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Abstract. Domain-specific heuristics are an essential technique
for solving configuration problems efficiently. Current approaches to
integrate domain-specific heuristics with Answer Set Programming
(ASP) are unsatisfactory when dealing with heuristics that are spec-
ified non-monotonically on the basis of partial assignments. Such
heuristics frequently occur in practice, for example, when picking
a component that has not yet been placed in a configuration prob-
lem. Therefore, we present novel syntax and semantics for declar-
ative specifications of domain-specific heuristics in ASP. Our ap-
proach supports heuristic statements that depend on the partial as-
signment maintained during solving, which has not been possible
before. We provide an implementation in ALPHA that makes ALPHA

the first lazy-grounding ASP system to support declaratively speci-
fied domain-specific heuristics. Two well-known configuration prob-
lems are used to demonstrate the benefits of our proposal. The exper-
iments confirm that combining lazy-grounding ASP solving and our
novel heuristics can be vital for solving industrial-size configuration
problems.

1 INTRODUCTION

Answer Set Programming (ASP) [2, 14, 20, 25] is a declarative pro-
gramming approach that has successfully been applied to product
configuration [11, 12, 19, 21, 27].

However, large-scale industrial problems are challenging for ASP.
One issue is the so-called grounding bottleneck: Large problem in-
stances often cannot be grounded by modern grounders like GRINGO

[16] or I-DLV [4] in adequate time and space [8]. Another issue is
that, even if the problem can be grounded, computation of answer
sets may take considerable time, as indicated by the ASP Competi-
tions [5, 18].

Lazy grounding is a technique that tackles the grounding bottle-
neck. The approach presented in this paper is implemented in the
lazy-grounding system ALPHA [35]. Thus we can handle large-scale
problem instances.

The main topic of this work concerns domain-specific heuristics,
an essential technique for improving solving performance by equip-
ping the solver with hints on how to solve a problem efficiently.
Several approaches to integrate domain-specific heuristics with ASP
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solving have already been proposed: a procedural approach for the
WASP system [7] and a declarative approach for CLINGO [17].

Both existing approaches to integrate domain-specific heuristics
with ASP solving are unsatisfactory: Procedural heuristics counter-
act the declarative nature of ASP, and the existing declarative ap-
proach does not permit dynamic heuristics reasoning about partial as-
signments. Dynamically evaluating heuristics w.r.t. a partial assign-
ment can be an essential feature for practical domains. For example,
heuristics in product configuration may need to compute the amount
of space left after placing a component.

We tackle the challenge of finding a satisfying solution to integrate
declarative domain-specific heuristics with ASP programs. To this
end, we extend CLINGO’s approach. Our extension supports dynamic
heuristics while at the same time keeping the language simple and
easy to use.

We implemented our approach as an extension to the lazy-
grounding ASP system ALPHA. Two well-known configuration
problems – the House Reconfiguration Problem (HRP) and the Part-
ner Units Problem (PUP) – are used to demonstrate our approach and
to obtain experimental results. The experiments confirm that combin-
ing lazy-grounding ASP solving and our novel heuristics can be vital
for solving industrial-size configuration problems.

After briefly covering preliminaries in Section 2, we introduce the
state of the art of domain-specific heuristics in ASP in Section 3.
Our novel approach is presented in Section 4. Section 5 describes
applications and experimental results, and Section 6 concludes this
paper.

2 PRELIMINARIES

The declarative programming approach of ASP allows a programmer
to formulate the problem as a logic program specifying the search
space and the properties of solutions instead of stating how to solve
a problem. An ASP solver then finds models (so-called answer sets)
for this logic program, which correspond to solutions for the original
problem.

Most state-of-the-art ASP systems implement “ground and solve”,
i.e., they first produce the full grounding (i.e., variable-free equiva-
lent) of the input program, which is then solved. This results in the
so-called grounding bottleneck: As soon as the grounding exceeds
all available memory, the problem cannot be solved anymore. Lazy
grounding avoids the grounding bottleneck by interleaving ground-
ing and solving. This approach is implemented by ASP systems such
as ALPHA [24, 35].

Due to space constraints, we assume familiarity with syntax and
semantics of ASP, and refer to [3, 13, 27] for details.

