
Counteracting Exam Cheating by Leveraging
Configuration and Recommendation Techniques

Viet-Man Le and Thi Ngoc Trang Tran and Alexander Felfernig and Müslüm Atas and Lisa Weißl
and Andrei Popescu and Martin Stettinger and Seda Polat-Erdeniz 1

Abstract. Exam cheating indicates behaviors of students to fraud-
ulently achieve their desired grades through various forms, such as
item harvesting, item pre-knowledge, item memorizing, collusion
and answer copying, and answer checking from available sources.
Such dishonesty behaviors become manifest in e-learning scenarios,
where exams are often conducted via online assessment platforms
without the physical supervision of proctors. In this paper, we pro-
pose an approach to counteract exam cheating based on configura-
tion and recommendation techniques. Our approach allows exam-
iners to configure questions and exams using feature models. We
support the configuration of parameterized questions, which helps to
generate a large number of exam instances. Besides, a content-based
recommendation mechanism is integrated into the exam configura-
tion process, which helps examiners to select questions that have not
appeared in the latest exams. We also propose mock-ups to show how
question and exam generation processes can be proceeded in a real
exam generator system.

1 INTRODUCTION
Cheating refers to a tendency of students to fraudulently achieve their
desired grades rather than investing a sufficient amount of time and
effort in learning and improving their knowledge [42]. In exam sce-
narios, cheating behaviors can be shown in different forms, such as
item harvesting, item pre-knowledge, item memorizing, collusion and
answer copying, and answer checking [11, 13, 34, 41]. Item harvest-
ing occurs when a concerted attempt is made to collect exam ques-
tions. Students can do this by memorizing exam content, recording
it, or transcribing it. Item pre-knowledge occurs when students obtain
knowledge of the exam questions and/or answers (e.g., through the
Internet or other multi-media sources) prior to the exam. Item mem-
orizing occurs when a student answers the questions several times to
reach an estimated level ability close to his/her true ability. He/she
is assumed to use his/her time only to memorize a fixed number of
questions. Collusion or answer copying denotes a scenario where two
or more students work together to complete an exam. This type of
cheating is triggered when students sit close to each other and try
to copy answers from each other during the exam. The final exam
cheating type is answer checking, in which students try to check the
answers to the questions from available resources.

In e-learning scenarios where learning and testing activities are
done primarily via web-based platforms [5, 10], the mentioned exam
cheating behaviors have become even more intensively, which is,

1 Graz University of Technology, Graz, Austria. Emails: {vietman.le, ttrang,
alexander.felfernig, muesluem.atas, andrei.popescu, martin.stettinger, spo-
later}@ist.tugraz.at, and lisa.weissl@student.tugraz.at

therefore, more challenging to be detected and counteracted com-
pared to traditional learning formats [37]. In this context, looking for
effective approaches to avoid exam cheating behaviors has become
one of the most critical challenges of education institutions. This ac-
tion is crucial to assure the integrity of student work and to increase
trust in online education systems [10].

While extensive research has been conducted to detect cheating
reasons as well as factors affecting students’ exam cheating behav-
iors [9, 11, 15, 16, 30], there exist only a few studies that pro-
pose solutions for counteracting or avoiding such dishonesty behav-
iors. Most of these studies target at preventing exam cheating in on-
line exams (i.e., exams conducted via Internet-based platforms) [37].
Alessio et al. [2] and Dendir and Maxwell [14] proposed approaches
to prevent exam cheating using a proctoring software that activates
the camera on a computer and then records the exam of students. This
software allows examiners to observe the behaviors of students and
thereby detect their cheating behaviors. It also helps to prevent stu-
dents from talking to each other or looking up relevant information
in books or other sources. Although this approach helps to mitigate
academic dishonesty behaviors in online exams, it could raise privacy
issues. Another problem is related to the efficiency of the approach,
especially in the context of big courses where exams are conducted
with hundreds of students at the same time. Detecting exam cheating
of a large number of students by just analyzing students’ recorded
videos might be a sub-optimal solution since it would consume too
much effort of examiners or proctors.

