
Configuring Multiple Instances with Multi-Configuration
Alexander Felfernig1 and Andrei Popescu1 and Mathias Uta2 and Viet-Man Le1 and

Seda Polat-Erdeniz1 and Martin Stettinger1 and Müslüm Atas1 and Thi Ngoc Trang Tran1

Abstract. Configuration is a successful application area of Artifi-
cial Intelligence. In the majority of the cases, configuration systems
focus on configuring one solution (configuration) that satisfies the
preferences of a single user or a group of users. In this paper, we
introduce a new configuration approach – multi-configuration – that
focuses on scenarios where the outcome of a configuration process is
a set of configurations. Example applications thereof are the config-
uration of personalized exams for individual students, the configura-
tion of project teams, reviewer-to-paper assignment, and hotel room
assignments including individualized city trips for tourist groups. For
multi-configuration scenarios, we exemplify a constraint satisfaction
problem representation in the context of configuring exams. The pa-
per is concluded with a discussion of open issues for future work.

1 Introduction
Configuration is a special case of design activity where a product is
composed of a selection of predefined components that satisfies a set
of constraints [4, 11, 14]. Typical configurator applications are based
on the assumption that a product (or service) is configured for a sin-
gle user. Related example applications can be found in product do-
mains such as telecommunications [6], automotive [8], and software
systems [12]. In contrast to the configuration for an individual user,
group-based configuration [2] is based on the idea of configuring a
product or service for a group of users, i.e., the resulting configura-
tion must take into account as much as possible the individual pref-
erences of group members. An example of a group-based scenario is
the configuration and also recommendation of software release plans
where software requirements have to be arranged in such a way that
the preferences of individual stakeholders are taken into account as
much as possible [1, 3].

In this paper, we focus on a scenario where multiple instances of
the same product type are configured for one user or a group of users.
In this context, a set of constraints defines restrictions regarding the
possible combinations of individual instances, i.e., the configured
instances are not completely independent. An application scenario
for multi-configuration is the configuration of user-individual exams
which have to take into account a set of constraints, for example, the
share of complex questions per student must be below 20%. Follow-
ing this representation, we define multi-configuration as a specific
type of configuration task where multiple instances of the same type
are configured for a single user or a group of users.

There are various example scenarios which can profit from multi-
configuration. (1) When assigning presentation topics to students, the
goal could be to identify three different starting paper references per

1 Applied Software Engineering & AI, Graz University of Technology, email:
{firstname.lastname}@ist.tugraz.at

2 Siemens Energy AG, email: mathias.uta@siemens.com

student where, for example, each reference should be assigned to not
more than two students. (2) When planning room assignments for
larger user groups (e.g., for a soccer training camp), a configurator
could collect the preferences of individual group members and then
generate a room assignment that takes into account as much as possi-
ble the preferences of the individual group members. (3) When con-
figuring project teams, a configurator could take care of the optimal
configuration of individual teams while keeping in mind the aspect
of fairness, i.e., none of the team configurations should be ”subop-
timal”. (4) When designing an apartment/house complex, neighbor-
hood buildings must take into account rules such as the roof type
of all buildings should be the same or neighborhood buildings must
not reduce the amount of direct sunlight below a specific treshold.
Compared to the former ones, the latter scenario can be regarded as a
kind of industrial multi-configuration setting. Finally, the automated
generation of test cases [7], for example, in the context of regression
testing, can be regarded as a multi-configuration task.

2 Multi-Configuration

In single user and group-based configuration scenarios, one config-
uration is determined that supports the requirements of the user (or
a group of users). In multi-configuration scenarios, a set of config-
urations is determined for one or a group of users. The following
discussions are based on a constraint-based configuration knowledge
representation [15]. The following definition of a configuration task
(and solution) allows to represent collections of configurations (see
Definition 1 and Definition 2). A multi-configuration task can be de-
fined as a constraint satisfaction problem (CSP) [15].

Definition 1. A Multi-Configuration Task can be defined by a tu-
ple (V,D,REQ,C) where V =

⋃
{vij} is a set of finite do-

main variables (vij represents variable j of configuration instance
i), D =

⋃
{dom(vij)} is a set of corresponding domain definitions,

REQ =
⋃
{vij = valij} represents a set of user requirements, and

C = {c1, c2, .., cm} is a set of constraints that restrict the way in
which individual variable values can be combined with each other.

For simplicity, we assume that user requirements inREQ are rep-
resented by simple variable value assignments (vij = valij). How-
ever, if needed, this assumption can be replaced by the more general
case of allowing users to specify more complex constraints where
each of those constraints is regarded as an individual requirement.
Furthermore, we decided not to differentiate between different con-
straint types, for example, constraints referring to individual con-
figurations and constraints referring to a set of configurations. On
the basis of Definition 1, we can introduce the definition of a multi-
configuration (see Definition 2).

