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Abstract. Calculating valid domains is an important feature of an
interactive product configurator. Since it is an NP hard problem, it is
necessary (for large real-world instances) to calculate valid domains
only approximately in order to keep the response time low. In this pa-
per, we present a new fast and accurate approximation algorithm to
calculate the valid domains in a satisfiability based interactive prod-
uct configurator. The algorithm is based on building a full implica-
tion graph during unit propagation and performing a search in that
implication graph in order to approximate whether a domain value is
valid. We experimentally compared our new algorithm to the algo-
rithm used by the commercial SAT-based configurator CAS Merlin
and measured speedups of up to 18-fold while maintaining the same
accuracy.

1 Introduction

With the ever increasing number of products available on the market,
customers increasingly demand products that are tailored to their spe-
cific needs. The goal of mass customization is to deliver products and
services that best meet individual customers needs with near mass
production efficiency[16].

In this paper, we focus on configuration systems that offer an inter-
active configuration process. In such systems, the configurator pro-
vides feedback on the current configuration after every new user deci-
sion [9]. In a satisfiability (SAT) based configurator the constraints of
a product are represented as a Boolean formula and checking whether
a user decision is valid under the constraints and previous user deci-
sions amounts to solving a SAT problem. To better guide the con-
figuration process a configurator should also provide feedback about
the remaining valid options for future decisions. This can also be
achieved by a series of SAT solver calls [9]. However, this can lead
to long calculation times, therefore we will over-approximate valid
options instead of calculating them precisely.

The main contribution of this paper is a new algorithm that is able
to approximate valid domains in the context of interactive product
configuration. We experimentally compared our new algorithm to the
algorithm used in the commercial configurator CAS Merlin [2] and
measured that our algorithm runs up to 18 times faster while approx-
imating the valid domains with the same accuracy. We further ex-
perimentally analyzed how accurate the approximation is compared
to the complete set of valid domains. We found that the approxima-
tion is identical to the exact solution in most cases, we observed a
difference only in 4% of the test instances.
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2 Preliminaries
2.0.1 Propositional Satisfiability

A propositional variable can be either assigned the value true or
false. A literal is a propositional variable (e.g. x1) or its negation
(e.g. ¬x1). A disjunction (or, ∨) of literals is called a clause (e.g.
(x1 ∨ ¬x2 ∨ . . .)) and a conjunction (and, ∧) of clauses is called a
conjunctive normal form (CNF) formula, or just formula (e.g. (x1 ∨
¬x2) ∧ (¬x3) ∧ . . .).

The satisfiability problem (SAT) is the task to decide whether a
given formula F has a variable assignment that evaluates F to true
(i.e. satisfies F , or F is satisfiable). An assignment satisfies F if it
satisfies at least one literal in each of F ’s clauses. An assignment sat-
isfies a positive (resp. negative) literal if the corresponding variable
is assigned the value true (resp. false).

A SAT solver is a tool which solves a given SAT instance. The
state of the art technique used in modern SAT solvers is conflict
driven clause learning (CDCL) [4], which is an extension of the
DPLL algorithm [5]. One of the key procedures of CDCL (and
DPLL) is unit propagation (UP). Unit propagation calculates vari-
able assignments which are directly implied by a given partial as-
signment.

As input, UP takes a partial variable assignment β and a formula
Fcnf . The UP algorithm then iterates over all unit clauses (clauses
with exactly one literal) in Fcnf and checks for each unit clause
whether the corresponding literal is part of any other clause in Fcnf .
If a clause contains the corresponding literal, that clause is satis-
fied and does not have to be considered anymore. It can be removed
from the clause set. If the corresponding literal is negated part of any
clause, the negated literal will never evaluate to true and thus can be
removed from the clause. Removing literals from a clause can pro-
duce new unit clauses which will subsequently be processed by UP
as well. The algorithm terminates when there are no unit clauses left
or a conflict is detected.