In the remainder of this section, we introduce the notation that will
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be used later in the article.
An assignment A is a set of signed literals Ta, Fa, or Ma, where

Ta and Fa express that an atom a is true and false, respectively, and
Ma indicates that a “must-be-true”. M signifies that an atom must
eventually become true by derivation in a correct solution extending
the current partial assignment, but no derivation has yet been found
that would make the atom true. Let As = {a | s a ∈ A} for s ∈
{F,M,T} denote the set of atoms occurring with a specific sign
in assignment A. We assume assignments to be consistent, i.e., no
negative literal may also occur positively (AF ∩ (AM ∪ AT) = ∅),
and every positive literal must also occur with must-be-true (AT ⊆
AM).

An assignment A is complete if every atom is assigned true or
false. An assignment that is not complete is partial.

The function truthA for a (partial) assignment A maps an atom
to the truth value that the atom is currently assigned in the given
assignment, or to U if the atom is currently unassigned:

truthA(a) =


F a ∈ AF,

M a ∈ AM \AT,

T a ∈ AT,

U otherwise.

3 DOMAIN-SPECIFIC HEURISTICS IN ASP

State-of-the-art ASP solvers are well suited to solve a wide range
of problems, as shown in ASP competitions, experiments, and (in-
dustrial) applications reported in the literature [9, 11, 18, 23]. How-
ever, domain-specific heuristics are needed to achieve breakthroughs
in solving industrial configuration problems with ASP. Several ap-
proaches have implemented embedding heuristic knowledge into the
ASP solving process.

HWASP [7] facilitates external procedural heuristics that are con-
sulted at specific points during the solving process via an API. As
a result, HWASP can find solutions for all published instances of the
Partner Units Problem (PUP) by exploiting external heuristics for-
mulated in C++ or Python.

The CLINGO system supports a declarative approach to formulat-
ing domain-specific heuristics in ASP in the form of #heuristic

directives [13, 17]. Heuristics extend the ASP language to allow for
declarative specification of atom weights and signs for the solver’s
internal heuristics. An atom’s weight influences the order in which
atoms are considered by the solver when making a decision. A sign
modifier instructs whether the selected atom must be assigned true or
false. Atoms with a higher weight are assigned a value before atoms
with a lower weight.

CLINGO’s semantics for heuristic directives seem to introduce
some limitations for formulating heuristics that require to reason
about the absence of truth-values for atoms, e.g. the absence of de-
cisions in a search state. For example, in configuring technical sys-
tems, we might prefer to assign, in the current search state, the most
relevant yet unplaced electronic component to a free slot of a moth-
erboard. These limitations are discussed in detail in our other publi-
cations [28, 29].

To overcome this issue we propose, in the following section, to
evaluate negation as failure (i.e., not) in heuristic statements w.r.t.
the current partial assignment in the solver. This partial assignment
represents the search state. As a consequence, not X is true if X is
false or unassigned in a partial assignment.

4 DYNAMIC DECLARATIVE HEURISTICS

Declaratively specifying domain-specific heuristics in ASP plays a
vital role in enabling ASP to solve large-scale industrial problems.
CLINGO has been the only ASP system to support such heuristics
so far. Although language and semantics of heuristic directives in
CLINGO have shown to be beneficial in many cases, dynamic aspects
of negation as failure in heuristic conditions have not been addressed
satisfactorily.

We present novel syntax and semantics for heuristic directives
in ASP that improve this situation. We assume that the underlying
solver can assign one of three values to any atom: true (denoted with
T), false (F), and must-be-true (M) (cf. [35]). The following defini-
tions can be used without modification for solvers that do not use the
third truth value M. The set of atoms assigned must-be-true will be
empty in this case.

Definition 1 (Heuristic Directive) A heuristic directive is of the
form 〈1〉, where hai (0 ≤ i ≤ n) are heuristic atoms of the form
si ai, in which s0 ∈ {{F}, {T}} and si ⊆ {F,M,T} are sets of
sign symbols and ai is an atom, and w and l are integer terms.

#heuristic ha0 : ha1, . . . , hak,

not hak+1, . . . , not han. [w@l]
〈1〉

The heuristics’ head is given by ha0 and its condition by
{ha1, . . . , hak, not hak+1, . . . , not han}, which is similar to a rule
body.

Where the meaning is clear from the context, we may omit all sym-
bols except sign symbols themselves in a set of sign symbols, e.g.,
we write TM instead of {T,M}.

Example 1 Consider the following heuristic directive h:

#heuristic Fa : TMb,Tc, not TMFd.

