
A Knowledge-based Configurator for Building
MAGIC: THE GATHERING Card Decks

Robert Tieber1 and Alexander Felfernig2

Abstract. The card game MAGIC: THE GATHERING is a trading
card game (TCG) where players are required to build their own deck
of cards to play a game. This is a time-consuming and skill-intensive
task. In this paper, we demonstrate how a deck building task can be
described as a configuration task. Furthermore, we show how this
task can be supported in terms of a configurator application. We
sketch related configuration knowledge representations, the user in-
terface of our configurator, and point out issues for future work.

1 Introduction
MAGIC: THE GATHERING is one of the earliest trading card games
(TCGs). In a TCG, players design a deck comprised of cards chosen
before the game starts. For the entire game, the players are allowed
to use only the chosen deck. Due to this process, game winning not
only depends on the player’s skill while playing the game, but also on
their ability to construct a well-balanced and tuned deck of cards. The
game can be played in a competitive fashion – in such situations, the
number of decks is limited and related decks are considered as ”best
of breed”. In MAGIC: THE GATHERING terms, this kind of setting is
denoted as Meta. In such competitive environments, players can just
choose predefined decks that have proven to work well.

MAGIC: THE GATHERING can also be played casually, i.e., not
in a competitive fashion. In such settings, the overall goal is still to
win the game but, however, there is also a strong interest in being
creative, i.e., players want to design decks they would have the most
fun playing with which are not necessarily the strongest or most ef-
fective ones. In this paper, we focus on the mentioned casual settings
of MAGIC: THE GATHERING which allow a larger variety of decks
to be used. Specifically, we introduce the so-called Commander for-
mat which includes two specific rules: (1) only a single copy of each
card is allowed to be part of a deck, and (2) a commander has to be
chosen which is responsible for setting a theme for a deck [6].

Playing MAGIC. Discussing the rules of MAGIC: THE GATHER-
ING in detail is beyond the scope of this paper. In the following,
we summarize major aspects of the game which are needed to un-
derstand our discussions of the deck building problem. A game can
be played by 2..4 players. Each player starts with a life total and a
hand of cards. Once a player’s life total reaches zero, he/she looses
the game. The last player who remains in the game is the winner.
MAGIC: THE GATHERING cards represent resources (=Lands gen-
erating Mana), creature cards which can be used to attack and de-
fend, and effects that can be used to influence any part of the game
(both called Spells). Creature cards (creatures) and effect cards (ef-
fects) are in the need of resources. Consequently, any reasonable (op-

1 TU Graz, Austria, Email: robert.tieber@student.tugraz.at
2 TU Graz, Austria, Email: alexander.felfernig@tugraz.at

erable) deck should include both, cards in the need of resources and
corresponding cards representing resources. Effects are either of type
one-time or permanent, i.e., cards that remain on the playfield (i.e.,
battlefield). Cards with permanent effects can change the rules of the
game (e.g., creatures you control have a power of +2 or each player
may only play a single spell each turn).

Building a Deck. Unlike traditional board games where the entire
game is delivered as a single package, cards for trading card games
(TCGs) such as MAGIC: THE GATHERING are purchased through
card packs containing a random selection of cards. Interestingly, the
prices of such cards on second-hand markets can range from 0.01e
to thousands of Euros making it important to also take into account
available financial resources when building a casual deck. In order
to design an effective deck, a player should identify a good mix of
cards that fulfil different roles, for example, cards that allow a player
to draw more cards (= card advantage), cards that interfere with the
plan of opponents, and also cards that enable a player to prevent op-
ponent interferences. There are over 25k unique cards available in
the Commander format where many cards can fulfill more than one
role. For this reason, card selection in the context of deck construc-
tion (100 cards are required) is a challenging and effortful process.

Related Work. Most frequently, decks are either designed in a com-
plete manual fashion or with the support of a deck building software
that usually allows a user to create categories and then search for in-
dividual cards that fit the selected categories. In existing solutions,
additional information is displayed which summarizes major proper-
ties of the current card selection, for example, in terms of ratios be-
tween different card types and thus already helps to increase the effi-
ciency of deck design processes. In contrast to existing deck building
software solutions, some research prototypes support the automated
generation of decks where generated decks can be evaluated in terms
of the performance when playing against other automatically gen-
erated decks [1, 10]. In order to be more competitive in real-world
scenarios, for example, as automated playing agents, these systems
are in the need of further developments specifically related to game
playing strategies.

The approach presented in this paper focuses on combining the
advantages of the two mentioned approaches of deck construction.
(1) decks are not configured in an automated fashion but rather inter-
actively, (2) the decks built on the basis of the system presented in
this paper can be used in regular MAGIC: THE GATHERING games
with human players, (3) configuration technologies [2, 8] provide in-
telligent assistance for users in the deck design process.

The remainder of this paper is organized as follows. In Section
2, we discuss the basic knowledge representation used for represent-
ing a deck configuration problem and corresponding problem solving
aspects. Thereafter, in Section 3, we provide an overview of the user

Copyright 2021 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0)

Figure 1. A feature model representing basic aspects of MAGIC: THE GATHERING.

interface of our configuration environment. The paper is concluded
with an outlook of future work in Section 4.