2.0.2 Product Configuration

A configuration task T is defined as the triplet (V,D,C) where
V = {v1, v2, ..., vn} represents a finite set of finite domain vari-
ables and D = {D1, D2, ..., Dn} represents a set of values cor-
responding to the variables (i.e., dom(v1) = D1). Furthermore,
C = PKB ∪ CR represents constraints, where PKB represents
the product knowledge and CR represents a set of user require-
ments (both represented as CNF formulas). A configuration is a
selection of values for all variables in the product model. Given
a set of variables V = {v1, ..., vn} and their corresponding do-
mains D = {D1, D2, ..., Dn}, a configuration is an instantiation
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I = {v1 = {i11, ...}, v2 = {i21, ...}, ..., vn = {in1, ...}}} where
ikj is an element of dom(vk) ∈ D. A configuration is called par-
tial, if it does not contain a selection for all variables, otherwise it is
called complete. A configuration is called valid when it is complete
and consistent, as that the assignments do not contradict the product
model.

A product configurator assists the user during the selection of do-
main values in order to configure a product which fits the user’s re-
quirements best. A single selection of a domain value is called a user
decision [11]. A product configurator takes these user decisions as
an input and checks whether they contradict any constraints in the
product model. The set of user decisions can be given to the config-
urator either all at once or one decision at a time, the later is called
interactive configuration. In an interactive configuration process, the
user selects each domain one by one and receives instant feedback
about the validity of the configuration after each selection. In addi-
tion to checking the validity of the user’s selections, an interactive
product configurator can mark domain values during the configura-
tion process that would lead to a contradiction and thus to an invalid
configuration. This allows the user to avoid contradictions during the
configuration process completely and, thus, can decrease the time
needed to finish the configuration process. The domains that do only
contain values that do not lead to a contradiction are called the set of
valid domains.

Calculating valid domains using satisfiability as the consistency
criteria is an NP-hard problem [8]. This means that after each config-
uration step an NP-hard problem would have to be solved, in order to
update the set of valid domains which would be displayed to the user.
But in order to keep response times low, a product configurator can
choose to use a less general consistency criteria in order to check,
whether a domain value is valid. Using a less general consistency
means that the set of valid domains has to be approximated.

Underestimating the set of valid domains means that domain val-
ues could be displayed to the user as invalid, even though they would
not lead to a contradiction. Underestimating the set of valid do-
mains also means that a user is not able to use the full potential of
the configurability of the product and is restricted rather by tech-
nical limitations of the product configurator. A configurator which
does not underestimate the set of valid domains is called complete.
Overestimating the set of valid domains means that domain values
which would lead to a contradiction could be displayed to the user as
valid nonetheless. By selecting such a domain value, a contradiction
would arise even though the user would not expect this. A configu-
rator which does not overestimate the set of valid domains is called
backtrack-free [10] as it guarantees a backtrack-free configuration
process.

In this paper we will present an algorithm that overestimates valid
domains, therefore the configurator using our method is complete but
not backtrack-free.

2.1 Unit-provable Invalid Domains

Overestimating the set of valid domains can also be seen as underes-
timating the set of invalid domains. An invalid domain only contains
values which are guaranteed to lead to a contradiction when selected
by the user. A possible way to calculate the underestimated set of
invalid domains is to only consider invalid domain values which are
implied through unit propagation by all previously made user deci-
sions. We call such domain values unit-provable invalid domain val-
ues. A domain that only contains unit-provable invalid domain values
is called a unit-provable invalid domain.

Definition 1 (unit-provable invalid domain). Given the configura-
tion task T = (V,D,C) and a variable v ∈ V , the unit-provable
invalid domain domu

inv(v) for variable v is defined as domu
inv(v) =

{d | ¬d ∈ Γup(V,D,C ∪ {v = d}), d ∈ domunsel(v)}, v ∈ V .
Γup is a configurator which returns a configuration that only con-
tains the user selected domain values and through unit propagation
additionally implied domain values. domunsel(v) refers to the do-
main values d ∈ dom(v) for variable v which are currently not se-
lected by the user. Consequently, a unit-provable invalid domain only
contains values that the user could have selected in the next step.

As a side note: Another way of overestimating the set of valid
domains is to calculate the set of 1-provable invalid domains. 1-
provability was developed by Pipatsrisawat and Darwiche [14] and
means that it can be shown that a literal l is implied by a CNF for-
mula Fcnf by only using unit propagation. In order to show that l
is implied by Fcnf , ¬l is added as a unit clause to Fcnf and then
unit propagation is performed. Iff unit propagation results in a con-
flict then l is implied by Fcnf . Consequently, a 1-provable invalid
domain only contains values that 1-provably lead to a contradiction.
1-provability is a more general consistency criteria for calculating
valid domains than unit-provability and thus the set of 1-provable
invalid domains is a superset of unit-provable invalid domains.