This directive means that the atom a shall be assigned F if b is as-
signed T or M, c is assigned T, and d is not assigned.

We now introduce some notation that will be used in further defini-
tions. The function atm maps a heuristic atom hai to ai by removing
the sign, and a set of heuristic atoms to the set of atoms occurring in
them (e.g., atm(Ma) = a, atm({Ma,Tb}) = {a, b}). The func-
tion signs maps a heuristic atom hai to si by removing the atom
(e.g., signs(Ma) = {M}).

The head of a heuristic directive h of the form 〈1〉 is denoted by
head(h) = ha0, its weight by weight(h) = w if given, else 0, and
its level by level(h) = l if given, else 0. The (heuristic) condition
of a heuristic directive h is denoted by cond(h) := {ha1, . . . , hak,
not hak+1, . . . , not han}, the positive condition is cond+(h) :=
{ha1, . . . , hak} and the negative condition is cond−(h) := {hak+1,
. . . , han}.

Let HA be a set of heuristic atoms. Then, for s ⊆ {F,M,T},
HA|s = {a | s a ∈ HA} denotes the set of atoms in HA whose set
of sign symbols equals s.

Example 2 Consider the heuristic directive h from Example 1
again. Here, cond+(h)|MT = {b}; cond+(h)|T = {c}; and
cond+(h)|F = ∅. Furthermore, cond−(h)|FMT = {d}; note that
the order of sign symbols does not matter due to set semantics.
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The distinguishing features of our approach are as follows:

• Each heuristic atom contains a set of sign symbols. Each sign sym-
bol represents one of the truth values F (false), T (true), and M
(must-be-true).

• In the condition, sign symbols provide a richer way of controlling
when the condition is satisfied. A positive literal in the condition
is satisfied if the truth value currently assigned to its atom is con-
tained in its set of sign symbols (which is {M,T} by default if
not explicitly given). A negative literal in the condition is satisfied
if the truth value currently assigned to its atom is not contained in
its set of sign symbols or if its atom is currently not assigned any
truth value.

• In the heuristic head, the sign symbol is used to determine the
truth value to be chosen by the heuristics. If s0 is T or empty, the
heuristics makes the solver guess a0 to be true; if s0 is F, a0 will
be made false.5

• Terms w and l denote weight and level as familiar from optimize-
statements in ASP-Core-2 [3] or weak constraints in DLV [22].
The level is more important than the weight; both default to 0, and
together they are called priority.

We now describe our semantics more formally, beginning with the
condition under which a heuristic atom is satisfied.

Definition 2 (Satisfying a Heuristic Atom) Given a ground heu-
ristic atom ha and a partial assignment A, ha is satisfied w.r.t. A iff:
truthA(atm(ha)) ∈ signs(ha), i.e., if its atom is assigned a truth
value that is included in the heuristic atom’s sign set.6

Whether a heuristic directive is satisfied depends on whether the
atoms occurring in the directive are satisfied.

Definition 3 (Satisfying a Heuristic Directive) Given a ground
heuristic directive h and a partial assignment A, cond(h) is
satisfied w.r.t. A iff: every ha ∈ cond+(h) is satisfied and no
ha ∈ cond−(ha) is satisfied.

Intuitively, a heuristic condition is satisfied iff its positive part is fully
satisfied and none of its default-negated literals is contradicted.

Definition 4 (Applicability of a Heuristic Directive) A ground
heuristic directive h is applicable w.r.t. a partial assignment A iff:
cond(h) is satisfied, and truthA(atm(head(h))) ∈ {U,M}.

Intuitively, a heuristic directive is applicable iff its condition is sat-
isfied and the atom in its head is assigned neither T nor F. If the
atom in the head is assigned M, the heuristic directive may still be
applicable, because any atom with the non-final truth value M must
be either T or F in any answer set.

Definitions 2 to 4 reveal the distinguishing features of the newly
proposed semantics: In our approach, heuristic signs composed of
truth values T, M, and F can be used in heuristic conditions to rea-
son about atoms that are already assigned specific truth values in a
partial assignment. Furthermore, default negation can be used to rea-
son about atoms that are assigned or still unassigned. Our semantics
truly means default negation in the current partial assignment, while
the one implemented by CLINGO amounts to strong negation in the
current search state. This difference is crucial since reasoning about
incomplete information is essential in many cases. An example is a

5 In the head, we only support truth values T and F because, from a user’s
point of view, it does not make sense to assign M to an atom heuristically.

