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Abstract. In commercial practice, modeling configurable products
is often collaborative and modular. The former refers to the fact that
different teams in a company may work autonomously when con-
tributing to a product model. The latter refers to the fact that some
elements of a model may be intended for re-use in multiple prod-
uct models. When maintaining such model fragments, the actual do-
mains of the product properties, which are to be effectively applied in
later configuration, may be only partially known to the modeler. For
example, using a wildcard in a variant table (a list of valid com-
binations of product features) to express “anything goes” implies
that an exact knowledge of the underlying domains is not impor-
tant to the modeler. The same is true for negative variant tables that
list exclusions. Domains are explicitly declared as open, when non-
standard extensions of product features are foreseen – “additional
values are allowed”. This is meant to allow a sales-engineer to pro-
vide non-modeled features in an impromptu manner. In this short
paper we propose a way to deal with open domains in configuration
and present some results for maintaining arc-consistency with open
domains. These results build on and extend insights from previous
work [6, 13].

1 Introduction
Most current modeling of configurable products is based on the
closed-world assumption that all problem variables and their do-
mains are part of the model. This assumption is at the very heart of
the definition of a constraint satisfaction problem (CSP), which pos-
tulates a finite set of variables, each with a finite domain [5]2. How-
ever, there are practical situations, when the closed-world assumption
does not hold. One example is an engineer-to-order scenario, where a
sales-engineer is allowed to supply unforeseen product features3 ex-
tempore during a sales configuration. The closed-world assumption
is also limiting in modular modeling. The responsibility for model-
ing may be distributed among different teams, each working inde-
pendently to produce a re-usable part of a model. Where products
or solutions contain multiple components, each component might be
modeled independently. Also, product features may be maintained
centrally company-wide, not product by product. Central product
features are typically subject to continual updates. Finally, modeling
may be distributed subject to technical expertise. Constraints con-
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2 It is possible to relax the requirement of finiteness [13]. For example, the
use of real (floating point) numbers and intervals is common.

3 A product feature refers to a value assignment to a product property. In
some industries, a single symbol (e.g. ′RED′) has a company-wide inter-
pretation (e.g. as Color = ’Red’). Here, Color is a product property, which
corresponds to a CSP variable.

cerning electrical features require different expertise than those con-
cerning hydraulics.

Extensional lists of feature combinations are important modeling
elements that define variability in a very direct and intelligible man-
ner. We refer to them as variant tables following the terminology
of the SAP Variant Configurator (SAP VC) [2]4. Variant table con-
tent may be updated frequently by product data engineers, decoupled
from other changes to the model. These engineers have criteria for in-
cluding or excluding feature combinations, but they do not need to
know the complete product models.

This is a short paper based on observations about modeling in
practice. The motivation and insights for needing to deal with open
domains, which I look at here, come from discussions in the Con-
figuration Workgroup (CWG) [3], an SAP centric user group, over
the years. The paper discusses three cases where open domains5 may
need to be considered:

• Negative variant tables listing excluded feature combinations
• Wildcards (placeholders for allowing any feature)
• Non-modeled, impromptu product features6

This paper is organized as follows: Section 2 contains some back-
ground and notation. Section 3 is a reprise of the results in [6] con-
cerning negative variant tables. Section 4 discusses the engineer-
to-order requirement of allowing non-modeled features and feature
combinations, introducing a symbol ’&other’ to refer to the poten-
tially infinite set of non-modeled features of a product property. We
refer to such a symbol as a quasi-finite symbol (qf-symbol), as pro-
posed in [13]. Section 5 formalizes the use of wildcards. Section 6
deals with the handling of the qf-symbol ’&other’ in an interactive
configuration. Finally, Section 7 gives conclusions and an outlook.

2 Background and Notation
This is a short paper and a review of literature will be brief. The au-
thor’s insight into product configuration in practice stems from long
personal involvement in the topic working for SAP and from dis-
cussions in the CWG [3]. Documentation of commercial configura-
tion practice is still hard to come by. There exists a standard mono-
graph about classic SAP Variant Configuration, now available in a
second edition [2]. Furthermore, some chapters in [4] are devoted
to commercial configurators, but the information there is far from

4 In SAP configurators, product properties are referred to as characteristics
and product features either referred to as features or as characteristic value
assignments.