In a configurator it is desirable to handle a certain type of conflicts
differently when calculating invalid domains. When a user selects a
value from a domain with an at-most-one constraint then all the other
values become invalid. However, in this case, we make an exception
and do not mark the other values invalid. The reason is that the user
selecting another value usually intends to change his selection and
not attempting to select both values at once. Therefore we can auto-
matically resolve these kinds of conflicts by removing the originally
selected value first and then adding the newly selected value.

Next we provide a definition for a unit-provable invalid domain,
which considers the previously mentioned type of conflict. We call
such a domain an ar-unit-provable invalid domain. The prefix ar
is added in order to indicate that conflicts arising from alternative
relations are considered.

Definition 2 (ar-unit-provable invalid domain). Given a configura-
tion task T = (V,D,C) and a variable v ∈ V , an ar-unit-provable
invalid domain domar

inv(v) for variable v is, except in one case, iden-
tical to a unit-provable invalid domain:

domar
inv(v) = domu

inv(v) (1)

The only case in which a ar-unit-provable invalid domain differs
from the unit-provable invalid domain is when the corresponding
variable v (1) is a max-one variable (there is an at-most-one con-
straint bound to its domain) and (2) a value is already assigned to
v by the user. In this case, domar

inv(v) only contains invalid domain
values that stay unit-provable invalid even if v would not be a max-
one variable but could be assigned multiple values.

The ar-unit-provable invalid domain of a max-one variable v thus
only contains invalid values that would stay invalid even if the user
would manually deselect the already assigned value to v before mak-
ing his new decision. For any other variable, there is no value that the
user could deselect before making a new decision in order to avoid
an obvious but undesired conflict. Thus all other ar-unit-provable in-
valid domains are identical to unit-provable invalid domains.

Example 1 (ar-unit-provable invalid domains). Consider a prod-
uct model consisting of the variables V = {v1, v2} with domains



dom(v1) = {d1, d2, d3} and dom(v2) = {d4, d5, d6}, where
v1 is a max-one variable and a single constraint: d4 excludes d2.
The user assigns d1 to v1 and d4 to v2. The formula Fcnf rep-
resents the product model. Performing unit propagation on Fcnf

with β = {d1, d4} as the initial assignment leads to the implied
negative literals {¬d2,¬d3}. Those negative literals are then ex-
tracted from the solution and since they correspond to a domain
value in the product model, they form the unit-provable invalid do-
main domu

inv(v1) = {d2, d3} for v1. The unit-provable invalid do-
main for v2 is empty. But since v2 is not a max-one variable, its ar-
unit-provable invalid domain is empty as well. v1, on the other hand,
is a max-one variable and was assigned a value by the user. Thus,
its ar-unit-provable domain differs from its unit-provable invalid do-
main. In order to determine the ar-unit-provable invalid domain for
v1, the domain value assigned to variable v1 is removed from the
configuration and unit propagation is performed again with the ini-
tial assignment β = {d4}. Only d2 is negatively implied again and
thus forms the ar-unit-provable invalid domain domar

inv(v1) = {d2}
of v1.

Definition 2 can be generalized to ar-invalid domains and also to
ar-valid domain by using satisfiability as the consistency criteria in-
stead of only considering domain values that are implied by the cur-
rently selected values and unit propagation.

3 Related work
In this Section, we will look at related work for calculating the set of
(in)valid domains. Methods for calculating the set of valid domains
can be generally grouped into online and offline methods. The goal
of offline methods is to solve the hard part (NP-hard) of calculating
valid domains before the interactive configuration process is started.
This in turn allows to check whether a domain value is valid in poly-
nomial time during the configuration process.

There are three main kinds of offline methods in the literature.
The first method is the translation of the configuration problem into
a binary decision diagram (BDD) [15, 8]. A binary decision diagram
is a graph representation of the configuration problem, which allows
to decide whether a partial configuration can be extended to a valid
configuration in linear time in relation to the amount of graph nodes.

The second and third approach rely on the representation of the
configuration problem as a constraint satisfaction problem (CSP).
Checking whether a partial configuration can be extended to a valid
configuration corresponds to checking whether the sub-CSP induced
by the corresponding partial variable assignment is satisfiable. As
checking satisfiability is NP-complete, researchers have developed
several preprocessing methods for CSPs [7, 6]. The most relevant
type of preprocessing methods are decomposition methods. Decom-
position methods determine sub problems of the original problem to
which all solutions are computed and the gained insights are used
to transform the original problem into an intermediate representation
[18]. This approach can guarantee that a solution to a CSP can be
found in polynomial time [7], as long as the problem size does not
grow superpolynomially during the preprocessing.

