning 

Block  Block 

 

Modular unit of a 
system  

Abstract 
Block 

Block 

 

The block cannot be 
instantiated and is used 

for inheriting 
properties, only. 

Specializ
ation  

Specialization 
Relation 

 

Inheritance of parent 
block’s properties to 

child block 

 

 

Figure 3. Generic example of component library illustrating the 

modelling concepts shown in Table 1. 

3.2.2 Product Architecture 

The product architecture in MBSE is defined using a block 

definition diagram and captures all aspects regarding the 

hierarchical organization of a system. Hence, the product 

architecture can be directly reused for defining the configuration 

model. According to the object-oriented paradigm of SysML [22], 

the hierarchical structure of a system (the product architecture) 

requires a main block that aggregates the parts (i.e. subsystems / -

assemblies / - components). In the context of the configuration 

model, a main block ConfigurationModel is introduced so to 

separate the configuration model from the remaining system model 

and serve as a starting point. Further, characteristic input variables 

are assigned to the ConfigurationModel itself, so that subsequently 

constraints can be defined using these variables. For example, a 

customer might want to specify a maximum price when 

configuring a car. The block ConfigurationModel is then linked to 

the block “System” using a part-of association.  

Variables and dedicated types of constraints can be declared 

directly within the product architecture using the modelling 

elements listed in table 2: Abstract blocks are used to indicate 

selection of components, multiplicities to define variability in the 

number of a specific block and value properties to specify 

(discrete) variables and the corresponding solution domain by 

specifying the default value. Value properties of SysML blocks 

that are not assigned any value or a specific value, respectively, are 

considered as parameters and are not subject to the CSP. Within 

Figure 4, the block LibraryElement refers to a component that 

needs to be selected from the component library according to 

requirements. The DiscreteVariable of Child1 refers to a variable 

with indicated domain by assigning a value range to the value 

property. The multiplicity of Child2 shows that this block needs to 

be in the system at least once but can also be prevalent in a larger 

amount within the final configuration, depending on customer 

requirements. It must be noted that variable declaration can be 

combined, e.g., a library element possibly contains a variable 

which is to be determined when configuring the product. 

 
Table 2. Key model elements used on BDD for definition of product 

architectures including constraints. 

Model 
elements 

Model type Symbol Meaning 

Abstract 
Block 

Block 

 

Indication of a discrete 
variable for component 

selection. Works in 
conjunction with model 

libraries, only. 
Multiplicity Part-of 

association 

 

Indication of parts as 
discrete variables with 
multiplicity as lower 
and upper bound of 

variable 

 Variable 
range 

Value 
property 

a,b,c,d,… Indication of (discrete) 
variable domain.  

 

Figure 4. Generic example of product architecture as well as possible 

constraints using concepts shown in Table 2. 

 



3.2.3 Interconnections 

To define constraints related to interconnection of value and part 

properties of the blocks, parametric diagrams can be used. 

Thereby, constraints for the configuration model can be defined 

based on linking constraint blocks to specific value and part 

properties, e.g. if each block contains a value property indicating 

the cost, a constraint can be defined stating the cost of all active 

components needs to be below a specific threshold. For each 

interconnection, first a constraint block is defined specifying all 

variables used within the constraint by assigning value and part 

properties to the constraint as well as a constraint expression. Next, 

a parametric diagram depicting the constraint block is instantiated 

that is then linked to the package “interconnections” to provide the 

required overview of formalized constraints. Depending on the 

type of constraint properties, the main different types of constraints 

can be formalized as follows: 

1. Parametric relations for two or more value properties. 

2. Decision structure matrices [33] are used to define 

compatibility among part properties: a .csv table 

(comma-separated values) with semicolon as 

separator and  constraints expressions. Thereby, all 

possible instances of the part properties build the 

column and row headings. Incompatibilities are 

indicated based on “0”, required combinations by “x”. 

For the case of no entry, combinations of the part 

properties are allowed. 

3. Decision tables [34] are applied to formalize if-then 

relations among different types of properties. In the 

rows, first all conditions are listed followed by the 

properties that need to be excluded (“0”) or are 

required (“x”).  

Examples of the formalization of interconnections are provided 

in the following section where a case study for configuration of 

personal computers is introduced. With the suggested types of 

constraints, the provided case study can be formalized. However, 

the list does not claim completeness and additional types will need 

to be added for special cases.  

4 CASE STUDY 

In [8] a configuration model of a personal computer (PC) is 

described using UML and for some of the constraints a textual 

representation is applied. In the following, the formalization of the 

configuration model using SysML syntax, only, is presented. 

