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Abstract. Highly configurable systems expose numerous variation
points to be configured by the stakeholders. Deciding which vari-
ant to select for a given variation point is hard to know a priori
because each variant affects the configuration properties (e.g., per-
formance, efficiency, fault tolerance) differently, and evaluating all
configurations is practically infeasible. This paper introduces an ap-
proach based on Monte Carlo simulations to analyze the influence of
each feature selection when configuring a variability model. We split
the whole configuration space into step-wise decisions driven by the
variation points that a user normally needs to face/decide during the
configuration process. Monte Carlo simulations approximate the in-
fluence of each feature variant evaluating as few configurations as
possible. Our solution complements existing sampling techniques to
analyze colossal configuration spaces improving the understanding
of the influence of each feature selection. It can be part of a decision-
making tool to assist the user by means of recommendation systems
and interactive configuration processes.

1 INTRODUCTION
A Software Product Line (SPL) [1] defines a set of common and vari-
able characteristics that can be customized according to the specific
needs of the stakeholders in a particular application. To represent
and model those commonalities and variabilities, feature models [25]
stand out as the de-facto standard in SPL. The automated analysis of
feature models (AAFM) [6, 11] is challenging due to the large num-
ber of variants and configurations.

A feature model represents the variation points of an application
and its possible variants in terms of features, which can be optional,
mandatory, required or excluded by other features. For example, the
persistence feature is a recurrent variation point in many systems re-
quiring to select a specific database variant (e.g., SQL, MongoDB)
to be used in the target application. Deciding which variant to select
depends on several factors such as the user’s requirements, perfor-
mance, energy efficiency, or fault tolerance of the complete config-
uration. The analysis of how each variant influences the application
properties (e.g., performance, efficiency, fault tolerance) is hard to
know because of the high number of possible alternatives for a spe-
cific feature, logical constraints between the features, and interac-
tions among them. Evaluating all configurations for highly config-
urable systems is practically infeasible because the number of con-
figurations grows exponentially in terms of the number of features.

Configuration sampling [38] is a technique used to avoid exhaus-
tive analysis, providing a subset of all valid configurations. Several
sampling strategies have been proposed in the literature about SPLs
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and configurable systems [45]: random sampling [18, 30, 33] to se-
lect configurations uniformly; coverage-based sampling [9, 10, 34]
to select configurations that cover all combinations of t selected fea-
tures (e.g., pair-wise sampling for t = 2); or distance-based sam-
pling [24] to select configurations according to a given probability
distribution and a distance metric; among other techniques reviewed
in [45]. Despite the fact that these techniques have shown great re-
sults in SPL testing [13] and learning configuration spaces [35], sam-
pling large-scale SPLs poses a challenge [38]. Existing techniques
present scalability issues as they tend to run out of memory, do not
terminate, or produce samples which are too large to be tested [38].
In addition, analyzing and making decisions from a sample of config-
urations that considers the whole configuration space can be difficult
for the user that configures a product. For instance, the performance
or efficiency of the database variant (e.g., SQL) used in a system’s
configuration is not influenced, in most cases, by the back end tech-
nology (e.g., Gradle, Maven) used to build the application. Thus, an-
alyzing the feature interactions (e.g., by using coverage-based sam-
pling) between both variation points may be useless for the user con-
figuring the product. Moreover, from the analysis of a particular com-
plete configuration, it is challenging to comprehend a priori the in-
fluence of each feature variant in such configuration and in the rest
of configurations of the SPL [34].

In this paper, we propose an approach based on Monte Carlo sim-
ulations to analyze the influence of the variation points and each of
their variants in the configuration properties (e.g., performance, fault
tolerance). Our approach relies on statistical analysis [19] and ran-
dom sampling [18] to analyze large-scale configuration spaces im-
proving the understanding of the influence of each feature selec-
tion. We split the whole configuration space into step-wise decisions
driven by the variation points that a user normally needs to face and
decide during the configuration process. Monte Carlo simulations
approximate the influence of each feature variant evaluating as few
configurations as possible. We demonstrate the applicability of our
approach with a large-scale real-world SPL: the JHipster Web de-
velopment stack [16], the configuration space of which has been ex-
haustively evaluated in [16] serving us as an appropriate candidate to
verify the results of the Monte Carlo simulations. Our approach can
be part of a decision-making tool to assist the user in the process of
configuring a feature model improving the recommendation systems
and interactive configuration processes of the current state-of-the-art.