6 Note that the function truth maps to only one truth value even though Ta ∈
A implies Ma ∈ A, so truthA(a) = M iff Ma ∈ A and Ta /∈ A.

heuristic for a configuration problem that only applies to components
not yet placed.

What remains to be defined is the semantics of weight and level.
Given a set of applicable heuristic directives, one directive with the
highest weight will be chosen from the highest level. Suppose there
are several with the same maximum priority (i.e., weight and level).
In that case, the solver can use domain-independent heuristics like
VSIDS [26] as a fallback to break the tie.

Definition 5 (Heuristics Eligible for Immediate Choice) Given a
set H of applicable ground heuristic directives, the subset eligible
for immediate choice is defined as maxpriority(H) in two steps:

maxlevel(H) := {h |h ∈ H and level(h) = max
h∈H

level(h)}

maxpriority(H) := {h |h ∈ maxlevel(H) and

weight(h) = max
h∈maxlevel(H)

weight(h)}

After choosing a heuristic using maxpriority, a solver makes a de-
cision on the directive’s head atom. Note that heuristics only choose
between atoms derivable by currently applicable rules. Other solving
procedures, e.g., deterministic propagation, are unaffected by pro-
cessing heuristics.

Example 3 Consider the following program.

{ a(2) ; a(4) ; a(6) ; a(8) ; a(5) } ← .

← #sum {X : a(X) } = S, S\2 6= 0.

#heuristic a(5). [1] 〈2〉
#heuristic a(4) : not a(5). [2] 〈3〉
#heuristic Fa(5) : a(4). [2] 〈4〉
#heuristic a(6) : Fa(5),Ta(4). [2] 〈5〉

Intuitively, directive 〈2〉 unconditionally prefers to make a(5) true
with weight 1. All other directives have a higher weight, 2, but they
become applicable at different times. Directive 〈3〉 prefers to make
a(4) true if a(5) is neither true nor must-be-true, directive 〈4〉 prefers
to make a(5) false if a(4) is true or must-be-true, and 〈5〉 prefers to
make a(6) true if a(5) is false and a(4) is true.

Let A0 = ∅ be the empty partial assignment before any deci-
sion has been made. W.r.t. A0, 〈2〉 is applicable because its con-
dition is empty and its head is still unassigned. Directive 〈3〉 is also
applicable because a(5) is still unassigned. Directives 〈4〉 and 〈5〉
are not applicable w.r.t. A0. Directive 〈3〉 is chosen because it has
the highest priority among applicable directives. Thus, a(4) is as-
signed T, updating our assignment to A1 = {Ma(4),Ta(4)}. This
makes 〈4〉 applicable, a(5) is assigned F and our assignment is
A2 = {Ma(4),Ta(4),Fa(5)}. Note that the condition of 〈3〉 was
still satisfied at this point, but it was not applicable because its head
was already assigned. Now, 〈2〉 is also not applicable anymore, and
the only directive that remains is 〈5〉. Since 〈5〉 is applicable, a(6)
is made true and added to the assignment. Next, the atoms that re-
mained unassigned are guessed by the default heuristics until an an-
swer set is found.

5 APPLICATIONS AND EXPERIMENTS
In this section, we present an application of our approach on two
configuration problems. Experimental results are also included, us-
ing an implementation of our approach in the lazy-grounding ASP
system ALPHA. Instance sets include instances that were challeng-
ing to ground and solve.
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5.1 Experimental Setup

Encodings (including heuristics) and instances, and the ALPHA bina-
ries used for our experiments, are available on our website.7 Details
on the sources of the encodings are mentioned in the sections de-
scribing the domains. Optimisation statements were not used since
ALPHA does not support them yet. However, heuristic directives can
be written in a way that optimal or near-optimal solutions are prefer-
ably found.

Problem instances were selected by first defining an instance-
generating algorithm and then exploring instance sizes to find a set
in which all systems could solve some instances under consideration
within a time limit of 10 minutes, and some instances could be solved
by none (or very few) of these systems.

The ASP systems used for the experiments were ALPHA8,
CLINGO9 [15] version 5.4.0 and DLV210 [1] version 2.1.0.