5 When the exact domain of a product property is not known to the modeler,
it is considered to be open.

6 Product properties may either have no features defined, or only have “stan-
dard” features defined, but allow additional features at run-time.
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being technically complete. Also, there have been various contribu-
tions to this workshop series, two arbitrary examples being [18, 19].
In contrast, we consider both constraint programming [17] and its use
in product configuration [4, 14] to be mature and well documented.
The notation and results about arc-consistency with negative variant
tables in Section 3 are adapted from [6].

We assume that all valid configurations of a product can be de-
scribed at runtime using a finite set of k product properties7, each
property pj : 1 ≤ j ≤ k with a domain Rj , perhaps supplied dy-
namically at runtime. Thus, the space of all valid and invalid config-
urations can be represented as the Cartesian product:

R := R1 ×R2 × . . .×Rk (1)

R can be seen as a k-dimensional space. Each point r ∈ R

r = (f1, f2, . . . , fk) ∈ R (2)

represents either a valid or an invalid configuration, where fj is a
feature pertaining to property pj . We call any point in R an r-tuple,
and any Cartesian product of product property subdomains a c-tuple.
We can envision a c-tuple as a k-dimensional cuboid in R

(C1 × C2 × . . .× Ck) ⊂ R (3)

The r-tuple in (2) can be considered as a special case of a c-tuple in
(3), if we treat the individual features as singleton sets:

{f1} × {f2} × . . .× {fk}

Treating the configurations listed in a given variant table T as a set of
points in the k-dimensional solution space R, we define D in (4) to
be the c-tuple for the cuboid circumscribing T .8 We give an example
of these sets in Section 3.

D := D1 ×D2 × . . .×Dk (4)

For notational simplicity we additionally define Qj to refer to the
complement of Dj with respect to Rj . Q is the corresponding c-
tuple of all Qj :

Qj := Rj \Dj (5)

Q := Q1 ×Q2 × . . .×Qk (6)

We observe that the solution space R in (1) can be represented
as the disjoint union of D and the k c-tuples Cj in (7). Figure 1
illustrates a simple case of this decomposition.

C1 = Q1 ×R2 ×R3 × . . .×Rk

C2 = D1 ×Q2 ×R3 × . . .×Rk

· · ·
Ck = D1 ×D2 ×D3 × . . .×Qk

(7)

We remark that a variant table has a (non-unique) representation
as a disjoint union of c-tuples (cf. [7, 15] and the examples in Section
3).

7 If the product consists of only one component, its properties can readily
be identified by name. If the product consists of multiple components with
configurable properties, then a property must additionally be identified by
a reference to the component.

8 We consider T to be fixed and omit references to it to keep the notation
simple.

3 Reprise: Negative Variant Tables

Let U be a negative variant table (listing excluded feature combina-
tions). Any combination not excluded by U is implicitly allowed by
U . Therefore, it is natural to consider what is valid with respect to
U at runtime (when actually configuring) and not when maintaining
the table (modeling time). Previous work [6] deals with maintaining
arc consistency [1, 16] in this situation. The main observation there
is that if a feature, which does not occur anywhere in the table, is
choosable at runtime, then all choosable features of all other proper-
ties remain choosable. An example: assume a T-shirt comes in vari-
ous sizes and can sport an imprint. Suppose only one combination of
imprint and size is known to be excluded: an imprint named ’STW’
is not available in size ’S’.9 Table 1 shows the corresponding nega-
tive variant table. Any imprint except ’STW’ is available in all sizes.
Any size except ’S’ is available in all imprints. Figure 1 illustrates a
disjoint decomposition (7) of the solution set R (1) for the negative
variant table in Table 1.

Table 1. U1: Excluded Imprints / Sizes
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S STW
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Figure 1. Runtime solution set consisting of two c-tuples

Assume that Color is also a property of the T-Shirts and that a
particular imprint ’MIB’ is not available in the colors ’Blue’, ’Red,
and ’White’. Then both exclusions can be collectively expressed in a
negative variant table as in Table 2:

Table 2. U2: T-Shirt Excluded Feature Combinations

Imprint Size Color
MIB S;M;L;XL Blue;Red;White
STW S Black;Blue;Red;White

To make the example more complete, we assume a further T-Shirt
property Fabric which is not relevant for formulating exclusions. We
order the properties as vp1 = Imprint, vp2 = Size, vp3 = Color,
and vp4 = Fabric. We assume runtime domains R as in (8) (the