The paper is organized as follows. Section 2 motivates our ap-
proach by discussing related work and its limitations. Section 3 de-
scribes our approach to analyze feature models using Monte Carlo
simulations. In Section 4, we apply our approach to the jHipster SPL.
Finally, Section 5 concludes the paper and presents future work.
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2 RELATED WORK AND MOTIVATION
This section reviews related work about product configuration of fea-
ture models and evaluation of configurations. We also expose its lim-
itations and compare it with our approach.

2.1 Product configuration of feature models
Product configuration is a decision-making process involving se-
lecting a valid combination of features from a feature model [37].
This process takes place during the application engineering phase
of an SPL where the stakeholder (the application engineer) elicits
the product’s requirements of a particular application and derives
a concrete product satisfying those requirements [36]. There exist
many mechanisms to support the product configuration of large and
complex SPLs by means of recommender systems [29, 41], inter-
active processes [5], automated propagation strategies [2, 46], opti-
mization of quality requirements [15, 22, 26], or visualization tech-
niques [32, 36]. These systems present a collection of heuristics to
prioritize choices and recommend candidate features to be config-
ured [29]. They guide the users through the product configuration
using decision models [5], proposing a feature ranking approach to
support decision makers [4, 41, 42], predicting the configuration lik-
ability based on users’ votes [28] or questionaries [12], or ordering
the selection of the features [32, 36, 37].

Limitations. Automated configuration systems like those based
on propagation strategies [29, 46] or search-based optimization tech-
niques [15, 26] do not propose any mechanism to guide the users
choosing among the candidate features. Also, most of the recom-
mender systems that provide user assistance can be overwhelming to
users due to the amount and complexity of options presented by the
configurator [12, 28]. Moreover, interactive assistants [5] are con-
stantly asking the user to choose between two competing features,
even when the user is not interested in a particular decision. Finally,
without the user’s input, those algorithms usually make poor deci-
sions [5] because, they usually rely on historical data from previous
users’ configurations to make decisions [28].

Our approach. We propose to split the whole configuration space
into step-wise decisions driven by the variation points of the feature
model that require to make a choice (i.e., select a variant). So that,
the user can focus on a particular and concise decision at a spe-
cific time. However, variation points of the applications usually have
dependencies between them, so the selection of a variant can affect
others variation points. To infer the influence of each feature selec-
tion and assist the user when making a decision, we have to evaluate
the influence of each feature selection in the configuration proper-
ties of interest such as performance, energy efficiency, or defects and
faults present in the configurations.

2.2 Evaluation of configurations
Evaluating all configurations to study the influence of each feature
in the configuration properties (e.g., performance) is not feasible for
large-scale feature models. Researchers often rely on configuration
sampling techniques [38] to obtain a sample of configurations, evalu-
ate them and make predictions of the whole configuration space [35].
Many sampling strategies have been proposed in the literature for
SPL configuration, most of them taking as input a feature model [45].
Schaefer et al. [45] review product sampling for SPL and provide a

classification of techniques. Most used sampling techniques include
random sampling [18, 30, 33] that aims to cover the configuration
space uniformly; solver-based sampling [17] that relies on SAT and
constraint solvers; feature coverage-based sampling [9, 10, 34] that
aims to optimize the sample with regards to a coverage criterion, as
for example the pair-wise sampling to consider every interaction be-
tween two features; or distance-based sampling [24] that covers the
configuration space according to a given probability distribution and
a distance metric.

