
COSLING Configurator
CHARPENTIER Antoine and FAGES Jean-Guillaume and LAPEGUE Tanguy1

Abstract. This paper introduces COSLING Configurator, a so-
lution for complex products and services modeling and configura-
tion. Based on Constraint-Programming technologies through Choco
Solver[1], COSLING Configurator handles a wide range of con-
straints and defines some of its own formalisms. Early feedbacks
from industrial use cases have already validated the interest of
COSLING Configurator.

1 Introduction

The creation from scratch of a domain-specific configurator has been
studied and deemed an especially difficult task, as ”poor decision-
making in one phase may produce escalating negative consequences
in the subsequent phases, until the configurator project eventually
fails.” [2], hence the need of generic and easy to use configurator.

COSLING Configurator is a SaaS suite designed around the cre-
ation and deployment of configuration forms. These are interactive
forms accessible to any non-expert user, where every action triggers a
constraint validation and propagation, to ensure that even when han-
dling complex objects, every result of the form is correct. Its main
application is the generation of quotes satisfying a set of business
rules without requiring the user to know them. The target benefits of
this tool are:

• Improving the sales experience by allowing more customization
while reducing quoting time and offering a digital experience.

• Digitizing and centralizing expert knowledge so that it can be used
easily by non experts and maintained over time.

• Building a configurator easily without programming skills, thanks
to a code-less ergonomic interface, therefore saving the cost of
developing and maintaining ad hoc quoting solutions.

• Allowing deeper integration with other Information Systems

The tool is collaborative: it enables the sharing and permission-
control of resources and forms so that the administrator can enable
internal or external users to view, interact with, or edit configura-
tion models or forms. For instance, an expert can be the only actor
with edition rights, with salespeople having run access. Or a team of
experts could collaborate on the edition of a model, with the config-
urator being deployed publicly on a website.

COSLING Configurator has been successfully used for quote gen-
eration and design automation on industrial use cases (e.g. pumps,
centrifugals, wood chip boilers, electric motors, ...).

As depicted by Figure 1, the suite consists of an editor for creation,
storage and management of models, a configuration kernel and a con-
figuration interface that together allow for immediate testing and first

1 COSLING S.A.S., France, email: contact@cosling.com, website:
https://www.cosling.com/

results off-the shelf. The non kernel modules can be replaced exter-
nally for advanced uses. The target workflow of the suite is as fol-
lows:

• Store business data
• Build standalone models
• Reuse models as components to represent larger systems
• Design the configuration user interface and workflow
• Deploy the configuration interface and make it accessible to au-

thorized actors

Figure 1. Configurator architecture.

2 Related Work
In the era of modern industry, the number of the ways to answer a
given need, whether it be in the form of material products, software
[3], processes, or sets of requirements [4], has gone up exponentially.
Thus, the process of setting up a single solution has become increas-
ingly heavy [5], to the point of necessitating a class of digital solu-
tions dedicated to partly automate that process: configurators.

Configurators are not a new concept [6], nor are they becoming
obsolete [7]; their implementation has shown substantial benefits in
several areas, from sales to industrial problem solving [8]. The ab-
stract nature of configuration raises the possibility of unifying con-
figurator development with a generic solution. Such a solution is rel-
evant, as the cost and risk of failure of developing a domain spe-
cific configurator are high [2]. Several generic configuration solu-
tions have been developed in the past, ranging from research driven
engines to integrated modules of CRM suites [9]. Motivated by the

Copyright 2021 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0)

inherent constraint based search aspect of configuration that over-
laps with its core expertise, COSLING introduces a configuration
solution centered around user experience, high flexibility in model-
ing and integration, and performance. It is built on the belief that
multistage[10] visual configuration [11] has the potential to bring
tangible gains with reasonable effort.

3 Configuration Paradigm
This section will present what constitutes a configuration model in
the COSLING Configurator paradigm.

3.1 Attributes
Attributes have an initial domain, and their value in a final solution
will be determined either by user actions or through the propagation
of constraints by the engine, as a consequence of user actions. They
can be seen as variables in the constraint programming paradigm.
Constraints bind attributes together so that their values are always
coherent with each other.