Adaptive consistency is a decomposition method for preprocess-
ing CSPs. By ensuring adaptive consistency, a solution can be found
in polynomial time by guaranteeing a backtrack-free solution calcu-
lation when given a fixed variable assignment order. Adaptive con-
sistency is ensured by adding additional constraints to the CSP and
finding a solution to it in polynomial time is, however, only possible
if adaptive consistency does not increase the size of the CSP super-
polynomially [7].

Beck et al. [3] describe an algorithm that ensures adaptive consis-
tency but without possibly adding a super polynomial amount of new
constraints to the CSP. They do this by removing domain values from
domains instead of adding additional constraints. But this approach
leads to solution loss. This means (in terms of product configuration)
that a customer cannot choose a certain configuration even though it
would have been a valid one. Beck et al. [3] argue that loosing valid
configurations can be acceptable in some cases and thus there is a
trade-off between space complexity and solution loss.

Input: configuration task T = (V,D,C)

1 Initialize valid domains domval(v) = ∅ for all v ∈ V
2 foreach unselected domain value d, d ∈ dom(v) do
3 if SAT (T extended with d) then
4 Add d to domval(v)
5 end
6 end
7 return domval(V )

Algorithm 1: Naive approach for calculating valid domains

Online methods do not do any preprocessing but solve an NP-
hard problem after each configuration step in order to guarantee a
backtrack-free configuration process. Algorithm 1 shows the pseudo
code for calculating the set of valid domains using satisfiability as
the consistency criteria. To achieve an approximation we can just use
unit propagation instead of SAT solving (at line 3 of Algorithm 1),
which is the basic idea behind the algorithm used in the commercial
product configurator Merlin [2] and also our new algorithm.

4 Approximating Invalid Domains
Our algorithm calculates the ar-unit-provable invalid domains. In the
following, we assume that the product model is a Boolean formula
Fcnf and the variable assignment which corresponds to the user se-
lected domain values is denoted with β. We call the literals in β the
root literals.

Given a domain value d which is implied by β when β is used
as the initial assignment for Fcnf , there may exist several subsets
{S1, S2, ..., Sn}, Si ⊆ β which would also imply d if Si would be
used as the initial assignment instead of β. If Si is minimal, then we
call Si an implication possibility of d. For each Si there is a minimal
subsetC ⊆ Fcnf of clauses such thatC implies d through unit prop-
agation when using Si as the initial assignment. We define two types
of equality between two implications possibilities S1, S2: Type-1:
Two implication possibilities S1, S2 are equal, iff their correspond-
ing minimal clause sets C1, C2 are equal (denoted by S1

C
= S2) and

Type-2: Two implication possibilities S1, S2 are equal, iff the liter-
als in both sets are equal (denoted by S1 = S2). It is easy to see that
S1

C
= S2 implies S1 = S2, but not the other way around.

Example 2 (Implication possibility). Given Fcnf = (¬d1 ∨ d2) ∧
(¬d2∨d4)∧(¬d1∨¬d3∨d4) an initial assignment β = {d1, d2, d3},
and a literal d4 /∈ β. Then, three implication possibilities for d4
exist: S = {S1 = {d1}, S2 = {d2}, S3 = {d1, d3}}.

Any literal which is not in the intersection of all implication pos-
sibilities of l can be removed from β and l will remain implied. Con-
trary, removing any literal from the intersection results in l being no
longer implied. We call the intersection of all implication possibili-
ties of l the required root literals of l, denoted by req(l).



Input: configuration task T = (V,D,C), required root
literals req(D)

F = product model formula
β = initial assignment corresponding to the user decisions

1 ∀v ∈ V calculate unit-provable invalid domains domu
inv(v)

using F and β
2 ∀v ∈ V Initialize ar-unit-provable invalid domains

domar
inv(v) = domu

inv(v)

3 foreach user selected domain value d that is assigned to a
max-one variable v do

4 foreach d̂ ∈ domu
inv(v) do

5 if d ∈ req(d̂) then
6 Remove d̂ from domar

inv(v)
7 end
8 end
9 end

10 return domar
inv(V )

Algorithm 2: Calculating ar-unit-provable invalid domains using
required root literals

Now, with the definition of required root literals at hand, we can
connect ar-unit-provable invalid domain values to required root liter-
als.