Limitations. On the one hand, sampling techniques present scal-
ability issues when dealing with large-scale SPLs [38]. They usually
run out of memory, take long execution times, or produce samples
which are too large to be analyzed. There even exist a specific chal-
lenge to cope with those limitations [38]. On the other hand, ana-
lyzing and making decisions from a sample of configurations that
considers the whole configuration space is challenging [35]. For ex-
ample, from the analysis of a particular complete configuration ran-
domly obtained, it is difficult to comprehend a priori how each fea-
ture variant influence the configuration properties. Moreover, pair-
wise sampling [34] consider every two feature interactions in the
feature model, but not all interactions are of user’s interest when con-
figuring a product.

Our approach. We propose to use Monte Carlo simulations [27]
to approximate the influence of each feature variant in the configura-
tion properties (e.g., performance) evaluating as few configurations
as possible. Monte Carlo simulations [27] is a randomness model
used to predict the probability of different outcomes in a process that
cannot easily be analyzed because of the intervention of complex
inter-related variables. The basis of Monte Carlo simulations involve
constantly repeating an experiment many times (e.g., a random sam-
pling in our case) to approximate the expected results (e.g., the con-
figuration properties) using the law of large numbers theorem [14]
and other methods of statistical inference [27]. As we split the con-
figuration space into individual variation points, a Monte Carlo sim-
ulation in our approach will be a uniform random sampling consid-
ering only the variants of a specific variation point. We use statistical
analysis of feature models [19] to determine the number of simula-
tions/evaluations to be performed for each feature variant. As results,
our approach provides an estimation of the influence of each feature
in the complete configuration to assist the user when configuring a
product.

Monte Carlo simulations have been used in many real-world prob-
lems with great success [27], including combinatorial optimiza-
tion [43], constraint satisfaction problems (CSP) [3] and boolean
satisfiability (SAT) [40], model checking [39], scheduling prob-
lems [31], and feature selection problems [7]. Typical uses of Monte
Carlo simulations are (i) sampling to gather information about a ran-
dom object by observing many realizations of it (e.g., simulation of a
system’s behavior [27]); (ii) estimation of certain numerical quanti-
ties (e.g., the expected throughput in an SPL [20]); and (iii) optimiza-
tion of complicated objective functions (e.g., to improve a search-
based technique [26]).

3 SIMULATION-BASED ANALYSIS OF
FEATURE MODELS

Figure 1 overviews our approach based on Monte Carlo simulations
to analyze the influence of each feature selection when configuring a
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Figure 1: Overview of our step-wise decisions analysis of feature models based on Monte Carlo simulations and driven by the variation points.

feature model. Our approach is divided in three steps detailed in the
following subsections:

1. Identification of variation points and variants. To overcome the
scalability issues [38] discussed in the previous section, we split
the whole configuration space into step-wise decisions driven by
the variation points of the feature model that require to make a
choice (i.e., select a variant). So that, the user can focus on a par-
ticular and concise decision (i.e., a variation point) at a specific
time. Therefore, the first step in our approach consists in identi-
fying the variation points, their variants, and the possible variant
combinations given by the variability type of the variation point
(Section 3.1).

2. Statistical analysis of variation points. The second step of our
approach is characterizing the complexity of every decision that
the user needs to face. To do that, we rely on the statistical analy-
sis [19] of the feature model, and specifically on the product dis-
tribution of each variation point. The product distribution provides
us an idea about the complexity of each decision (variation point)
in terms of the number of products or configurations in which that
variation point, and each of its variant respectively, are involved
(Section 3.2).

3. Monte Carlo simulations. The statistical analysis is useful to de-
termine the number of Monte Carlo simulations to be performed in
the last step of our approach. It consists on taking a small size ran-
dom sampling of configurations for a specific variant of a given
variation point, and evaluating those configurations by measur-
ing the non-functional properties (e.g., performance, energy ef-
ficiency, faults, etc.). We then average the results and obtain an
approximation of the influence of the feature variant. We repeat
this process for each possible variant combination of the variation
point, so that the user can obtain an estimation about how each
feature variant affects its configuration (Section 3.3).