We can allow or disallow values for a numerical attribute when
declaring its domain. Indeed while ”integer” or ”floating” are short-
hands for the maximum possible range for both of these types, the
general form of a numerical domain is a list of inclusive ranges. Thus,
we can declare an attribute with a domain of [0,10], or a list or ranges
(including a singular one) [2.5,3.5], [4.0,4.0], [4.5,5.5]

A specific case is the $REFERENCE variable which serves as a se-
lector for references of a catalog, or variables with an Enumeration
type . Although their value is represented by an integer variable in-
ternally, their value always appears as the label of the corresponding
references. Both concepts are presented below.

For instance, if we want to configure a quantity of products costing
2.5C to buy, we will use a positive integer attribute for the quantity
and a floating point attribute for the price, bound by the simple con-
straint price = quantity ∗ 2.5. The user could set the quantity and
see the price, or set a target price and let the engine search for a
matching quantity of products.

3.2 Enumerations
Enumeration are a simple utility concept meant to give names to in-
teger values. Enumerations have several purposes: centralizing re-
curring values across the application and illustrating basic choices in
modeling and configuration.
{false : 0, true : 1} or {blue : 0, white : 1, red : 2} are instances
of enumerations that can be used for providing a choice in the model.
{standard diameter 1 : 125, standard diameter 2 : 165} is an
instance of enumeration that can be used for both choices and com-
putations. As mentioned above, the usage of an enumeration is as the
domain of an attribute.

3.3 Catalogs
The catalog is the main way to store data about the object to be con-
figured. A catalog is comparable to a database table in that it repre-
sents many given versions of a class of object.

If the object to be configured includes a metal frame for instance,
a simplified catalog might look like this:

That is to say, a catalog defines attributes (columns) with their
name and domain, then a collection of lines referred to as ”refer-
ences” in the paradigm, specifying a specific value for every attribute.

Price Color Weight
int Enumeration: color [100,500]

Frame A 100 White;Blue 150
Frame B 200 Red 175..300
Frame C 300 Blue 225

Table 1. Catalog definition example.

Such domain may consist of a single value or include some variabil-
ity, as may be seen in Table 1. A catalog reference can also include
an image, which will be rendered in the configuration view and gen-
erated quotes.

Note that it is possible to design entirely a model through a cat-
alog. As they are quite similar with Excel format, Catalogs form a
simple and effective way to model products.

3.4 Constraint expression
Constraints are expressed with two abstract element types: con-
straints and terms. A term results in one or multiple variables, and
constraints bind these variables together. Rather than implementing
a DSL for the constraint declaration, it has been decided to use a
visual interface relying on term and constraint selectors so as to
guide the user in the edition process:

Figure 2. Constraint edition.

3.4.1 Terms

• Paths. This is a dot separated relative path to an attribute. There
is no ”parent” keyword by design, so a path only goes down the
tree, never up. NB: if one or many sub-models included in the path
have more than one instance, a path will return several variables.
e.g. frame.$REFERENCE (one variable), Wheels.price
(several variables, cf Figure 1)

• All. This will return every attribute with the given name from the
constraint’s model or its sub models, with infinite depth.
e.g. All(price)

• Constants. They are expressed as a string, which can either repre-
sent an integer, a float, or the label of a catalog reference.
e.g. 1, 1.3, F rameA

• Unary expressions. sin(angle), round(price)
• Binary expressions. discount ∗ catalog price
• Ternary expressions. e.g. if(discounted == true) then

price ∗ (1− discount) else price
• N-ary expressions. Mathematical expression involving n terms.

The expression will take into account every variable returned by
every term. Sum, max, min...
e.g. sum(all(price), frame.discounted price)

3.4.2 Constraints

• Arithmetic. A mathematical relation between two terms.
e.g. discounted = true, load >= 200

• N-ary. A mathematical relation between n terms. Will take into
account every variable returned by every term. Equal/different.
e.g. equal(all(axle type), chosen type)

• Logical. Binds two constraints by a logical connector.
If/Or/Xor/And/IfOnlyIf, e.g.
IfOnlyIf((homogeneous = true), equal(all(axle type))

3.5 Models
A model is a tree structure where each node has attributes, con-
straints, at most one catalog, and (sub) models (child nodes). The
arborescent nature of models has several purposes:

• Organizing attributes in large models and making the edition of
individual parts simpler. Indeed constraints are defined in mod-
els, and can include the attributes of child models, but not parent
models.