ALPHA is used in two configurations, grounding constraints either
strictly or permissively [30]. Traditionally in lazy grounding, rules
are grounded when their positive body is fully satisfied (strict lazy
grounding). Permissive grounding, on the other hand, enables rules
to be grounded if their positive body is not fully satisfied, as long as
all variables can be bound by positive body literals that are already
satisfied. For example, consider the following non-ground constraint:

← a(X,Y ), b(X).
Under the partial assignment A = {Ma(1, 2),Ta(1, 2)}, the

ground constraint← a(1, 2), b(1). will only be produced if permis-
sive grounding of constraints is enabled.

All solvers were configured to search for the first answer set of
each problem instance. Finding one or only a few solutions is often
sufficient in industrial use cases since solving large instances can be
challenging [10]. Therefore, the domain-specific heuristics used in
the experiments are designed to help the solver find one answer set
that is “good enough”, even though it may not be optimal.

5.2 The House Reconfiguration Problem (HRP)

The House Reconfiguration Problem [12] is an abstracted version of
industrial (re)configuration problems, e.g., rack configuration.

Formally, HRP is defined as a modification of the House Configu-
ration Problem (HCP).

Definition 6 (HCP) The input for the House Configuration Problem
(HCP) is given by four sets of constants P , T , C, and R representing
persons, things, cabinets, and rooms, respectively, and an ownership
relation PT ⊆ P × T between persons and things.

The task is to find an assignment of things to cabinets TC ⊆
T × C and cabinets to rooms CR ⊆ C × R, such that: (1) each
thing is stored in a cabinet; (2) a cabinet contains at most five things;
(3) every cabinet is placed in a room; (4) a room contains at most
four cabinets; and (5) a room may only contain cabinets storing
things of one person.

Definition 7 (HRP) The input for the House Reconfiguration Prob-
lem (HRP) is given by an HCP instance H = 〈P, T, C,R, PT 〉, a
legacy configuration 〈TC ′,CR′〉, and a set of things T ′ ⊆ T that
are defined as “long” (all other things are “short”).

7 https://ainf.aau.at/dynacon
8 https://github.com/alpha-asp/Alpha
9 https://potassco.org/clingo/
10 https://dlv.demacs.unical.it/

The task is then to find an assignment of things to cabinets TC ⊆
T × C and cabinets to rooms CR ⊆ C × R, that satisfies all re-
quirements of HCP as well as the following ones: (1) a cabinet is
either small or high; (2) a long thing can only be put into a high cab-
inet; (3) a small cabinet occupies 1 and a high cabinet 2 of 4 slots
available in a room; (4) all legacy cabinets are small.

The sample HRP instance shown in Fig. 1 comprises two cabinets,
two rooms, five things that belong to person p1, and one thing that
belongs to person p2. A legacy configuration is empty, and all things
are small. In a solution, the first person’s things are placed in cabinet
c1 in the first room, and the thing of the second person is the cabinet
c2 in the second room. For this sample instance, a solution of HRP
corresponds to a solution of HCP.

In the problem encoding [12], two main choice rules are responsi-
ble for guessing the assignment of things to cabinets and the assign-
ment of cabinets to rooms:

{ cabinetTOthing(C, T ) } ← cabinetDomain(C), thing(T ).

{ roomTOcabinet(R,C) } ← roomDomain(R), cabinet(C)

Instances consist of facts over the following predicates:
cabinetDomain/1 defines potential cabinets and roomDomain/1
defines potential rooms; thingLong/1 defines which things are long;
and legacy/1 defines all the other data in the legacy configuration,
e.g., legacy(personTOthing(p1, t1)) defines that person p1 owns
thing t1, and legacy(roomTOcabinet(r1, c1)) specifies one tuple
in the legacy assignment of cabinets to rooms.

The domain-specific heuristics for HRP implemented in our novel
approach works by (1) first trying to re-use the legacy configuration;
(2) then filling cabinets with things; (3) then filling rooms with

cabinets; (4) and finally closing remaining choices. Long things are
always assigned before short things.

By “closing remaining choices” we mean assigning F to choice
points not yet assigned by the heuristics. The purpose of this is to
avoid the default heuristics (e.g., VSIDS) from causing conflicts by
choosing the wrong truth values.