Theorem 1. Given a Boolean formulaFcnf , an initial assignment β,
a variable v ∈ V with domain dom(v) = {d1, ..., dn} and dk ∈ β
with an arbitrary but fix k ∈ [1, n] which is assigned to v. If v is a
multivalue variable (variable which can be assigned multiple values)
or v was not assigned by the user, then domar

inv(v) and domu
inv(v)

are identical. On the other hand, if v is a max-one variable and was
assigned by the user then a domain value d ∈ domu

inv(v) is ar-unit-
provable invalid if and only if dk /∈ req(d).

Proof. Assume that v is a max-one variable and was assigned the
value l by the user. A domain value d ∈ domu

inv(v) is also ar-
unit-provable invalid iff it stays negatively implied even if the user
would deselect l. Deselecting l means that l is removed from β. De-
ciding whether d is ar-unit-provable invalid thus means that it has to
be checked whether ¬d stays implied if l is removed from β. A re-
quired root literal of ¬d is a literal that has to be part of β in order for
¬d to be implied. So if l is a required root literal of ¬d, and the user
would deselect l, ¬d would not stay implied and thus d would not be
ar-unit-provable invalid. If l is not a required root literal of ¬d, and
the user would deselect l, ¬d would stay implied and thus d would
be ar-unit-provable invalid.

If v was not assigned by the user or is not a max-one variable, then
domar

inv(v) and domu
inv(v) are identical by definition 2.

Algorithm 2 makes use of Theorem 1 for calculating the set of
ar-unit-provable invalid domains. First, the unit-provable invalid do-
mains are calculated (line 1). In line 2, the ar-unit-provable invalid
domains are initialized with the unit-provable invalid domains. The
foreach loop in line 3 iterates over all user assigned max-one vari-
ables to check whether the previously calculated unit-provable in-
valid domain values of those variables are also ar-unit-provable in-
valid. The foreach loop in line 4 iterates over each unit-provable in-
valid domain value of v in order to check whether each individual
value is ar-unit-provable invalid. In line 5, it is checked whether d is
a required root literal of d̂. If this is the case, d̂ is not ar-unit-provable
invalid and removed from domar

inv(v).

4.1 Deciding whether a Literal is a Required Root
Literal

The general approach is to create an implication graph during unit
propagation which allows us to retrace by which literals each literal
was implied. This consequently also allows us to calculate which
literals of the initial assignment lead to the implication of certain
other literals. Note that calculating the complete set of required root
literals for each literal is not necessary in order to correctly execute
Algorithm 2. Checking whether d is part of the required root literals
of d̂ can be performed by using the implication graph to enumerate
all type-1 distinct implication possibilities of d̂ until one is found
that does not contain d. If such an implication possibility was found,
it has been proven that d is not a required root literal of d̂. The reason
is that d has to be contained in all implication possibilities S1, ..., Sn

in order to be in the intersection S1 ∩ ... ∩ Sn.
An implication graph is a directed acyclic graph and represents

which literals implied which other literals during unit propagation
[1]. In order to build the implication graph during unit propagation,
each time a clause becomes unit, a pointer to that clause is stored and
associated with the implied literal. Root literals are initially not asso-
ciated with any clause. When unit propagation is finished, the saved
clauses and associated literals can be interpreted as the implication
graph. A node corresponds to a single implied/root literal. An edge
corresponds to the implication of a literal. More precise: An edge
from literal k to literal l exists, if there exists a clause c with k ∈ c
and c became unit so that l was implied. The edge is labeled with c
accordingly. The resulting implication graph is, however, dependent
on the order in which the literals were propagated and also does not
contain all the possible ways a certain literal can be implied. What
we need is a full implication graph[1]. Van Gelder [17] also devel-
oped a method to capture all possible implications of any literal l
but Abrame et al. were the first to come up with the notion of a full
implication graph.

Definition 3 (Full implication graph). Adapted from [1]. Let Fcnf

be a CNF formula defined on a set of Boolean variables X and let I
be a partial assignment. A full implication graph is a directed graph
G = (Vv, Vuc, E) where Vv is the set of nodes which represent the
assigned variables, Vuc is the set of nodes which represent the unit
clauses andE is the set of arrows which link the unit clauses (the pre-
decessors) to their propagated variables and also link the assigned
variables to the clauses they reduce (the successors).