3.1 Variation points and variants

The first step in our approach consists in identifying (1) the vari-
ation points (i.e., the decisions), (2) its variants (i.e., the choices),
and also (3) the possible variant combinations of each variation point
(i.e., the allowed choice combinations according to the variability
type). Variation points are represented by those features that require
to make a decision in order to obtain a valid configuration of the
feature model. The variants of a variation point are represented by
direct sub-features (i.e., the possible choices), which may also repre-
sent other variation points. Finally, the possible variant combinations
of a variation point are the distinct choice combinations of the vari-
ants that are allowed to select in a configuration of the feature model,
and it depends on the variability type of the features as well as on the

Alternative (xor)

g1 g2 gn...

f

Variability type

variation
point

variants

Selection (or)

g1 g2 gn...

f
variation

point

variants

Optional

g1 g2 gn...

f
variation

point

variants

c

c

c1 cm...

c1

c

c2 cm...
m = n

c1

c

c2 cm...
m = n

c1

c

c2 cm...c1

c

c2 cm...

Mandatory

g1 g2 gn...

f
variation

point

variants
c1

c

c1

c

Variant combinations

c2

Authentication

HTTPSession OAuth2 Uaa JWT

Example

7 variant combinations:
{UserPass}, {Pin}, {DigCert}, {UserPass, 
Pin}, {UserPass, DigCert}, {Pin, DigCert}, 
{UserPass, Pin, DigCert}

SocialLogin

UserPass Pin DigCert

4 variant combinations:
{HTTPSession}, {OAuth2}, {Uaa}, {JWT}

DatabaseOptimization

Cache ElasticSearch

4 variant combinations:
{}, {Cache}, {ElasticSearch}, 
{Cache, ElasticSearch}

WebFramework

Authentication BackEnd Testing

1 variant combination:
{Authentication, BackEnd, Testing}

m = = 

m = = 

m = 1

Figure 2: Variations points, variants, and possible variant combina-
tions, according to the feature variability type.

dependencies between features. Figure 2 illustrates these concepts
for each variability type:

Mandatory features. For variation points whose variants are
mandatory features, there is only one variant combination which is
the result of selecting all the mandatory features. So, the user does
not have to make any decision as all mandatory features need to
be selected in any configuration where that variation point is se-
lected. For example, the WebFramework variation point requires
to select each of its variants Authentication, BackEnd, and
Testing, and thus, there is only one possible variant combina-
tion including the three variants (see third column in Figure 2).

Optional features. For variation points whose variants are optional
features, the user may choose to include or not include each
of the variant, leading to a total of

∑n
k=0

(
n
k

)
= 2n variant

combinations, where n is the number of variants (sub-features)
and k goes from 0 (none variant is selected) to n (all vari-
ants are selected).

(
n
k

)
is the binomial coefficient (read as “n

choose k”) indicating the ways to choose an unordered subset
of k variants from the n available options. For instance, for the
DatabaseOptimization variation point with 2 optional vari-
ants (Cache and ElasticSearch), the user has to decide be-
tween four possible combinations: (1) none of the variants is se-
lected, (2) only Cache is selected, (3), only ElasticSearch
is selected, and (4) both Cache and ElasticSearch are se-
lected. The variant combinations grows exponentially, for 5 vari-



ants there are 32 possible combinations, while for 7 variants there
are 128 combinations.
Variation points that contains both mandatory and optional vari-
ants can be seen as if they only contain optional variants because
the mandatory features will be always selected in every variant,
and the user only needs to take care of the optional features.

Alternative (xor) group features. Variation points represented by
an alternative-group feature requires to select only one of its n
variants. Thus, there are n possible variant combinations to be de-
cided by the user. For instance, the Authentication variation
point offers four variants: HTTPSession, OAuth2, Uaa, and
JWT; and only one of them is allowed to be selected in a valid
configuration, leading to four possible variant combinations.