We now present some selected heuristic directives. The directives
use some intermediate predicates whose meaning should become ev-
ident from their names. The full encoding is available online. The fol-
lowing heuristics re-use the legacy assignment of cabinets to things
and of rooms to cabinets (1):
#heuristic reuse(cabinetTOthing(C, T )) :

legacy(cabinetTOthing(C, T )), thingLong(T ). [4@4]

#heuristic reuse(cabinetTOthing(C, T )) :
legacy(cabinetTOthing(C, T )),not thingLong(T ). [3@4]

#heuristic reuse(roomTOcabinet(R,C)) :
legacy(roomTOcabinet(R,C)). [2@4]

The following heuristic assigns things to cabinets, preferring long
over short things (2):
#heuristic cabinetTOthing(C, T ) :

cabinetDomain(C), not fullCabinet(C),
not T assignedThing(T ),personTOthing(P, T ),
not otherPersonTOcabinet(P,C),
maxCabinet(MC ), thingLong(T ). [(MC − C)@3]

#heuristic cabinetTOthing(C, T ) :
cabinetDomain(C), not fullCabinet(C),
not T assignedThing(T ),personTOthing(P, T )
not otherPersonTOcabinet(P,C),
maxCabinet(MC ),not thingLong(T ). [(MC − C)@2]
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Figure 1. Sample HRP instance (left) and one of its solutions (right)
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Figure 2. Time and memory consumption for solving each HRP instance

The following heuristic assigns cabinets to rooms (3):
#heuristic roomTOcabinet(R,C) :

roomDomain(R),not fullRoom(R),
cabinet(C),not T assignedCabinet(C),
personTOcabinet(P,C), not otherPersonTOroom(P,R),
maxRoom(MR). [(MR −R)@1]

Finally, we close choice points that are still unassigned (4):
#heuristic F cabinetTOthing(C, T ) :
not cabinetTOthing(C, T ), cabinetDomain(C), thing(T ).

#heuristic F roomTOcabinet(R,C) :
not roomTOcabinet(R,C), roomDomain(R), cabinet(C).

The heuristics we created for ALPHA cannot be used with CLINGO

due to the usage of T and default negation. An alternative encoding
containing faithfully adapted heuristic directives for CLINGO has also
been created.

Figure 2 shows performance data for experiments with HRP. Cac-
tus plots were created in the usual way. In Fig. 2b, the x-axis gives the
number of instances solved within real (i.e., wall-clock) time, given
on the y-axis. Time is accumulated over all solved instances. Memory
consumption is given on the y-axis of Fig. 2c, where data points are
sorted by y-values, which are not accumulated. Figure 2a contains a
legend with all solver configurations. The number of instances solved
by each system is shown next to its name (in parentheses).

One curve was drawn for each solver configuration: ALPHA with-
out domain-specific heuristics, with strict (kco = 0) and permis-
sive (kco = ∞) grounding of constraints; ALPHA with domain-
specific heuristics (H-ALPHA), with strict and permissive ground-

ing of constraints; DLV2; CLINGO with (H-CLINGO) and without
domain-specific heuristics.

Substantial differences can be observed. The curves for H-ALPHA

(kco = 0) reach farthest to the right, meaning that ALPHA with
domain-specific heuristics solved the highest number of instances
(59 out of 94) when grounding constraints strictly. Surprisingly, with
permissive grounding of constraints, ALPHA with domain-specific
heuristics exhibited relatively low time and space performance.

No curves are visible at all for ALPHA without domain-specific
heuristics because, in this configuration, the system could solve at
most one instance only. The other solvers’ performance was some-
where in between the ALPHA configurations at both ends of the spec-
trum. Notably, H-CLINGO with domain-specific heuristics solved
more instances in less time compared to CLINGO without domain-
specific heuristics, but consumed slightly more memory. The largest
instance solved by H-ALPHA contained 600 things, which is over
30% more than the size of the largest instance solved by H-CLINGO

(455). Recall that the time limit for solving each instance was 10
minutes.

5.3 The Partner Units Problem (PUP)

Like HRP, the Partner Units Problem (PUP) [31, 34] is an abstracted
version of industrial (re)configuration problems.

Definition 8 (PUP) The input to the Partner Units Problem (PUP) is
given by a set of units U and a bipartite graph G = (S,Z,E), where
S is a set of sensors, Z is a set of zones, and E is a relation between
S and Z.
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Figure 4. Time and memory consumption for solving each PUP instance

The task is to find a partition of vertices v ∈ S ∪Z into bags ui ∈
U such that for each bag the following requirements hold: (1) the bag
contains at most UCAP vertices from S and at most UCAP vertices
from Z; and (2) the bag has at most IUCAP adjacent bags, where
the bags u1 and u2 are adjacent whenever vi ∈ u1 and vj ∈ u2 for
some (vi, vj) ∈ E.