9 T-shirt examples with this restriction are elaborated more fully in [6, 13]
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c-tuple D circumscribing U (Table 2) is also given in (8)):

R1 = {MIB,STW,EnvHero} D1 = {MIB,STW}
R2 = {S,M,L,XL} D2 = {S}
R3 = {Black,Blue,Red,White} D3 = {Blue,White,Red}
R4 = {Cotton,Mixed,Synthetic} D4 = ∅

(8)

Then the decomposition (7) looks as follows:

C1 = EnvHero×R2 ×R3 ×R4

C2 = MIB, STW×M, L, XL×R3 ×R4

C3 = MIB, STW×M, L, XL× Black×R4

C4 = MIB, STW×M, L, XL× Black×R4 \D4

(9)

The set of valid T-Shirt configurations T within D is

T = (D \ U) (10)

and the overall set of valid configurations T∗ within R is

T∗ = C1 ∪ C2 ∪ . . . ∪ Ck ∪ T (11)

Let πj(R) ⊂ R (12) be the reduction on R that that can be
achieved by enforcing arc-consistency using U

π(R) := π(R)1 × π(R)2 × . . .× π(R)k (12)

The following is a reformulation of the major results from [6]. We
take R to be decomposed as in (7).

Lemma 1 If Qp 6= ∅ for some p, then ∀j 6= p : π(R)j = Rj ,
i.e., no further reduction of any of the other domains is possible via
arc-consistency with U .

Proof Without loss of generality, sort the columns such that p = 1.
IfQ1 6= ∅ then C1 = Q1×R2×R3× . . .×Rk 6= ∅ and any feature
in Q1 supports all features in Rj for j ≥ 2.

This has a trivial but important consequence (also taken from [6]):

Corollary 2 If more than one non-empty Qj exists, then no domain
reduction at all is possible via arc-consistency with U:
∃Qj1 , Qj2 : j1 6= j2 ∧Qj1 , Qj2 6= ∅ =⇒ π(R) = R

To summarize: Given a negative variant table U , runtime domains
R, and the space D, spanned by the table U (as in (4)). If more than
one set Qj = Rj \ Dj is non-empty at runtime, then a general arc
consistency (GAC) algorithm [1] does not need to be applied – no
reduction would be obtained. Otherwise, a GAC algorithm should be
applied on the potentially smaller solution space D, yielding π(D).
If exactly one set Qp is non-empty, then the only reduction achieved
is π(R)p = Qp ∪ π(D)p. All features in Qp remain choosable and
for j 6= p all features in Rj remain choosable. If there is no non-
empty set Qj , then π(R) = π(D), i.e. the reduction obtained by the
GAC on D holds.

4 Allowing Additional Non-Modeled Features
Some property domains may be left completely undefined explicitly.
This delegates the definition of the domains to other means, such
as variant tables. We treat features referenced in a variant table (not
counting wildcard symbols)10 to be modeled also. Sometimes, the

10 In this section, we assume that a variant table does not contain wildcards.
Wildcards are dealt with in Section 5.

“standard” features to be offered are modeled, but additional non-
modeled features are allowed. Following an approach in previous
work [13], we introduce a quasi-finite symbol (qf-symbol) ′&other′j
to represent the non-modeled features of property pj , which can be
infinite, finite, or empty. The symbols ′&other′j cannot be explicitly
referred to in a variant table.

A variant table allows partitioning Rj , the runtime domain of a
property pj , into Dj and Qj as in (5). Dj collects all features refer-
enced in the variant table for pj and thus does not contain the symbol
′&other′j . Where a runtime domain allows non-modeled features,
i.e. ′&other′j ∈ Rj , then ′&other′j is part of Qj , not in D. For a
negative variant table, the results of Lemma 1 and Corollary 2 apply
directly, and ′&other′j will not be removed from consideration via
arc-consistency due to the table.

In contrast, a positive table is a constraint and will restrict domains
to lie within D as defined in (4), removing all symbols ′&other′j
from R. However, a positive table can also be seen to exclude any
combination from D not in the table. Formally, we could reverse the
roles of T and U in (10), using the positive table to define a negative
table (its complement). This would make sense if there were a way to
allow “additional combinations”, which suggests itself for reasons
of symmetry, but is not a modeling requirement the author has so
far encountered in practice. Nevertheless, if we were to allow such
an interpretation of a positive variant table “pour le moment”, the
results of Lemma (1) and Corollary (2) apply, and ′&other′j will not
be removed from consideration via arc-consistency due to the table.