A more efficient approach is to randomize exam questions and
answers, which has been widely applied in Learning Management
Systems such as WebCT and Blackboard2. This approach allows ex-
aminers to prepare randomized questions in such a way that no two
exams are alike [31]. Besides, in order to increase the probability of
generating different exam instances, this approach requires a large
question bank that consists of a large number of questions and an-
swers [29]. Additionally, paraphrasing techniques might be needed
to reformulate questions that have been selected from the question
bank. Golden and Kohlbeck [22] show that paraphrasing questions
selected from a question bank is, on the one hand, essential for re-
ducing the benefits of students from cheating in online exams. On
the other hand, this helps to increase the performance of students in
completing the exam.

Inspired by the ideas discussed by Mccabe [29] and Golden and
Kohlbeck [22], we propose in this paper an approach to counter-
act exam cheating behaviors by generating a large question bank, in
which questions and corresponding answers are generated automat-
ically. Our approach supports the generation of different instances
2 https://www.blackboard.com

Copyright 2021 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0)

of a question topic. For instance, we could create two instances for
a question topic regarding “minimal conflict sets” using equivalent
terms. The two instances could be (1) “What is a minimal conflict
set?” and (2) “What is a minimal unsatisfiable subset?”.

In order to support this, our approach enables question configura-
tion mechanisms using feature models - one of the core technologies
of configuration systems [24]. In the context of exams and questions
modeling, where examiners are not always good at technology, fea-
ture models might be an appropriate choice. The reason is that the
representation of feature models is straightforward and does not re-
quire any special expertise of the examiner to create them [6]. Fur-
thermore, a feature model utilizes a tree-based representation that
provides a good overview of knowledge structure as well as facil-
itates feature model management [6, 20, 27]. These are the advan-
tages of feature models, which motivate us to leverage them in our
approach to exam and question configuration.

Besides, we also encourage the configuration of parameterized
questions, in which each question is configured using relationships
or constraints defined in the corresponding feature model. With spe-
cific question settings, all instances are generated. Each instance rep-
resents a complete question with a question statement, correct an-
swers, and incorrect answers (see also Figure 3). This way, our ap-
proach helps to significantly increase the solution space of questions
and, therefore, increase the question bank’s size. After the question
generation phase, an exam configuration process is activated, which
allows an examiner to configure a set of exams by selecting ques-
tions that have been generated. The question selection can be made
based on constraints specified by an examiner, such as total num-
ber of exam instances, number of questions in each exam instance,
duration, the similarity with previous exams, and the share of dif-
ferent question types in each exam instance. Furthermore, question
and exam configuration processes are further supported by a recom-
mendation mechanism that helps to generate exams that are different
from previous exams as much as possible.

The contributions of our work are therefore two-fold:

1. We propose an exam creation approach supporting question and
answer parameterization, which significantly increases the solu-
tion space and automatically generates many exam instances. This
way, each student will receive a different exam, which therefore
helps effectively counteract cheating behaviors, especially in ex-
ams for big courses.

2. We develop mock-ups of a real exam creator system to support the
mentioned approach.

The remainder of the paper is organized as follows. In Section 2,
we provide basic knowledge regarding feature models, feature model
configuration, and recommendation techniques. Section 3 and Sec-
tion 4 are the main parts of our work, in which we present how
configuration and recommendation techniques are exploited in our
approach to generate exams. Finally, we conclude the paper and dis-
cuss open issues for future work in Section 5.

2 PRELIMINARIES
2.1 Feature Models
Feature models are used to specify the variability and commonality
of complex items, such as software artifacts, configurable products,
and highly-variant services [3, 6, 26]. Applications based on feature
models help users to decide which features should be included in a
specific configuration.

A feature model is a hierarchical representation of a set of features
and their interrelationships [6, 26]. In such a representation, features
are represented by nodes, and relationships between features are rep-
resented by links. The root of the feature model is a so-called root
feature (fr), which is involved in every configuration (fr = true).

A feature model can be exploited in exam scenarios to repre-
sent a set of questions for an exam that share common features. For
instance, given a set of two multiple-choice questions Q1 and Q2

shown in Table 1, a corresponding feature model representing these
questions is depicted in Figure 1.