Figure 3 shows an example of a PUP instance. The bipartite graph
comprises six sensors and six zones. Each of the three units can be
adjacent to at most two other units, and each unit can contain at most
two sensors and two zones. An assignment of sensors and zones to
units that satisfies all PUP requirements is also presented in Fig. 3.

PUP instances consist of atoms over the predicates comUnit/1
(specifying units U ) and zone2sensor/2 (specifying the zone-to-
sensor relation E).11

Our encoding for PUP is based on encodings from the ASP Com-
petitions [5,6]. The following rules constitute the main guessing part
of the encoding:

elem(z, Z)← zone2sensor(Z,D).

elem(s, D)← zone2sensor(Z,D).

{ assign(U, T,X) } ← elem(T,X), comUnit(U).

QuickPup is a heuristic for PUP that successfully solves many
hard problem instances [33]. Our approach supports implementing
large parts of the originally procedural algorithm for QuickPup. Our
encoding uses rules to derive a topological order of the zones and
sensors (cf. [31,32]). Heuristic directives subsequently use this topo-
logical order.
11 In the instances used for our experiments, both UCAP and IUCAP are

fixed at the value 2.

First, a start zone is determined and denoted by startZone/1. In
our encoding, the start zone is always the first one and instances are
designed so that solutions can easily be found when starting with this
zone. QuickPup should actually try to use each zone as the start zone
one after the other and abort search after a certain amount of time has
passed. This part of the algorithm cannot currently be represented in
our framework.

QuickPup assigns zones and sensors to units in a breadth-first-
order, called “topological order” because the graph is traversed level
by level. First, the start zone is assigned, then the sensors connected
to the start zone, then the zones connected to those sensors and so on.
A helper predicate layer/3 is introduced to compute the topological
order. In an atom layer(T,X,L), T denotes the type of element (“s”
for sensor and “z” for zone), X is the element’s identifier, and L is
its layer in the computed breadth-first order.

A realisation of QuickPup in our framework requires several heu-
ristic directives. These directives use the level term in the annotation
to process the zones and sensors according to the topological order.
The weight term in the annotation is used to assign the units in the
right order. The directives use some intermediate predicates whose
meaning should become evident from their names. The full encoding
is available online.

QuickPup first tries to assign an element to the first unit:
#heuristic assign(U, T,X) : comUnit(U), elem(T,X),

maxLayer(ML), layer(T,X,L),
not full(U, T ), not assigned(T,X), not T used(U),
nUnits(NU ), U = 1. [NU@(ML− L)]

If one unit cannot be assigned, QuickPup tries preceding units in
decreasing order next:
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#heuristic assign(U, T,X) : comUnit(U), elem(T,X),
maxLayer(ML), layer(T,X,L),
not full(U, T ), not assigned(T,X),
T used(U). [U@(ML− L)]

A fresh unit is only touched if all preceding units have been tried:
#heuristic assign(U, T,X) : comUnit(U), elem(T,X),

maxLayer(ML), layer(T,X,L),
not full(U, T ), not assigned(T,X),
not T used(U), comUnit(U − 1),T used(U − 1),
F assign(U − 1, T,X). [U@(ML− L)]

Note the condition F assign(U− 1,T,X) in the last heuristic di-
rective. Due to this condition, the heuristic is only applicable if the
same element could not be assigned to the preceding unit U−1. This
situation may be caused by backtracking or by the following heuristic
avoiding assignments to units that are already full:
#heuristic F assign(U, T,X) : comUnit(U), elem(T,X),

maxLayer(ML), full(U, T ),
not assign(U, T,X). [1@ML]

Choice points not assigned by any of these heuristics are finally
assigned false by a dedicated heuristic directive, similarly as shown
for HRP in Section 5.2.

The heuristics we created for ALPHA cannot be used with CLINGO

due to the usage of T, F, and default negation. An alternative encod-
ing containing heuristic directives for CLINGO has been created that
is similar to the QuickPup*-like heuristics created for ALPHA.

Cactus plots for PUP (Fig. 4) were generated in the same way as
for HRP (cf. Section 5.2).

Again, ALPHA with domain-specific heuristics solved the highest
number of instances (all 100). The curves for H-ALPHA (kco = 0)
and H-ALPHA (kco =∞) are almost indistinguishable, meaning that
it did not make a difference in the PUP domain whether constraints
were grounded strictly or permissively.