2 Configuration Knowledge Representation
Deck Configuration Knowledge Base. A configuration knowledge
base in our deck configuration environment is represented in the form
of a Constraint Satisfaction Problem (CSP) [9]. Basic features as de-
picted in Figure 1 are represented as finite domain variables, where
each feature is represented by the domain {true, false} [3]. The
solver used as a basis for our implementation is the Google SAT
SOLVER.3

As shown in Figure 1, there are four major aspects a user has to
take into account when defining a deck for MAGIC: THE GATHER-
ING. First, a game format has to be selected. For simplicity, we will
focus on the Commander format within the scope of this paper. In
contrast to the other game formats, the Commander format needs a
single card defined as The Commander. Furthermore, when selecting
a certain card as Commander, a Partner (i.e., a second commander)
can be included. For some cards defined as commander, only a spe-
cific second commander is allowed (this aspect is not represented in
the feature model depicted in Figure 1). The total number of cards
allowed to be part of a single deck is 100 – if commanders and part-
ners are included, the number of included commanders and partners
reduces the total number of allowed cards correspondingly. An aspect
not taken into account in the feature model (Figure 1) is the follow-
ing: cards of a deck have so-called color identities, where included
cards are allowed to have only color identities specified as legal by
the commander (often, 3-color commanders are used).

In addition to the constraints already introduced, the following
constraints are part of our configuration knowledge base used to sup-
port the configuration of MAGIC: THE GATHERING decks. (1) bud-
get constraints are used to define restrictions regarding the overall
price of the cards part of a deck. In this context, each card has an
associated price – a resource constraint then helps to limit the over-
all price (sum of the individual card prices) to the maximum price
specified by the user – see, for example, Formula 1.

Σc∈Cards c.price ≤ maxprice (1)

If a card is already in a user’s card collection, the price of deck in-
clusion is 0. In configuration terms, this is a typical example of a re-
source constraint. In this context, Cards represent the cards of a con-
figuration. (2) in a similar fashion, type constraints help to specify the
amount of cards of a specific type to be part of a deck configuration.
An example of such a constraint is the following: exactly one card
in the final configuration should have the property isLand = true.
The corresponding logical representation is shown in Formula 2.
3 developers.google.com/optimization.

|{c ∈ Cards : c.isLand = true}| = 1 (2)

Each such constraint is defined by a lower and an upper bound
for card inclusion. Inclusion criteria can also be represented by more
complex logical expressions – see Formula 3 (a configuration must
not include more than two creature cards costing ≥ 5 mana).

0 ≤ |{c ∈ Cards : c.type = creature ∧ c.mana ≥ 5}| ≤ 2 (3)

There are some cards that are always good to have. Examples
thereof are draw cards, cards to provide resources, and cards sup-
porting the interaction with opponents. In future versions of our pro-
totype implementation, we will include such constraints as recom-
mendations to the user in order to avoid the re-invention of the wheel.
Such constraints serve as a useful starting point of a deck configura-
tion process and also help to reduce the overall effort of deck design.

Configuration Selection. Although the discussed constraints con-
tribute to a significant reduction of the set of possible configurations,
we are still confronted with a large amount of valid configurations
out of which we should select a relevant one for the user. In our
current implementation, configuration ranking is based on a quality
score that is available for each card (derived from publicly available
datasets4), where a maximum of 1 ≤ n ≤ 5 candidate configura-
tions (of equal quality) is generated by the solver on the basis of a
predefined set of user requirements (constraints). In the current im-
plementation, configuration selection is based on the idea of adding
up the individual quality scores of the cards selected as a part of a
configuration. The quality score per card is represented by the per-
centage of decks this card appears in as a Commander. In addition,
users of our configurator application are allowed the adapt the quality
score of individual cards manually.

Handling Unsolvable Requirements. Allowing users to specify
constraints such as the discussed ones can lead to situations where
these constraints become inconsistent. For example, if a user requires
the inclusion of specific higher-priced cards but defines a strict over-
all price limit that does not allow the inclusion of these cards, no
solution can be identified by the underlying constraint solver. In such
a situation, we are in the need of identifying alternatives that help to
support as many requirements as possible. For example, a card ful-
filling two roles at a cost of 30e could be replaced by two cards each
at cost of 1e supporting the same set of roles. On the solver level, we
support this feature by encoding a corresponding relaxation mecha-
nism a.o. for resource and type constraints (see Formula 4).

constrainti∧costsi = si∨¬constrainti∧costsi = si+ki (4)

4 edhrec.com.

In order to support such constraint relaxations on the solver level,
we interpret the constraint relaxation task as a minimization problem
with the overall goal of minimizing additional costs ki (Formula 5).

Min← Σci∈Constraints costs(ci) (5)

This is a specific approach for determining a so-called Maximum
Satisfiable Subset (MSS) which can be regarded as the complement
of a Minimal Correction Subset (MSS) which is often also denoted
as diagnosis [4, 7]. We are also able to take into account the qual-
ity of configurations in terms of different optimization functions (an
example thereof is depicted in Formula 6).