Table 1: An example of two multiple-choice questions that share com-
mon features.

Q1

What is a minimal diagnosis?
1. an arbitrary subset
2. a minimal deletion subset (correct answer)
3. a minimal unsatisfiable subset
4. a maximal subset

Q2

What is the definition of a minimal conflict set?
1. an arbitrary subset
2. a minimal deletion subset
3. a minimal unsatisfiable subset (correct answer)
4. a maximal subset

Feature models can be distinguished with regard to the used
knowledge representation [6]. In this section, we present three well-
known feature models (basic feature models [26], cardinality-based
feature models [12], and extended feature models [4]), where their
notations are used in our approach.

Basic Feature Models. A basic feature model [26, 27] consists of
two parts: structural part and constraint part. The former establishes
a hierarchical relationship between features. The latter combines ad-
ditional constraints that represent so-called cross-tree constraints.

Structurally, the relationship between a feature and its sub-features
can be typically classified as follows: mandatory, optional, alterna-
tive, and or. A mandatory relationship indicates that a child feature
will be included in a configuration if and only if its parent feature is
included in the configuration (e.g., see the relationship between f1
and f3). An optional relationship denotes the fact that the inclusion
of a child feature is optional if the parent feature is included (e.g., see
the relationship between f1 and f4). An alternative relationship de-
scribes the fact that exactly one child feature has to be included if the
parent feature has been included (e.g., see the relationships between
f8 and its child features f10 and f11). Finally, an or relationship in-
dicates that at least one of the child features should be included if the
parent feature has been included (e.g., see the relationships between
f9 and its child features f12..f15).

In the constraint part, cross-tree constraints are integrated graphi-
cally into the model to set cross-hierarchical restrictions for features.
There are two constraint types, requires and excludes, that can be
used for the specification of feature models [6]. A requires constraint
shows that if one feature is included in the configuration, then another
feature must be included as well (e.g., f5 requires f10). An excludes
constraint denotes that two certain features must not be included in
the same configuration (e.g., f6 excludes f12).

Cardinality-based Feature Models. Cardinality-based feature
models [12] extend the basic ones to allow cardinalities with an up-
per bound > 1 of feature relationships. These feature models sup-
port two new relationships: feature cardinality and group cardinal-
ity. Feature cardinality is a sequence of intervals denoted [n..m] (n -
lower bound,m - upper bound), determining the number of instances
of the feature that can be part of a product. Group cardinality is an

Question 1

AnswersQuestion

Correct Answers Incorrect Answers
<2..3>

a minimal
deletion
subset

a minimal
unsatisfiable

set

a minimal
unsatisfiable

set

an
arbitrary
subset

a maximal
deletion
subset

a maximal
subset

a minimal
diagnosis

a minimal
conflict set

the
definition of

What is ?

f0

f1 f2

f3
f4 f5 f6

f7

f8 f9

f10 f11 f12 f13 f14
f15

cstr1
cstr2

cstr3

Mandatory
Optional

Alternative
Or

Requires
Excludes

Group cardinality<n..m>

[n..m] Feature cardinality

Figure 1: Feature model for a set of multiple-choice questions.

interval denoted 〈n..m〉 (n - lower bound, m - upper bound), limit-
ing the number of child features that can be part of a product when its
parent feature is selected. For instance, the group cardinality 〈2..3〉
between feature f9 and its child features f12..f15 indicates that a con-
figuration for Question 1 has minimum two and maximum three
incorrect answers.

Extended Feature Models. Extended feature models [4] support
the description of features with attributes. For instance, in an exam
feature model, each question is described by two attributes: question
complexity and question type. These feature models can also include
complex constraints among attributes and features. One example con-
straint can be: “If the question complexity of Question 1 is ‘im-
portant to know’, then this question should be included in the exam”.

2.2 Feature Model Configuration
For the discussions in the later sections, we introduce the definitions
of a feature model configuration task and a feature model configu-
ration (solution) [17, 24]. A feature model configuration task can be
defined as a constraint satisfaction problem (CSP) [40].