Selection (or) group features. Variation points represented by an
or-group feature requires to select at least one of its variants and
at most n. Similarly to optional features (but requiring at least one
variant), there are

∑n
k=1

(
n
k

)
= 2n − 1 possible variant combi-

nations to be decided. For instance, the SocialLogin variation
point allows to select between three variants: UserPass, Pin,
or DigCert; and the user can select any of them, leading to a
total of 7 variant combinations (see third column in Figure 2).

Note that in the feature model literature, there exist models that
allow multiple decomposition type for features [8]. That is, a varia-
tion point may have more than one variability type — e.g., optional
and mandatory sub-features together with one or more xor or selec-
tion groups under the same feature. Czarnecki and Eisenecker [8]
describe a normalization strategy for such models by introducing ad-
ditional abstract features. This does not affect our approach, as it only
increases the number of variation points and simplifies the variant
combinations by mapping them to the explained cases in Figure 2.
Moreover, current existing tools for modeling and managing feature
models do not support complex decomposition types [23]. Note also
that, at this step, we have not considered the cross tree constraints that
may exist between variants of a variation point, which may reduce
the number of possible choices. Cross tree constraints are considered
in the following step where we analyze the valid configurations for
each decision.

3.2 Statistical analysis of variation points
For each variation point identified in the previous step, we calcu-
late the product distribution of its variant combinations. The product
distribution is defined by Heradio et al. [19] as the number of valid
products in the whole configuration space having a given number of
features. Thus, in this research we define the product distribution as
the number of valid products (or configurations) having the features
of a variant combination.

The product distribution provides us a characterization of the com-
plexity of the whole configuration space. It allows us to determine
the number of configurations containing a specific variation point, as
well as the number of configurations containing each of the variants
and variant combinations for a variation point. The product distri-
bution will depend on the cross tree constraints defined in the fea-
ture model. For a given variation point, all its variants will have the
same probability of being part of a configuration if there are not cross
tree constraints involving those variants. In other case, there will be
variants present in more configurations than others. To compute the
product distribution it is necessary either to enumerate all configura-
tions of the feature model, or to encode the feature model as a binary
decision diagram (BDD) [21]. The former is infeasible for large con-
figuration spaces. In contrast, using a BDD has been demonstrated

to scale for large feature models [21, 44]. Then, the product distribu-
tion can be computed by traversing the BDD and accounting for how
many configurations have the specified variant features [19].

In our approach, we use the product distribution to determine the
number of Monte Carlo simulations that will be performed for each
variant combination in order to evaluate as few as possible products.

3.3 Monte Carlo simulations

The basis of Monte Carlo simulations involve constantly repeating
an experiment many times to approximate the expected results [27]:
First, a Monte Carlo simulation takes the variable with uncertainty
and assigns it a random value. Then, the model is evaluated and a
result is provided. This process is repeated a number of times (simu-
lations) while assigning the variable in question with many different
values. Once all simulations have finished, the results are averaged
together to provide an estimation.

In our approach, a Monte Carlo simulation consists in a uniform
random sampling of configurations [18], where the variable with un-
certainty is the feature variant being analyzing, and the assignment of
a random value to that variable corresponds with the evaluation of a
sample of configurations containing that feature variant. The sample
of configurations are evaluated by measuring their properties (e.g.,
performance, memory consumption, number of defects,. . . ), and the
obtained results are averaged obtaining an estimation of the feature
expected influence. To simplify the implementation of this process,
we consider a Monte Carlo simulation as an individual configuration
randomly sampled and evaluated. Therefore, performing N simula-
tions corresponds with a random sampling of N configurations.

The number of simulations to be performed can be defined ac-
cording to several criteria such as a fixed number, a percentage of
configurations, or a computational budget (e.g., time or memory). In
this paper, we use the product distribution calculated in the statistical
analysis to determine the number of simulations. We specify a shared
percentage of configurations to be sampled for all variants, so that
the same ratio of configurations are evaluated for each variant. Then,
the number of simulations will depends on the number of configu-
rations containing a specific feature variant. Note that we can define
the variable (feature) of interested to be analyzed at any level: (1) at
the variation point level to analyze it independently of its variants, (2)
to the variant level to study the influence of each variant, and (3) to
the variant combinations to analyze the interaction between the dif-
ferent variants. The latter can be seen as a t-wise coverage sampling
considering only the variant features of a specific variation point.