Max← Σcai∈Cards quality(cai)

Σci∈Constraints costs(ci)
(6)

3 Prototype Implementation
The deck configurator presented in this paper supports the creation
of decks in two modes. First, the easy deck creator supports the cre-
ation of decks based on existing themes (from web sources) where
the major task of a user is to find a relevant theme and define the
preferred adaptations. Second, the complex deck editor supports the
creation of new decks from scratch, i.e., users can create completely
new decks based on their own ideas.

When using the easy deck creator mode, users select one theme
from a set of predefined themes. Thereafter, the user receives a rec-
ommendation of preconfigured card categories with corresponding
set of suggested cardinality limits. These limits can be adapted by
the user. Finally, the user is asked the define the upper limit regarding
the overall budget. On the basis of this information, a corresponding
deck can be configured. A configured deck can thereafter be viewed
and adapted with the complex deck editor. With this editor, users are
allowed to specify more complex constraints regarding the inclusion
and exclusion of specific card types (see, e.g., Formulae 2 and 3). An
example of the graphical representation of a user-defined constraint
of Formula 3 is depicted in Figure 2.

Figure 2. Definition of the card criteria between 2 and 4 creatures with
mana cost >= 5 (see Formula 3).

Generated Deck. As soon as the system can generate a deck that
satisfies the defined constraints, the configurator determines a com-
plete deck which is shown via graphical user interface – a corre-
sponding example is depicted in Figure 3. In some cases, there are
multiple configurations of equivalent quality (score). In this case, the
result presentation shows the differences between the configurations
and a user can select one out of the presented alternatives.

4 Conclusions and Future Work
In this paper, we have presented a constraint-based configurator im-
plemented for the MAGIC: THE GATHERING game. The approach

Figure 3. For the deck configuration in the left column, two alternatives
are proposed: Alternative 1 proposes the additional inclusion of Golgari Rot
Farm and the exclusion of Gruul Turf. Furthermore, Alternative 2 proposes
the inclusion of Wood Elves and the exclusion of Into the North.

has already been empirically tested by experienced users and shows
potential to support a more efficient deck design process. Our pro-
totype implementation can help users to decrease the time needed to
complete deck design processes. This can be achieved especially in
the context of using the easy deck creator mode with the downside
of low design flexibility and a resulting potential low deck quality. In
contrast, the complex deck creator allows for higher flexibility with
the downside of higher design efforts.

Major issues for future work are the following. First, we will de-
velop and compare different alternative optimization functions with
regard to their ability to generate user-relevant configurations. Sec-
ond, for the purpose of predicting the preferences of users with regard
to individual cards, we will analyze to which extent the concepts of
model-based collaborative filtering (specifically matrix factorization
[5]) can be applied for the prediction of user preferences. Third, the
current version of our configurator prototype focuses on a specific
game format. For future versions, we plan an extension to further
game formats. Finally, we expect significant improvements in the
user interface (UI) since the current version is not designed to be
used by unexperienced users.

REFERENCES
[1] S. Bjørke and K. Fludal, Deckbuilding in Magic: The Gathering Using

a Genetic Algorithm, Master’s thesis, NTNU, 2017.
[2] A. Felfernig, L. Hotz, C. Bagley, and J. Tiihonen, Knowledge-based

Configuration - From Research to Business Cases, Elsevier, 2014.
[3] A. Felfernig, V.M. Le, A. Popescu, M. Uta, T.N.T. Tran, and M. Atas,

‘An Overview of Recommender Systems and Machine Learning in Fea-
ture Modeling and Configuration’, in 15th Intl. Working Conference on
Variability Modelling of Software-Intensive Systems (VaMoS’21), pp.
1–8, Virtual, Krems, Austria, (2021). ACM.

[4] A. Felfernig, M. Schubert, and C. Zehentner, ‘An Efficient Diagnosis
Algorithm for Inconsistent Constraint Sets’, AIEDAM, 26(1), 53–62,
(2012).

[5] Y. Koren, R. Bell, and C. Volinsky, ‘Matrix Factorization Techniques
for Recommender Systems’, IEEE Computer, 42, 30–37, (2009).

[6] S. Larabee, T. Elliott, G. Duggan, and S. Menery. Commander Rules –
Official Commander Website, 2021.

[7] R. Reiter, ‘A Theory of Diagnosis from First Principles’, Artif. Intell.,
32(1), 57–95, (1987).

[8] M. Stumptner, ‘An overview of knowledge-based configuration’, AI
Communications, 10(2), 111–125, (1997).

[9] E. Tsang, Foundations of Constraint Satisfaction, Academic Press,
London, 1993.

[10] C. Ward and P. Cowling, ‘Monte Carlo Search Applied to Card Selec-
tion in Magic: The Gathering’, in 2009 IEEE Symposium on Computa-
tional Intelligence and Games, pp. 9–16. IEEE, (2009).

	Introduction
	Configuration Knowledge Representation
	Prototype Implementation
	Conclusions and Future Work