The full implication graph is built in the same way during unit
propagation as the conventional implication graph with the difference
that satisfied clauses must not be ignored.

4.1.1 Searching in the Full Implication Graph

We developed an algorithm that considers each implication possibil-
ity one by one by performing a depth first search on a full implication
graph. However, instead of calculating each implication possibility
individually, our algorithm makes use of theorem 2 to directly de-
cide for each traversed literal, whether l is a required root literal of
that literal.

For a literal x let C be the clause which became unit during unit
propagation and implied x. By predecessor clause we mean the set
of literalsC \ {x}. Example: for (¬a∨¬b∨x) and x the predecessor
clause would be {a, b}.

Theorem 2. Let C = {C1, ..., Cn} be a set predecessor clauses of
an arbitrary literal x. An arbitrary root literal l is not a required root



literal of a predecessor clause Ci = {vi1, ...}, iff no literal vij ∈ Ci

has l as a required root literal. If at least one literal vij ∈ Ci exists,
that has l as a required root literal, then l is a required root literal
of Ci as well. l is not a required root literal of x, iff at least one
predecessor clause Ci exists that does not have l as a required root
literal. On the other hand, l is a required root literal of x, iff all
predecessor clauses of x have l as a required root literal. In the case
that C is empty (i.e., x has no predecessor clauses and thus is a root
literal), l is not a required root literal of x iff l 6= x. l is a required
root literal of x, iff l = x.

Proof. Follows from the definition of required root literals.

Theorem 2 is recursively applied to each traversed literal during
the depth first search in the full implication graph in order to eventu-
ally decide whether l is a required root literal of k.

The algorithm (see Algorithm 3 for a pseudo-code) iterates over all
predecessor clauses of k. First, it is assumed, that l is not a required
root literal of the currently processed predecessor clause C. Then
we iterate over each literal in C in order to falsify this assumption.
This is done by recursively calling the algorithm in order to evaluate
whether l is a required root literal of the currently processed literal.
If this is the case, the assumption was falsified and it was proven that
l is also a required root literal of C. Consequently, no more literals
in C have to be evaluated and the next predecessor clause can be
processed. If the assumption could not be falsified, then it was proven
that at least one predecessor clause of k exists where all literals do
not have l as a required root literal and thus k does not have l as a
required root literal. Consequently, the algorithm returns false. If
all predecessor clauses have l as a required root literal, the algorithm
cannot return early and has to iterate over all predecessor clauses. In
this case, l is a required root literal of k and true is returned. The
termination condition of our recursive algorithm is either that k is
a root literal and we return (according to Theorem 2) false if k is
not equal to l. If, on the other hand, k equals l, the algorithm cannot
return true immediately because k could have predecessor clauses
since root literals can imply other root literals.

Contrary to a conventional implication graph, a full implication
graph can contain cycles [1]. A cycle in the full implication graph
would have the effect that our above described algorithm traverses
the same set of clauses and literals indefinitely. In order to guarantee,
that our algorithm terminates, cycles have to be detected and avoided.
That is done by simply maintaining the set of visited literals. In the
following, we prove the the correctness of our algorithm.

Theorem 3. Algorithm 3 can correctly decide if l is a required
root literal of x, even if predecessor clauses that contain cycles are
skipped during the search.

Proof. Let x be the literal that was assigned to parameter k in the
initial call to the algorithm. Each implication possibility of x is as-
sociated with a distinct set of clauses. This set of clauses is sufficient
in combination with the corresponding set of root literals to imply x
through unit propagation. Since this set of clauses is minimal, each
literal is implied only once during unit propagation. Consequently,
the resulting full implication graph is acyclic. A correct solution can
be found for x when searching in an acyclic full implication graph
since the clause set that belongs to an implication possibility is a sub-
set of the original clause set. The resulting full implication graph of
that subset is also a sub graph of the original full implication graph.
Further, each full implication graph induced by each individual im-
plication possibility is contained in the original full implication graph

1 isReqRootLit( literal k, root literal to check l, visited
literals V isited, all root literals β, predecessor clauses for
each literal Predecessors)