At the other extreme, ALPHA without domain-specific heuristic
could solve only 7 of the 100 instances.

The systems DLV2, CLINGO, and H-CLINGO performed some-
where between those extremes. H-CLINGO with domain-specific
heuristics solved many more instances than CLINGO without domain-
specific heuristics.

The largest instance in our instance set contained 300 units. H-
ALPHA was able to solve all these instances. In contrast, the size of
the largest instance that could be solved by any other system, us-
ing the given encoding, was only 105. Recall that the time limit for
solving each instance was 10 minutes. For 11 instances, H-CLINGO

returned an error (“Id out of range”).

5.4 Discussion

Our results show that we have extended the application area of ASP.
By combining our novel approach to domain-specific heuristics with
lazy-grounding answer set solving, we could solve large-scale prob-
lem instances that are out of reach for conventional ASP systems.
This finding supports our initial hypothesis that both lazy ground-
ing and domain-specific heuristics are crucial for solving large-scale
industrial problems.

Our approach extends an earlier extension of ASP’s input language
by a declarative framework for domain-specific heuristics [17]. Our
advancement consists of novel syntax and semantics for heuristic di-

rectives that make it possible to reason about the current partial as-
signment, facilitating heuristics based on what has or has not yet been
decided by the solver. Although the earlier approach has worked very
well on planning problems, it seems that more flexibility in the defi-
nition of heuristics, supported by the novel features of our approach,
is necessary to represent heuristics for other kinds of problems.

Our results undeniably show that domain-specific heuristics im-
prove solving performance for the domains under consideration. This
is not only true for ALPHA but also for CLINGO. However, domain-
specific heuristics usually increase CLINGO’s memory consumption,
thus exacerbating the grounding bottleneck from which ground-and-
solve systems such as CLINGO are suffering. Domain-specific heuris-
tics for DLV2 were out of scope because DLV2 does not support the
declarative specification of heuristics.

Solution quality is another aspect to keep in mind. Since domain-
specific heuristics lead the solver towards “better” solutions, the
quality of answer sets computed by H-ALPHA or H-CLINGO is higher
than the quality of answer sets computed by ALPHA, CLINGO, or
DLV2.

However, we do not claim that heuristics based on partial assign-
ments are always beneficial. Our findings cannot reject the possibility
that H-CLINGO might outperform H-ALPHA when other encodings
or other heuristics are used since there might be encoding optimi-
sations that we have not thought of. Still, we are confident that our
approach’s novel features make the specification of practical heuris-
tics more intuitive and effortless.

Results for HRP (Fig. 2) indicate that permissive grounding (cf.
[30]), i.e., providing the solver with more nogoods representing
ground constraints than necessary, can be counterproductive when
domain-specific heuristics are used. We conjecture the reason for
this to be that suitable domain-specific heuristics can assist the solver
even better than additional constraints while avoiding the overhead of
additional nogoods (in terms of space consumption and propagation
efforts). This assumption is supported by the considerable increase
in ALPHA’s memory consumption when grounding constraints per-
missively in this domain.

To sum up, domain-specific heuristics implemented in our novel
framework, combined with strict lazy grounding by ALPHA, outper-
formed all other tested systems when applied to large instances of
the House Reconfiguration Problem and the Partner Units Problem.
Applications to other domains should be easy to put into practice and
belong to future work.12

6 CONCLUSION

We have proposed novel syntax and semantics for declara-
tive domain-specific heuristics in ASP that can depend non-
monotonically on the partial assignment maintained during solving.
Furthermore, we have presented experimental results obtained with
an implementation of our approach within the lazy-grounding solver
ALPHA.

Our semantics has proven beneficial for several practical applica-
tion domains, advancing CLINGO’s previous approach [17]. In exper-
iments, our implementation exhibited convincing time and memory
consumption behaviour. Thus, we extended the application area of
ASP by solving large configuration problem instances that conven-
tional ASP systems could not solve.

Our approach’s suitability to implement heuristics for other prac-
tical (configuration) problems should be assessed by the community.

12 One other domain, A* search, is investigated in our journal paper [28].
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Some real-world domain-specific heuristics will require extensions
of our approach, such as by supporting randomness and restarts.

Thinking more broadly, the question of how to generate domain-
specific heuristics automatically is of great importance since, cur-
rently, such heuristics have to be invented by humans familiar with
the domain (and partly also with solving technology).
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