5 Wildcards and C-Tuples

Variant tables can be represented in a significantly more compact
form when using rows of c-tuples [7, 8, 15]. The practical relevance
of a c-tuple representation is the topic of previous work [10, 11]. Ta-
ble 3 is a positive formulation of Table 2 in three c-tuples. It takes the
properties and their domains Rj to be defined as in (8). C-tuples can
be represented naturally in a spreadsheet as rows with multi-valued
cells, but most relational databases do not have straightforward sup-
port for a c-tuple representation.

Table 3. T1: Valid T-Shirt Variants

Imprint Size Color
MIB S;M;L;XL Black
STW M;L;XL Black;Blue;Red;White
EnvHero S;M;L;XL Black;Blue;Red;White

The use of a wildcard symbol is common in variant tables. Here,
we treat a wildcard symbol in a c-tuple as a reference to the runtime
domains, which may contain both modeled and non-modeled fea-
tures. We denote the wildcard symbol for property pj by Ωj .11 Table
4 is a representation of Table 3 using wildcards.

Table 4. T2: Valid T-Shirt Variants with Wildcards

Imprint Size Color
MIB Ω2 Black
STW M;L;XL Ω3

EnvHero Ω2 Ω3

11 The wildcard symbol used in practice varies, “∗” is common. In the classic
SAP VC an empty cell in a variant table is treated as a wildcard.
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Table 4 lists the valid T-Shirt variants making use of wildcards.
Regarding the wildcards, we assume that the modeled features are
the Rj in (8).12 Furthermore, the properties Imprint and Color al-
low (additional) non-modeled features. The runtime domains R are
depicted in (13).13

R1 = {MIB,STW,EnvHero} ∪&other1
R2 = {S,M,L,XL}
R3 = {Black,Blue,Red,White} ∪&other3

(13)

From the perspective of a GAC algorithm, the qf-symbols
′&other′j are just like any other symbol. A GAC algorithm can be
applied in the usual way. The GAC algorithm may remove Ωj as a
whole, but it will not individually remove any features that are part
of Ωj at runtime.

6 Proposed Handling of Open Domains in
Configuration

Just as a GAC algorithm would treat the qf-symbols ′&other′j like
any other value, so would this symbol be presented to an agent per-
forming a configuration task. It should be possible for this agent to

• to exclude non-modeled values by deselecting ′&other′

• to exclude all modeled values by selecting ′&other′

• to specify a set of non-modeled values to use for ′&other′

7 Conclusion and Future Work

This paper takes a look at some modeling techniques that are long
established in practice but where a clear specification seems miss-
ing. The observations made here and in previous work [9, 11, 12, 13]
are based on the author’s personal experiences with the SAP config-
urators, as well as on general input from the product configuration
community. The topics dealt with here are the use of negative vari-
ant tables, the use of wildcards in variant tables, and dealing with
product property domains that allow the additional product features
to be added to their domain at runtime in an impromptu manner. All
have in common that they allow the domains at runtime to differ from
what was known at modeling time (open domains).

The approach to arc-consistency with negative tables in Section 3,
first introduced in [6], has been implemented in a prototype. Work
is underway to verify this in a commercial setting. The handling of
non-modeled features using a qf-symbol ′&other′ discussed in Sec-
tion 4 has not yet been implemented. This is imminent future work.
Wildcards have been in practical use for decades. The main contribu-
tion of Section 5 is to clarify that wildcards are meant to refer to the
runtime domains and how they coexist with non-modeled features.
The proposals of how to deal with non-modeled features in Sections
5 and 6 are new. Particularly, how and to what extent arc consistency
can be established with open domains as discussed here, is seen as a
contribution to practical configuration.

12 These domains were introduced as runtime domains in (8), but are assumed
to be the modeled domains here.

13 Columns consisting only of wildcards can be added to or removed from
a variant table at will, without affecting the meaning or processing of the
table. For example, a column for the fourth T-Shirt property Fabric with a
wildcard Ω4 in all three rows can be arbitrarily added to Table 4 if oppor-
tune.
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