Definition 1 (Feature model configuration task) A fea-
ture configuration task is defined by a triple (F,D,C),
where F = {f1, f2, ..., fn} is a set of features, D =
{dom(f1), dom(f2), ..., dom(fn)} is a set of feature domains,
and C = CF ∪ CR is a set of constraints restricting possible
configurations, CF = {c1, c2, ..., ck} represents a set of feature
model constraints, and CR = {ck+1, ck+2, ..., cm} represents a set
of user requirements.

Definition 2 (Feature model configuration) A feature model
configuration S for a given feature model configuration task
(F,D,C) is an assignment of the features fi ∈ F,∀i ∈ [1..n]. S
is valid if it is complete (i.e., each feature in F has a value) and con-
sistent (i.e., S fulfills the constraints in C).

2.3 Recommendation
Recommendation techniques have been employed in various do-
mains such as movies, music, books, tourism destinations, financial
services, and healthcare to recommend products/services that meet
users’ needs and preferences [8, 18, 28, 38, 39, 43]. More recently,

recommendation techniques have also been applied in the e-learning
domain to support learners in choosing courses, resources, or learn-
ing materials [43]. Besides, these techniques can also be exploited to
support teachers/lecturers/instructors for generating exams [23].

There exist three well-known recommendation approaches that
have been extensively studied in the recommender systems research:
collaborative filtering, content-based, and knowledge-based [36].
Each of these approaches has its own characteristics and suitable ap-
plication scenarios. Content-based recommendation builds a user’s
profile based on his/her past preferences and recommends items that
are similar to his/her profile. This approach is suitable for recom-
mending items with abundant content information such as docu-
ments or webpages [1]. Collaborative filtering suggests a specific
item to a user based on the preferences of similar users. This ap-
proach is widely used and well-known through the Netflix compe-
tition [7]. Knowledge-based approaches are usually applied to gen-
erate recommendations in domains where the quantity of available
item ratings is quite limited (such as cars, apartments, and financial
services) or when the user wants to explicitly define his/her require-
ments for items (e.g., “the apartment should be close to working
area”). These approaches generate recommendations based on the
knowledge about the items, explicit user preferences, and a set of
constraints describing the dependencies between users’ preferences
and items’ properties [18].

In this study, we select content-based recommendation to be in-
tegrated into our approach since the items in our recommendation
scenario are exams and questions that are mostly represented in text
forms. Our recommendation approach helps to filter exams with a
low number of questions that have been used in previous exams (see
further details in Section 4).

3 QUESTION AND EXAM CONFIGURATION

3.1 Configuring Questions using Feature Models

In this section, we present our approach to model a set of ques-
tions using feature models. Although our approach is illustrated
by multiple-choice questions, it is also applicable to other question
types, such as matching, drag-drop, reordering, and freetext (i.e.,
questions whose answers can be entered by students using free texts).

Example question configuration scenario. Assume an examiner
wants to create a feature model that represents two multiple-choice
questionsQ1 andQ2 as shown in Table 1. For the purpose of generat-
ing further instances that are different fromQ1 andQ2, the examiner
sets the minimum and the maximum number of correct/incorrect an-
swers. The number of correct answers to each question is exactly 1
(i.e., min = max = 1), the number of incorrect answers stays in
the range of [2..3]. In the following, we analyze Q1 and Q2, which
is the basic to construct the feature model of these two questions:

• The phrases “What is” and “?” are located at the same relative
positions and obligatory parts of the questions. Therefore, they
are referred to as mandatory phrases.

• The phrase “the definition of” appears only in question Q2, and
this question will not change its meaning without this phrase.
Hence, this phrase can be referred to as an optional phrase.

• The phrases “a minimal diagnosis” and “a minimal conflict set”
can be replaced with each other, they are therefore referred to as
alternative phrases.

• There are the same incorrect answers such as “an arbitrary sub-
set” and “a maximal subset”, which are referred to as or phrases.