• Reusing standalone models in several, larger models. It is possi-
ble to encapsulate the logic of one object reused across several
projects in a standalone model, then include it where needed. If
for instance we have a pair of components that are always used
together and bound by the same constraints, we can create the
corresponding model as standalone to avoid having to write that
logic again everywhere the pair is used.

• Repeating a sub model a dynamic number of times. It is possible
to bind an integer defined in the parent of a model to it’s number
of instances. This creates a specific behaviour at the configuration
run-time: the corresponding sub models will be created upon the
instantiation of the instance number variable. In other words, they
may be created and destroyed multiple times during configuration
depending on changes of the variable’s domain.

• Importing several catalogs in the same standalone model through
child nodes. As of now, multiple catalog is inheritance unsup-
ported. Not only would it require dealing with attribute conflicts
and multiple reference variables, we also believe that encouraging
the Composition Over Inheritance [12] principle in the configu-
ration paradigm leads to overall cleaner model designs, therefore
reducing long term user frustration.

A model has several ways of declaring attributes: importing a (sub)
model, a catalog, or defining custom attributes.

Importing a catalog adds every attribute from it to the model, as
well as a $REFERENCE attribute. $REFERENCE is linked by an
implicit element constraint to the catalog attributes, so that selecting
a reference restricts every attribute to the value of the corresponding
line in the catalog, and conversely, that setting an attribute restricts
$REFERENCE to only keep the references that match this value.

Custom attributes can be added freely to any model, together with
a set of constraints to define their behavior. As such, custom at-
tributes are used to complement the information stored into cata-
logs. For instance, applying a discount should be independent of
the chosen catalog. We would therefore define a custom floating
point attribute and bind it to the catalog price by the constraint
discounted price = (1− discount) ∗ catalog price”. Importing
a catalog and defining custom attributes are not mutually exclusive.

Figure 3 represents a basic model to help understanding the struc-
ture and dependencies of a model.

3.6 Forms
Although it is possible to configure/run a model directly, exposing
every attribute to the user in generic way may be confusing for the
user and quite counter productive for sales.

Figure 3. Basic example.

For this reason, we propose to configure the configuration view
through Forms. A Form describes the configuration interface of a
model. If the model can be seen as the back-end of configuration, the
Form can be seen as its front-end counterpart.

A form is defined as a collection of steps. A step serves as a
”strong” delimiter for the configuration workflow. In most cases,
choices made in a step by the user are final and may be used as a
basis for the following steps.

Steps are constituted of fields organized in groups. It is possible to
nest groups as needed.

A field is simply the association of a label and a path. This path
is the same type of path used in constraints, starting from the root
model. If resolving the path results in multiple attributes (in the
case of variable instances), there will be one field for every instance.
Lastly, there are several interface options for a given field: a plain text
box, a select for domains that can be enumerated (reasonably sized
integer or named domains), a checkbox with two values. A field can
also be set as read-only, for when the displayed attribute is not meant
to be configurable but only as a result of other choices, or when the
choice has already been made in an earlier step.

4 Configuration Process
Running a form in the editor produces such a view:

Figure 4. Sample configuration view

For each field, the following information are displayed:

• A current value. Fields always contain a value, whether specified
by hand or computed by the solver. These values are compliant
with constraints, thus the form shows a ”valid” solution from the
start.

• Whether or not it has been manually locked by the user is rep-
resented by a lock that is either open or closed. Locking a field
means that the engine will now only search for solutions where
this field’s value does not change. Any non locked field is subject
to change when locking another field, so that the displayed value
is still valid afterwards.

• The current domain, available by hovering the icon to the right of
every field. The domain is the range of values still coherent with
constraints and previous user choices. The domain of a locked
field is restricted to one value.

Attempting to give a value outside of its domain to a field initiates
a conflict resolution process outputting a list of choices to unlock for
the desired commit to be feasible.

This interface displays information received from the configura-
tion API. When using the configuration as a micro-service, the same
parameters (value, domain, locked state, etc.) should be handled by
a third party GUI.