2 if k ∈ β then
3 if k 6= l then
4 return false
5 end
6 end

7 V isited = V isited ∪ k
8 foreach C ∈ Predecessors(k) do
9 if C ∩ V isited 6= ∅ then

10 continue
11 end

12 isNotRequired = true

13 foreach j ∈ C do
14 irl = isReqRootLit(j, l, V isited,β,Predecessors)

if irl = uncertain then
15 isNotRequired = false
16 break
17 end
18 end

19 if isNotRequired then
20 V isited = V isited \ k
21 return false
22 end
23 end

24 V isited = V isited \ k
25 if V isited = ∅ then
26 return true
27 end

28 return uncertain
Algorithm 3: is l a required root literal of k? Cycles are handled

as well. Thus, the algorithm can find each implication possibility in
the original full implication graph by traversing the original full im-
plication graph in the correct order. The algorithm is thus also able to
traverse all induced full implication graphs with a single continuous
acyclic search order. With a known acyclic continuous order, the al-
gorithm would be able to reconstruct all implication possibilities of
x, which in turn allows the algorithm to prove that l is not a required
root literal. Thus, skipping cycles during the search has no effect on
whether the algorithm is able to find a correct result.

This proof requires that Algorithm 3 traverses the implication
graph in a certain order. But since it is not possible to know this
order beforehand, each possible order has to be tried. The algorithm
chooses the next clause or literal to process by whichever clause or
literal was not tried yet. This in turn can have the effect that the al-
gorithm selects a wrong search order and thus reaches a dead end
where only cycles are detected or a different order has to be tried
in order to find additional implication possibilities. In such a case,
the algorithm has to backtrack. For this reason, literal k is removed
from V isited in line 20 and 24. This allows the algorithm to process
the same literal again at a later point but in the context of a different
order. However, the downside of this approach is, that it requires an
exponential amount of operations in the worst case.

If all different orders have been tried without being able to prove



Figure 1: Runtime evaluation results.

that l is not a required root literal of x, the algorithm returns true.
In line 25, it is checked whether V isited is empty. If this is the case,
the currently processed literal is x. Since the check is performed after
each predecessor clause was processed, it can be concluded that all
different orders have been tried and we return true.

On a last note regarding cycles: The algorithm is also able to cor-
rectly determine that l is a required root literal of k, if no cycles were
encountered at all while processing all predecessor clause of k and
the corresponding literals. In such a case, the algorithm would not
have to return uncertain but could return true instead. But since
the return value true would be handled the same way as uncertain
is, we do not differentiate between those two return values and stick
to uncertain.

4.1.2 Optimizing the Search

So far, we have discussed how the algorithm works. But due to cycles
in the full implication graph, the algorithm is required to perform en
exponential amount of operations in the worst case. In this section,
we will present two optimizations that minimize the amount of oper-
ations that the algorithm has to perform.

Optimization 1: It is sufficient to find a single predecessor clause
of literal k where each literal does not have l as a required root literal
in order to prove that k does not have l as a required root literal
as well. Since evaluating k at a later point during the search again
would yield the same result, this result can be saved. The next time
the algorithm encounters k, the saved result can be used instead of
having to search the full implication graph again.

Optimization 2: Algorithm 2 uses Alorithm 3 to decide whether d̂
is a required root literal of d. The set of literals that do not have d̂ as a
required root literal can be passed to Algorithm 2 as parameter. This
set can be reused between independent calls to Algorithm 2 as long
as the literal assigned to parameter d̂ is the same. This is the case in
Algorithm 2 for each call to Algorithm 3. This way, each subsequent
call to Algorithm 3 terminates faster since the evaluation result of
more literals is already known.

5 Experimental Evaluation

In this Section we present the results of our experimental evaluation
of Algorithm 2 regarding its runtime and accuracy.

As benchmarks we will use feature models as product models.
Mendonca provides a repository of real-world and generated feature
models [12]. One kind of generated models – so called 3-CNF Fea-
ture Models (3-CNF FM) tend to induce much harder problems than
most of realistic models [13], therefore we will use those for our per-
formance evaluation. To translate the feature models to CNF we used
the library provided by Mendonca [12]. We used the 3-CNF FM gen-
erator with its default parameters except for the number of features
(which we increased to 10,000 instead of 100) and the percentage of
features considered for cross tree constraints (increased to 50 instead
of 20) in order to generate harder feature models.

For the accuracy evaluation we used five real world feature mod-
els [12], namely: SubseaControlSystem, ubuntu1410, Ubuntu12,
Self-Generated and Big Data System. These feature models are sig-
nificantly smaller than the generated models, containing only a few
hundred features.