• The correct answers (“a minimal deletion subset” and “a minimal
unsatisfiable subset”) are chosen depending on which phrase (“a
minimal diagnosis” or “a minimal conflict set”) has been selected
to tailor the question. If “a minimal diagnosis” is selected, then
the correct answer should be “a minimal deletion subset” (Q1).
If “a minimal conflict set” is selected, then the correct answer
should be “a minimal unsatisfiable subset” (Q2). These show the
requires relationships between the mentioned phrases.

a minimal diagnosis

a minimal conflict set

What is ?

the definition ofWhat is ?

Q1

Q2

mandatory optional alternative mandatory

Figure 2: A tokenization for questions Q1 and Q2, showing how to
identify the relationship of tokens between the questions.

Question feature model. Based on the above analysis, a corre-
sponding feature model that specifies the variability and the com-
monality of Q1, Q2, and all other instances can be generated (see
Figure 1). The feature model shows two mandatory sub-features of
the root feature, referring to two main parts of a question Question
- f1 and Answers - f2. The statement of a question is now modelled
based on the sub-features of f1. The answers of a question are mod-
elled based on the sub-features of f2.3

The feature Question has five sub-features f3..f7, where f3 and
f7 are mandatory features, f4 is an optional feature, and f5 and
f6 are alternative features. In the branch of the feature Answers,
two sub-features f8 and f9 have to be added to distinguish between
correct and incorrect answers4. The feature Correct Answers
connects to its sub-features f10 and f11 using an alternative rela-
tionship since there is only one correct answer to the question. This
relationship could be replaced with an or relationship with a group
cardinality if the examiner has specified the maximum number of

3 In the context of free-text questions, the feature Answers does not have
sub-features since no answers should be pre-specified (i.e., for a free-
text/open question, the answer is entered by students).

4 Another way is to create direct connections from f2 to correct and incorrect
answers without splitting them into two branches.

Category 1/Overview

Question 1

#Correct answers:
min

1 -
max

1 #Incorrect answers:
min

2 -
max

3

Constraints
Add Delete Edit

#Instances: 6

of 61

Question Instances

#Used instances: 3

Question instance #1:

This question instance has been used
2 times in the two last exams.

Settings
Randomize the order of Answers

Question Points: 1

Estimated Duration: 1 minutes

Important Level: Important to know

Question Type: Multiple choice

What is a minimal conflict!
an arbitrary subset
a minimal deletion subset
a minimal unsatisfiable subset
a maximal subset

a minimal conflict requires a minimal unsatisfiable subsetcstr1:
a minimal diagnosis requires a minimal deletion subsetcstr2:
a minimal conflict excludes a minimal deletion subsetcstr3:

Question

Answers

What is

a minimal deletion subset

a minimal unsatisfiable subset

an arbitrary subset

a maximal deletion subset

a maximal subset

!

01-01

a minimal conflict

a minimal diagnosis

1

2

3

4

Figure 3: Mock-up for question configuration, consisting of four
parts: Part 1 - Question & Answers Editor, Part 2 - Constraint Editor,
Part 3 - Question Instances, and Part 4 - Question-Attribute Settings.
The content in Part 1 & 2 is related to the feature model depicted in
Figure 1.

correct answers is greater than 1. Since the number of incorrect an-
swers stays in the range of [2..3], a group cardinality 〈2..3〉 between
the feature Incorrect Answers and its sub-features f12..f15
is needed. Two cross-tree constraints {cstr1: f5 requires f10} and
{cstr2: f6 requires f11} should be defined to identify the correct
answers. The constraint {cstr3: f6 excludes f12} indicates that if f6
is selected then f12 cannot be an incorrect answer.

Supported tool for question configuration. The question config-
uration process of an examiner can be supported by an envisioned
exam generator tool. In the following, we propose a mock-up show-
ing how such a configuration is proceeded.

Figure 3 shows the mock-up for configuring a set of multiple-
choice questions, which consists of the following parts:

• Part 1 - Question & Answers Editor: The editor represents the
structural part of a feature model in a tree view control, where
each feature is represented by a node in the tree. The sub-tree
Question shows phrases used to tailor the question statement.
The sub-tree Answer shows correct answers (with X�) and in-
correct answers5. At the bottom of this part, the editor asks an
examiner to enter the number of correct/incorrect answers to the
question.