Definition 2. A multi-configuration for a multi-configuration task
(V,D,REQ,C) is a set of variable value assignments CONF =

Copyright 2021 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0)



⋃
{vij = valij} s.t. CONF ∪ C ∪REQ is consistent.
We now introduce an example multi-exam configuration scenario.3

3 Example Multi-Configuration Scenario
In multi-exam configuration, the overall goal is to determine an exam
instance for each examinee where a couple of constraints have to be
taken into account. The underlying idea is to provide variability mod-
els for the purpose of being able to generate examinee-individual ex-
ams and thus save time in exam preparation and also avoid cheating
due to exam diversity. Furthermore, this approach provides the possi-
bility of a deeper integration of examinees into exam-related decision
processes, i.e., students can be allowed to some extend to articulate
their preferences regarding an exam. Following Definition 1, we now
show how to represent the task of multi-exam configuration.

• V = {q11..qkl, q11.type..qkl.type, q11.level..qkl.level} where
qij is question j posed to examinee i, qij .type denotes the ques-
tion type (category), qij .level is the question complexity, k the
number of examinees, and l the number of questions / examinee.

• D = {dom(q11)..dom(qkl), dom(q11.type)..dom(qkl.type),
dom(q11.level)..dom(qkl.level)}, where dom(qij) = {1..p},
dom(qij .type) = {1..q}, and dom(qij .level) = {1..r} (p =
number of questions per examinee, q = number of question cate-
gories, and r = number of question complexity levels).

• REQ = {r1..ru} where rα is a requirement identifier and u the
number of requirements (defined by examinees and instructors).

• C = {c1..cv} where v is the number of constraints.

In the following, we introduce a couple of example constraints that
could be defined in the context of an exam configuration task.

Requirements. REQ includes a set of examinee- (and instructor-)
individual constraints – in the context of our example, REQ is a set
of examinee-specific constraints that have to be taken into account.
The motivation behind this is that we want to make exam generation
more flexible in terms of being able to include the preferences of
examinees as well as the preferences of instructors.

First, we assume that examinee a prefers to have included ≤ 30%
of questions related to the categories {α, β} (see Formula 1). This
way, we want to bring more flexibility into exam configuration, how-
ever, students will not always get what they want, i.e., their prefer-
ences have to be consistent with constraints defined by instructors.
In many scenarios, students will not be allowed to define such con-
straints, i.e., only instructor requirements are relevant.

r1 :
|{qaj ∈ V : qaj .type ∈ {α, β}}|

|{qaj ∈ V }|
≤ 0.3 (1)

Furthermore, we assume that examinee a prefers not to have in-
cluded questions related to question category γ (see Formula 2).

r2 : |{qaj ∈ V : qaj .type = γ}| = 0 (2)

Question-level Constraints. These constraints define properties re-
lated to the inclusion of specific questions. For example, we assume
that a specific question v must not be included in more than x exams
(see Formula 3), i.e., x = 0 would exclude v from any exam.

c1 : |{qij ∈ V : qij = v}| ≤ x (3)

Furthermore, we assume that each exam configuration includes
question u or question v (see Formula 4).

3 For exam configuration, we replace the term user with examinee/instructor.

c2 :

k(#examinees)∧
i=1

l(#questions)∨
j=1

(qij = u ∨ qij = v) (4)

We also assume that the minimum question complexity level is π.

c3 : ∀qij ∈ V : qij .level ≥ π (5)

Global Constraints. We require that no question of type δ must be
included in the exam (see Formula 6). A simple reason for formu-
lating such constraints could be that the related topic has not been
discussed in detail within the scope of the course.

c4 : |{qij ∈ V : qij .type = δ}| = 0 (6)

We want to assure that at least three questions of type γ must be
included in each exam u (see Formula 7).

c5 : ∀u ∈ {1..k} : |{quj ∈ V : quj .type = γ}| ≥ 3 (7)

Furthermore, the overall estimated duration of each exam must be
∆ minutes (constraint formulated for examinee a) (see Formula 8).

c6 : Σ
l(#questions)
j=1 (qaj .duration) = ∆ (8)

We also want to assure that the share of complex questions
(level = φ) per examinee must be between 16% and 18% (example
formulated for examinee a) (see Formula 9).

c7 : 0.16 ≤ |{qaj ∈ V : qaj .level = φ}|
|{qaj ∈ V }|

≤ 0.18 (9)

Further Constraints. In addition to the mentioned examples, there
are many further relevant constraints, for example, each examinee
should be asked a specific question only once and the question over-
lap between each pair of students should be more than 90%.