Next section illustrates our approach with a real-world SPL.

4 APPLICABILITY OF OUR APPROACH

To show the applicability of our approach we use the JHipster Web
development stack [16]. The jHipster SPL (Figure 3) is a popular
code generator for web applications with 45 features which lead a
total of 26,256 configurations. We choose jHipster because its con-
figuration space has been exhaustively evaluated in [16] to find those
configurations that present errors or defects when they are deployed
(i.e., configurations that make the application fails). Therefore, we
can use it to compare and verify the results of the Monte Carlo simu-
lations. In this SPL, we focus on evaluating the configurations to find
whether they provoke an error or some other misbehavior when they
are deployed, but our approach can be used to evaluate any other con-
figuration property like performance or energy efficiency. Complete
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analysis results can be found online2.

Identifying variation points, variants, and variant combinations.
Following our approach, we first identify the variation points in the
jHipster feature model, as well as the variants of each variation point
and the possible variant combinations. Figure 3 presents the jHipster
feature model where we have identified 13 variation points (high-
lighted features). The variants of each variation points are their di-
rect sub-features. For instance, the Database variation point is a
xor-group feature with three alternative variants: SQL, Cassandra,
and MongoDB, being the SQL variant also a variation point itself. For
each variation point we explicitly show the number of variants and
the number of possible variant combinations. This gives us an idea
about the number of decisions and options the user needs to face
in order to configure a valid product. For example, to configure the
Database variation point the user needs to make, at least, one deci-
sion with three possible choices (SQL, Cassandra, MongoDB), but
if the SQL variant is selected the user needs to face, in addition, three
more decisions (and possibly more): the variants of the SQL variation
point, and the two mandatory variation points that require to select a
database variant to be used in Development and Production,
respectively. Left-hand side of Table 1 details these decisions that the
user needs to consider. For space reasons, we only show 5 illustrative
variation points of the jHipster feature model. The complete analysis
of all variation points can be found online.

Statistical analysis of variation points. Along with the variation
points, Table 1 shows the product distribution of each variant combi-
nation. That is, the number of configurations in the feature model
containing such variant features and the percentage of configura-
tions that it represents with regard the whole configuration space.
We can observe that for the Database variation point, there are
25,488 valid configurations with the SQL variant (that means 97.13%
of all configurations of the feature model) in contrast to 280 valid
configurations with the Cassandra variant (0.01%), and 472 with
MongoDB (0.02%). This evidences that applying a uniform random
sampling over the whole configuration space with lead to the major-
ity of the resulting configurations to have selected the SQL variant,
to the detriment of the other alternative variants (Cassandra or
MongoDB). Therefore analyzing those random configurations does
not provide enough insight about the influence of each variant in a
configuration. To avoid that, our approach considers the product dis-
tribution of each variant in order to calculate the number of Monte

2 https://github.com/diverso-lab/montecarlo analysis

Carlo simulations, and thus, obtain the configurations to be sampled
and evaluated.

Monte Carlo simulations. Middle of Table 1 summarizes the re-
sults of the Monte Carlo simulations with the number of configura-
tions sampled and evaluated for each variant combination, and the
median, mean, standard deviation, and percentage of defective con-
figurations found in the sample. In all cases, we set the number of
simulations to be performed as 1% of the configurations of each vari-
ant combination.