Similar to Section 3, the model is introduced by first showing the 

package structure of the configuration model in relation to the 

personal computer system model. Following this, the model 

libraries are presented as well as the product architecture. Finally, 

representative interconnections are depicted detailing the three 

different types of constraints according to Section 3.2.3. All 

models were defined using the Papyrus 5.0.0 open-source 

modelling environment. 

4.1 Organizing the PC Configuration Model 

In a first step, the PC configuration model is integrated to the 

existing system model of a personal computer as depicted in Figure 

2. Since the configuration model is integrated on the same level as 

the system model, reuse of elements from the system model is 

enabled.  

4.2 Defining the PC Configuration Model 

Figure 5 shows the model library that is used for defining the 

components of the PC that need to be selected based on customers’ 

requirements. It shows that different variants for the hard disk 

(HDisk), the related controller (HDController), the central 

processing unit (CPU), the operating system (OS), the motherboard 

(MB) and screens exist.  

Figure 6 shows the product architecture of the PC. Multiplicities 

define the domain of decision variables of the amount of each child 

component. The value properties in the configuration model 

(maxPrice, usage, efficiency) denote customer requirements which 

are linked to properties of other blocks via interconnections as 

detailed below.   

 

Figure 5. Model library of the PC configuration example. 

 

Figure 6. Product architecture of the configuration model. 

 

Regarding the definition of interconnections among the blocks’ 

properties, Figure 7 shows an example of a parametric relation: 

The defined constraint links several value properties denoting that 

the price of the hard disk unit (HDUnit) is defined by the prices of 

the hard disks and controllers. It must be noted that multiplicities 

are considered implicitly by multiplying the value properties with 

the amount defined by the multiplicities of the owning blocks. 



Similarly, the computation of the price of the PC can be defined as 

the sum of the prices of the hard disk units, the motherboard, the 

CPUs, the operating system, the screens, applications, and the 

internet connection (InternetConn). Additional interconnections 

are: One linking the price limit defined by the customer (maxPrice) 

with the price of the PC, one ensuring that the capacity of all hard 

disks in total is larger than the required capacities (value properties 

hdcapacity) of the operating system and selected applications, and 

two others equating the efficiency of the PC with the efficiency of 

the motherboard and of the screens, respectively. Interconnections 

among two part properties are used to denote restrictions and 

requirements regarding the selection of CPUs, motherboards and 

operating systems. Figure 8 shows the definition of the decision 

table for CPUs and motherboards. The constraint property 

highlights the formalization of the constraint as a .csv table. 

Finally, interconnections between a value property and part 

properties are applied to link the customer input regarding the 

selection of efficiency classes to the respective motherboards and 

screens. In this case, the .csv-table lists the instances of the value 

properties as column headings and all possible instances of the part 

properties. Figure 9 show the respective parametric diagram. 

Similarly, internet and multimedia usage are linked to the internet 

connection so to define that for these cases an internet connection 

must be prevalent. Further, for the case of scientific usage, a CPU 

of type CPUD needs to be selected. 

 

Figure 7. Interconnection among value properties defining the price of 

the HDUnit. 

 

Figure 8. Interconnection among two part properties defining 

compatibilities among blocks. 

 

5 DISCUSSION 

The discussion of the proposed method for formalization of 

configuration models using SysML is based on the findings from 

the case study presented in Section 4 and split into two parts: First, 

the knowledge representation yielded by application of SysML is 

reviewed according to the nine criteria introduced in [8]. Second, 

the integration within MBSE is critically reviewed. 

 

Figure 9. Interconnection among value and part properties. 

5.1 Benchmark of Knowledge Representation 

In the following the criteria for assessment of knowledge 

representations for configuration models [8] are introduced using 

italic letters. Each criterion is then discussed separately: 

Standard graphical modelling concepts? 

The approach presented in this work builds upon the SysML, an 

established standard. Recent reviews show that (1) model-based 

systems engineering is gaining popularity [35], and (2) SysML is 

the dominating modelling language for MBSE [5]. The case study 

shows that a configuration model can be fully formalized using 

SysML-based graphical modelling, only. No coding is required for 

formalization of additional constraints. Thereby, the presented 

approach adds up to existing formalization relying on UML.  

Component-oriented modelling? 

Being an object-oriented modelling language developed for the 

modelling of complex systems, SysML enables the representation 

of hierarchical component structures facilitating the 

communication of configuration models. Additionally, the 

integration of the configuration model directly within the system 

model fosters reuse of components mitigating efforts and reducing 

errors for formalization of configuration models. 