4 Conclusions and Future Work
We have introduced the notion of multi-configuration which is a
specific approach focusing on scenarios where collections of con-
figurations are designed for user groups. In order to better under-
stand the discussed concepts, we have introduced a working exam-
ple from the domain of exam configuration. Future work will in-
clude the analysis of the applicability of the presented concepts in
the exam configuration domain (e.g., we will identify a complete set
of typically relevant domain constraints) as well as in further multi-
configuration scenarios. Furthermore, we will analyze new user in-
terfaces and interaction requirements triggered by the application
of multi-configuration concepts. The knowledge representation con-
cepts discussed within the context of our exam configuration scenario
are currently integrated into the KNOWLEDGECHECKR elearning en-
vironment (www.knowledgecheckr.com) [13]. Our major motivation
is to increase the flexibility of exam generation but also to coun-
teract cheating in online exams through an increased exam variabil-
ity. In cases where individual user requirements induce an inconsis-
tency with the exam model constraints, we propose the application of
model-based diagnosis concepts [5, 9, 10] which can help to deter-
mine minimal conflict resolutions that also take into account aspects
such as fairness and representativeness of the remaining questions.

ACKNOWLEDGEMENTS
The presented work has been conducted in the PARXCEL project
funded by the Austrian Research Promotion Agency (880657).



REFERENCES
[1] A. Felfernig, ‘AI Techniques for Software Requirements Prioritiza-

tion’, in Artificial Intelligence Methods for Software Engineering, eds.,
M. Kalech, R: Abreu, and M. Last, 29–47, World Scientific, (2021).

[2] A. Felfernig, M. Atas, T. Tran, and M. Stettinger, ‘Towards group-based
configuration’, in ConfWS’16, pp. 69–72, Toulouse, France, (2016).

[3] A. Felfernig, L. Boratto, M. Stettinger, and M. Tkalcic, Group Recom-
mender Systems, Springer, 2018.

[4] A. Felfernig, L. Hotz, C. Bagley, and J. Tiihonen, Knowledge-based
Configuration - From Research to Business Cases, Elsevier, 2014.

[5] A. Felfernig, M. Schubert, and C. Zehentner, ‘An Efficient Diagnosis
Algorithm for Inconsistent Constraint Sets’, AI for Engineering Design,
Analysis, and Manufacturing, 26(1), 53–62, (2012).

[6] G. Fleischanderl, G. Friedrich, A. Haselboeck, H. Schreiner, and
M. Stumptner, ‘Configuring large systems using generative constraint
satisfaction’, IEEE Intelligent Systems, 13(4), 59–68, (1998).

[7] A. Gotlieb, B. Botella, and M. Rueher, ‘Automatic Test Data Genera-
tion Using Constraint Solving Techniques’, ACM SIGSOFT Software
Engineering Notes, 23(2), 53–62, (1998).

[8] J. Landahl, D. Bergsjö, and H. Johannesson, ‘Future Alternatives for
Automotive Configuration Management’, Procedia Computer Science,
28, 103–110, (2014).

[9] V.M. Le, A. Felfernig, M. Uta, D. Benavides, J. Galindo, and T.N.T.
Tran, ‘DIRECTDEBUG: Automated Testing and Debugging of Feature
Models’, in 43rd Intl. Conference on Software Engineering (ICSE’21),
pp. 81–85, Virtual, (2021). IEEE.

[10] R. Reiter, ‘A theory of diagnosis from first principles’, Artificial Intel-
ligence, 32(1), 57–95, (1987).

[11] D. Sabin and R. Weigel, ‘Product Configuration Frameworks - A Sur-
vey’, IEEE Intelligent Systems, 13(4), 42–49, (1998).

[12] J. Sincero and W. Schröder-Preikschat, ‘The Linux Kernel Configura-
tor as a Feature Modeling Tool’, in Workshop on Analyses of Software
Product Lines, pp. 257–260, Limerick, Ireland, (2008). ASPL.

[13] M. Stettinger, T.N.T. Tran, I. Pribik, G. Leitner, A. Felfernig, R. Samer,
M. Atas, and M. Wundara, ‘KNOWLEDGECHECKR: Intelligent
Techniques for Counteracting Forgetting’, in 24th European Confer-
ence on Artificial Intelligence (ECAI 2020), eds., G. DeGiacomo,
A. Catala, B. Dilkina, M. Milano, S. Barro, A. Bugarin, and J. Lang,
volume 325 of Frontiers in Artificial Intelligence and Applications, pp.
3034–3039, Santiago de Compostela, Spain, (2020). IOS Press.

[14] M. Stumptner, ‘An overview of knowledge-based configuration’, AI
Communications, 10(2), 111–125, (1997).

[15] E. Tsang, Foundations of Constraint Satisfaction, Academic Press,
1993.