Upon reaching the last step, the configured result is available visu-
ally through the form, as a word document generated from the data,
and can be pushed over https as JSON to the host company’s server
for any custom treatments. Configurations could be saved for later in
a customer space or an order could be directly placed, for instance.
In most cases, this is outside of the configurator’s scope of responsi-
bility.

5 Conclusion
We have introduced COSLING Configurator, a web platform to de-
sign and run configuration models in order to digitize sales and de-
sign automation. It is based on a simple paradigm aiming at help-
ing business data remain as structured and clear as possible. Models
can be generated through an ergonomic interface or programmati-
cally. Based on the same model, different configuration forms can
be designed and deployed so as to to be used as part of any flow
that involves configuration. The core value proposition lies in the
simplicity of the paradigm and the strength of the configuration ker-
nel. Finally, the solution can be integrated as a configuration micro-
service through web APIs in order to benefit from its inference power
in a wider system. Thus, the COSLING Configurator is a generic
enough solution to adapt to a wide range of needs, but domain spe-
cific enough to not define the architecture of users too heavily. Early

feedbacks from industrial use cases have validated the strength of the
Kernel and the interest of our code-less user interface.

Since Configuration problems are usually under constrained, pick-
ing a good solution from all valid solutions is an important task.
Therefore, future work will mainly focus on making it possible to
specify what a good solution is (by handling optimization criteria)
and how to build it (by handling search strategies). So as to make
COSLING Configurator even more interactive, we also plan to im-
prove our conflict resolution by giving several alternatives to solve
conflicts. By collecting feedback from our users, we are also looking
to further improve user experience, especially regarding table edition
and model refactoring which are key points. Lastly, efforts will be
made to facilitate the configurator integration within other systems,
such as ERPs, CRMs and CAD environments.

Academic licences for Research and Teaching can be granted on
demand.

REFERENCES
[1] Charles Prud’homme, Jean-Guillaume Fages, and Xavier Lorca. Choco

Solver Documentation. TASC, INRIA Rennes, LINA CNRS UMR
6241, COSLING S.A.S., 2016.

[2] Anders Haug, Sara Shafiee, and Lars Hvam. The causes of product
configuration project failure. Computers in Industry, 108:121–131, 06
2019.

[3] F. Liguori and F.A. Schreiber. The software configurator : an aid to the
industrial production of software. pages 487–492, 1978.

[4] Michel Aldanondo and Élise Vareilles. Configuration for mass cus-
tomization: How to extend product configuration towards require-
ments and process configuration. Journal of Intelligent Manufacturing,
19:521–535, 10 2008.

[5] David Mick, Susan Broniarczyk, and Jonathan Haidt. Choose, choose,
choose, choose, choose, choose, choose: Emerging and prospective re-
search on the deleterious effects of living in consumer hyperchoice.
Journal of Business Ethics, 52:207–211, 01 2004.

[6] F. Beuger, T. W. Sidle, L. W. Leyking, and A. G. Livitsanos. A pro-
grammable configurator. In Proceedings of the 11th Design Automation
Workshop, DAC ’74, page 177–185. IEEE Press, 1974.

[7] Yue Wang, Wenlong Zhao, and Wayne Xinwei Wan. Needs-based
product configurator design for mass customization using hierarchi-
cal attention network. IEEE Transactions on Automation Science and
Engineering, 18(1):195–204, 2021.

[8] Anders Haug, Lars Hvam, and Niels Henrik Mortensen. The impact of
product configurators on lead times in engineering-oriented companies.
AI EDAM, 25:197–206, 05 2011.

[9] R. Sabin, D.; Weigel. Product configuration frameworks-a survey. IEEE
Intelligent Systems and their Applications, 13, 1998.

[10] Jeppe Bredahl Rasmussen, Anders Haug, Sara Shafiee, Lars Hvam,
Niels Henrik Mortensen, and Anna Myrodia. The costs and benefits
of multistage configuration: A framework and case study. Computers
Industrial Engineering, 153:107095, 2021.

[11] Lars Hvam and Klaes Ladeby. An approach for the development
of visual configuration systems. Computers Industrial Engineering,
53(3):401–419, 2007.

[12] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional, 1 edition, 1994.