We can observe in Table 1 that for the Authentication vari-
ation point, the JWT variant (highlighted) is the less likely to lead to
a configuration with defects (19.64%), in contrast to the Uaa vari-
ant which is the most likely to achieve a defective configuration
(92.22%). So, the user will prefer to select the JWT variant when
configuring a product that does not provoke errors. Similarly, the
SQL variant for the Database variation point is the most safety
variant with 34.31% of defective configurations, being also the vari-
ant that appears in most configurations: 25,488 (97.13% of the whole
configuration space). In contrast, Cassandra and MongoDB ap-
pears in a few number of configurations: 280 (0.02%), and 472
(0.02%), respectively; but their configurations are more likely to
present defects (66.67% and 40% respectively). The SQL variant also
provides two optional features to be decided (ElasticSearch
and Hibernate2ndLvlCache) and two more xor-group varia-
tion points (Development and Production). In the former, the
solely selection of the ElasticSearch provides the combination
of variants that lead to less defective configurations (32.56%) ver-
sus the decision of selecting the Hibernate2ndLvlCache vari-
ant (36.47%), selecting both variants together (33.53%) or not select-
ing any variant at all (None with 38.37% defective configurations).
For Development and Production, MySQL and PostgreSQL
are the most desirable variants with similar probability of achieving
a configuration with defect. Figure 4 summarizes the influence of
each variant feature regarding configurations with defects for every
variation point identified in the jHipster SPL. A broader feature in-
dicates a major influence, that is, a higher probability of leading to a
configuration with defect.

With this information, we can provide a decision-making tool to
assist the user in the process of configuring a feature model or to
assist the developer when testing and maintaining the SPL (see Fig-
ure 5). The expected probabilities obtained with Monte Carlo sim-
ulations help the stakeholder to make decisions for each variation
point. On the one hand, the user (e.g., an application engineer) is
aware about the influence of each feature decision in the configura-



Table 1: Simulation-based analysis of the variation points in the jHipster product line.

Statistical analysis Monte Carlo simulations Real probability
Defective configurations

VP (type) Variant combination #Conf %Conf #Sim Med Mean Std %Conf Defective conf.

Authentication
(xor-group)

HHTPSession 7104 27.06% 72 17.0 16.5 3.7 23.61% 1586 (22.33%)
OAth2 3520 13.41% 36 12.5 13.3 3.4 34.72% 1397 (39.69%)
Uaa 4488 17.09% 45 41.5 40.8 2.7 92.22% 4114 (91.67%)
JWT 11144 42.44% 112 22.0 22.1 4.3 19.64% 2279 (20.45%)

Database
(xor-group)

SQL 25488 97.13% 255 87.5 89.2 9.7 34.31% 8992 (35.28%)
Cassandra 280 0.01% 3 2.0 2.0 0.8 66.67% 176 (62.86%)
MongoDB 472 0.02% 5 2.0 2.2 1.3 40.00% 200 (42.37%)

SQL
(optional)

None 4248 16.67% 43 16.5 16.3 2.7 38.37% 1607 (37.83%)
Hibernate2ndLvlCache 8496 33.33% 85 31.0 31.9 4.8 36.47% 3218 (37.88%)
ElasticSearch 4248 16.67% 43 14.0 14.4 2.8 32.56% 1390 (32.72%)
Hibernate2ndLvlCache, ElasticSearch 8496 33.33% 85 28.5 28.6 5.0 33.53% 2777 (32.69%)

Development
(xor-group)

H2 16992 66.67% 170 60.5 59.7 5.9 35.59% 5970 (35.13%)
PostgreSQLDev 2832 11.11% 29 6.0 5.9 2.2 20.69% 551 (19.46%)
MariaDBDev 2832 11.11% 29 19.0 19.5 2.0 65.52% 1913 (67.55%)
MySql 2832 11.11% 29 6.0 5.8 1.6 20.69% 558 (19.70%)

Production
(xor-group)

MySQL 8496 33.33% 85 15.0 15.7 4.0 17.65% 1660 (19.54%)
MariaDB 8496 33.33% 85 55.5 56.0 4.9 65.29% 5708 (67.18%)
PostgreSQL 8496 33.33% 85 16.5 16.7 3.0 19.41% 1624 (19.11%)