For the performance evaluation experiments we will use the fol-
lowing algorithms. Each implemented by us in Java.

• Naive algorithm: The naive approach for calculating the ar-unit-
provable invalid domains – running unit propagation for each can-
didate separately.

• Merlin algorithm: An algorithm used by the commercial prod-
uct configurator Merlin. It is an optimized variant of the naive
approach that reduces redundant unit-propagations.

• RRL algorithm: The algorithm introduced in this paper – Algo-
rithm 2.

For our accuracy experiments, we will use the RRL algorithm to
calculate the ar-unit-provable invalid domain values, the naive ap-
proach for calculating the ar-1-provable invalid domain values and
the adapted SAT Online algorithm (Algorithm 1) for calculating ar-
invalid domain values.

All experiments were performed on a Computer with Intel(R)
Xeon(R) CPU E3-1231 v3 @ 3.40GHz, 8GB RAM, NixOS 20.03
operating system and Java 11 (OpenJDK).

Figure 1 shows the results of the performance measurement. The
naive algorithm is clearly the slowest one and needs 135ms for 500
asserted features and 309ms for 1,000 asserted features. The second
slowest algorithm is Merlin’s algorithm which needs 81ms at the 500
mark and 169 at the 1,000 mark. The RRL algorithm needs 5ms at the
500 mark and 9ms at the 1,000 mark. This corresponds to a speedup
at the 500 and 1,000 mark of roughly 18 compared to the Merlin



Figure 2: Size measurements for feature models SubseaControlSystem (left) and ubuntu410 (right).

algorithm and a speedup of roughly 34 compared to the naive algo-
rithm.

Our algorithm has in the worst case an exponential time complex-
ity, But it still outperforms the naive and Merlin’s algorithm even
though they have a linear worst case time complexity. We argue, that
the reason for that is, that most traversed literals evaluate to false.
This allows the algorithm, due to our optimization to reuse evalua-
tion results instead of having to search the implication graph again at
a later point. Another probable reason is that the implication graph
most likely never has to be traversed completely in order to decide
whether a literal is a required root literal.

Figure 2 shows the measured sizes of the set of ar-unit-provable
invalid domain values, ar-1-provable invalid domain values and ar-
invalid domain values for the SubseaControlSystem and ubuntu1410
feature models. For the other three feature models the set of ar-unit-
provable invalid domain values is identical to both the set of ar-1-
provable invalid domain values and ar-invalid domain values.

For the SubseaControlSystem the set of ar-invalid domain values is
identical to the set of ar-1-provable values. The set of ar-1-provable
invalid domain values differs from the set of unit-provable invalid
domain values in 10 of the 60 test cases, the maximum difference
in size is 7. In case of ubuntu1410 the set of ar-1-provable invalid
domain values differs from the set of unit-provable invalid domain
values in 29 of 150 test cases, the maximum difference in size is 4.

The results indicate that the ar-unit-provable invalid domain values
are most of the time identical to the ar-invalid domain values. Only
in two feature models additional ar-1-provable invalid domains were
detected. We do believe that our results are representative for small
feature models with few constraints. But due to the available tools
and our limited time frame we were not able to measure big feature
models with many constraints.

6 Conclusion
The challenge of calculating valid domains is that this problem is NP-
hard but we need to calculate them for hundreds of variables within
milliseconds. For this reason, we developed an algorithm that ap-
proximates the valid domains. A further challenge is to consider the
automatic resolution of conflicts that arise from selecting a second
value within an alternative relation as domain values could become
valid that would be invalid otherwise.

We developed our algorithm based on the idea of required root
literals. Our algorithm has to perform unit propagation only once and
then relies on the full implication graph for further calculations. Even
though this approach induces an exponential worst case complexity,
we could not observe it in our experiments. Instead, we found that

the calculation time of our algorithm appears to grow linearly with
the the amount of asserted features. In future work, the average case
complexity of our algorithm should be determined and it should be
analyzed, under which circumstances the algorithm might require an
exponential computation time.

We additionally measured the accuracy of the approximation
achieved by our method. We found that for small feature models
with few constraints this approximation is very accurate. These re-
sults are, however, not transferable to large feature models with many
constraints. Additional measurements have to be performed in future
work in order to get a better understanding of the accuracy.
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