Automated consistency maintenance? 

Commercial modelling applications provide basic support for 

model validation. However, integration of support for the 

formalization of configuration models requires model 

transformations to other representations where evaluation of 

constraints is rendered feasible. This topic is considered a potential 

line of future work.  

Modularization concepts available? 

The concept of package diagrams allows to organize a model in 

modules. Further, the presented approach presents a concept for 

organizing the configuration model according to the type of 

knowledge that is being formalized: product architecture, model 

libraries and interconnections.  

Support of easy knowledge base evolution and maintenance? 

SysML is intended to support formalization and communication of 

complex knowledge. Therefore, the proposed approach aims to 



enable knowledge engineers to reuse essential product knowledge 

from the system model. Preliminary usability studies with 

engineers from industry indicate the potential of the approach to 

enable domain experts to formalize essential parts of a 

configuration model themselves. Therefore, the proposed approach 

fosters collaboration of domain experts and knowledge engineers.  

Model-based knowledge representation? 

Using SysML, the configuration model is represented in a 

declarative manner that needs to be transformed to a representation 

that can be linked to reasoning mechanisms. Hence, the 

configuration model and problem-solving logic are strictly 

separated as required in a model-based approach [36].  

Efficient reasoning? 

Using model transformations, the SysML configuration model can 

be transferred to various representations such as CSP models. 

However, model transformation potentially yields sub-optimal 

formalizations leading to losses in performance when compared to 

formalizations done directly within the solver’s environment.  

Able to solve generative problem settings? 

No, however, when using nested configuration models, generative 

problem configuration scenarios where the constraints are added to 

the configuration model on demand could be enabled. Future work 

needs to elaborate on concepts enabling nested configuration when 

using SysML modelling.  

Able to provide explanations? 

Since the configuration model needs to be transformed to a 

representation for solving the configuration problem, explanations 

are potentially enabled when using appropriate representations [8]. 

5.2 Systems Engineering Integration 

The introduced method builds upon SysML syntax without 

modifications or extensions of the modelling language. Therefore, 

the configuration model can be defined reusing essential parts of 

the system model. When combining MBSE and product 

configuration, domain experts implicitly formalize parts of the 

configuration model and knowledge engineers can directly build 

upon the system model, respectively. The integration of already 

validated knowledge allows saving time and reducing errors in 

modelling. Further, having one representation for different stages 

of the product lifecycle ensures consistency of data, such as 

propagation of modifications in product families after engineering 

change requests. However, in the presented approach the 

organization of models within packages needs to be strictly 

followed so that reasoning among models is confined to the content 

available within the package. In this respect, future work needs to 

elaborate on means to assure the correct formalization of 

configuration models in existing system models. For example, 

processes need to be elaborated to define collaboration among 

domain experts and knowledge engineers.  

Considering model transformations, a next step corresponds to 

the elaboration of transformations from the SysML configuration 

model to different problem-solving domains such as CSP or 

Boolean satisfiability problem [8]. In this context, future work also 

needs to address the comprehensiveness of the proposed method 

for formalization of configuration models based on additional 

examples from engineering industry as well as the integration of 

means to facilitate knowledge base debugging [37]. Regarding the 

latter, a key challenge is to establish a link the two representations, 

so that identified faulty constraints within the computational model 

can be correctly modified within the SysML model. Finally, future 

work should investigate the extension of the proposed modelling 

techniques so to enable knowledge formalization for design 

automation methods in general. This will facilitate integration of 

computational methods in product development so to enable a 

vision of digital engineering, where computational methods can be 

rapidly defined and integrated by engineers themselves. 

6 CONCLUSION 

In this paper a method to integrate MBSE and configuration 

modelling is presented. Based on SysML, the method builds upon a 

standardized language and enables integration of system and 

configuration models so to ensure consistency of product 

knowledge along the product lifecycle. Thereby, reuse of models is 

enabled to save time when modelling, reduce errors when relying 

on already validated models and facilitate collaboration of domain 

experts and knowledge engineers. Evaluation of the proposed 

method based on a reference example from literature shows that a 

full configuration model can be defined using existing SysML 

syntax, only. The application of the method does not require the 

use of coding techniques for formalization of the configuration 

model. Future work needs to investigate the broader validation of 

the approach based on additional use cases as well as the 

assessment of the usability with domain experts and knowledge 

engineers. The focus of these investigations will be on the 

extension of the method towards the formalization of design 

automation tasks and debugging of knowledge bases. The vision is 

that facilitated knowledge formalization will foster the application 

of design automation in industrial practice. 
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