For each variation point (VP), we show the configuration distribution of its variants: number of configurations (#Conf) and its per-
centage (%Conf) wrt. the whole configuration space. For each variant, we perform a number of simulations (#Sim) corresponding
to a uniform random sampling with sample sizes of 1% wrt. the product distribution (number of configurations) of the variant.
We show the median, mean and standard deviation of defective configurations found in the simulations, as well as the percentage
(%Conf) using the median. To calculate the statistics we performed 30 executions. Finally, we show real total values of defective
configurations in the whole configuration space of the jHipster feature model to verify the results of the simulations.
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Figure 4: Influence of the variant features in each variation point in
the jHipster SPL considering configurations with defects.

tion properties (e.g., configurations with defects in this case), and can
use this knowledge to configure a product with a lower probability of
contain a defect. On the other hand, the developer of the SPL can eas-
ily identify the problematic features and act accordingly by changing
their implementation or modify the feature model by updating the
feature relationships to avoid the defective configurations. Figure 5
shows the estimated probabilities for achieving configurations with
faults in the jHipster feature model, and a valid selection (shaded
features) for the most probable configuration without defects.

Verifying the results. To verify our results, we compare them with
the real probability of finding defective configurations (right-hand
side of Table 1). We calculate the real probability of finding defec-
tive configurations by considering all configurations for each varia-
tion point and variant combination. In order to be able to obtain the
real values, the whole configuration space needs to be evaluated as
Halin et al [16] did for the jHipster SPL. However, this is not fea-
sible for large-scale feature models, and in those cases our approach
can provide robust approximations to the real probabilities (check the
small standard deviation of the results in Table 1).

As observed in Table 1, only sampling and evaluating 1% of the
configurations we approximate to the real probability of finding de-
fective configurations with less than 1% of error in most cases. We
can improve the approximations of the Monte Carlo simulations by
increasing the number of simulations. Figure 6 illustrates how the
Monte Carlo simulations approximate to the real probability as the
number of simulations increases. Considering the complete jHipster
feature model which contains 9,376 defective configurations from a
total of 26,256 (35.71% of defective configurations), a sample of 1%
(260 configurations) leads to 95 defective configurations (36.54%)
with an error of 0.0083, while a sample of 20% (5,000 configura-
tions) lead to a total of 1,787 defective configurations (35.74%) with
an error of 0.0003. We can conclude that using samples of 1% for the
Monte Carlo simulations are enough to approximate the probability
of finding defective configurations in the jHipster feature model.

Threats to validity. There are two main threats, first, population
validity, as we only have tested it with the jHipster dataset. However,
we aim at demonstrating that this approach is feasible and are plan-
ning to perform a more exhaustive evaluation in future work. While
the external validity, in general, focuses on the generalization of the
results to other contexts (e.g., using other models), the ecological va-
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lidity focuses on possible errors in the experiment materials and tools
used. To mitigate this threat we have relied on well-known tools for
automated analysis of feature models like BDD solvers [18].

5 CONCLUSIONS AND FUTURE WORK

We have presented a step-wise decision analysis based on Monte
Carlo simulations and driven by the variation points of the feature
model. Our approach scales for large configuration spaces by split-
ting the analysis into the main decisions a user usually faces when
configuring a product. Monte Carlo simulations approximate the in-
fluence of each feature variant in the configuration properties evalu-
ating as few configurations as possible. In particular, we have applied
our approach in a real-world feature model like the jHipster SPL to
identify those features that have a higher probability of provoking a
defect in a configuration. Our solution complements existing sam-
pling techniques to analyze colossal configuration spaces improving
the understanding of the influence of each feature selection. It can
be part of a decision-making tool to assist the user in the process of
configuring a feature model, to assist the developer when testing and

maintaining an SPL, or to improve reasoner module of recommender
systems and interactive configuration processes.

As future work, we plan to quantitatively compare our approach
with existing sampling techniques that consider the whole configura-
tion space (e.g., feature coverage-based sampling), in order to eval-
uate how differ the features’ influence in the configuration proper-
ties between those techniques. We also plan to extend our evaluation
considering a broaden corpus of large-scale feature models and non-
functional properties of the configuration to be measured like perfor-
mance, memory footprint, or energy efficiency.
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