• Part 2 - Constraint Editor: The editor allows an examiner to add,
edit, or delete constraints used in the feature model. When click-
ing on the “Add” or “Edit” button, the Constraint Editor dialog
is shown to let the examiner create constraints (see Figure 5).
Besides, when defining a constraint, an inconsistency detection
mechanism is activated to identify constraints triggering incon-
sistencies [21, 35]. The identified constraints are highlighted to
inform the examiner that these constraints should be adapted for
resolving inconsistencies.

5 In the Question & Answers Editor, the correct and incorrect answers are
not separated into two branches as shown in the feature model (see Figure
1). The reason is to visualize answers in the traditional form of a multiple-
choice question.

Mandatory
Optional

Alternative
Or

Requires
Excludes

Group cardinality<n..m>

[n..m] Feature cardinality

Question 5

<2..4>

AnswersQuestion

CS S v1>v2 v2>v3Given the
constraints

where variables
have the domain

of [1..5].

What is/are
corresponding

minimal
conflict(s)?

What is the
preferred
minimal
conflict?

v3>v1 v2>v1

f0

f1 f2

f3
f4 f5 f6 f7

f8
f9 f10

f11 f12

[1..2] [2..3]

C = collect(f4,f5,f6,f7)

CS = random(conflict_hsdag(C))

f10 → CS = quickxplain(C)

S ≠ CS

S = random(f4, f5, f6, f7)

cstr5

cstr6

cstr7

cstr8

cstr9

v1,v2,v3 ∈ [1,5]
(f4 ∧ f5) → f6
(f4 ∧ ¬f5) → f7

cstr1

cstr2

cstr3

cstr4 f10 → f4 ∧ f5 ∧ f6 ∧ f7

Figure 4: The feature model for a set of parameterized questions related to the identification of minimal conflicts or the preferred minimal
conflict from a set of constraints.

Constraint Editor

a minimal conflict requires a minimal unsatisfiable subsetcstr1:
a minimal diagnosis requires a minimal deletion subsetcstr2:
a minimal conflict excludes a minimal deletion subsetcstr3:

Adda minimal conflict excludes a minimal deletion subsetcstr3:

Operators and Functions

()

hsdag quickxplain

requires excludes and ornot
+ - ⨉ / =

random
≠

in_domain
fastdiagconflict_hsdag

alldifferent

xor
> ≤ ≥<

collect

a minimal conflict
a minimal diagnosis
a minimal unsatisfiable subset
a minimal deletion subset
an arbitrary subset

Terms

Figure 5: Mock-up for the Constraint Editor dialog.

• Part 3 - Question Instances: An examiner is able to see the num-
ber of question instances generated based on the feature model
and constraints defined in Parts 1 & 2. In our example, six ques-
tion instances have been generated (“#Instances: 6”). The exam-
iner can browse through all instances by using the pagination con-
trol. For each instance, a recommendation mechanism is activated
to specify how often the instance has been used in previous ex-
ams (e.g., “This question instance has been used twice in the last
two exams”). Besides, the system calculates the number of in-
stances used in previous exams. For example, “#Used instances:
3” means three out of six instances have been used in previous
exams. For further details of the recommendation mechanism, see
Section 4.

• Part 4 - Question-Attribute Settings: This part allows an examiner
to set the attributes of a question, such as answer randomizing,
important level, question points, estimated duration and question
type.

3.2 Configuring Parameterized Questions
A parameterized question is a template with mathematical expres-
sions that are changed based on a specific set of replacement val-
ues. A straightforward template for parameterized questions can be:
“What is the result of X + Y?”, in which X and Y are the parame-
ters whose values are in the range of [1..5]. Based on this template,

many instances can be generated by randomly selecting different val-
ues for X and Y in their domain. This way, we can generate a set of
questions related to the sum of two parameters X and Y .

In this work, we support the configuration of parameterized ques-
tions for the purpose of increasing the number of exam instances.
A set of parameterized questions can be represented using a feature
model. The same as discussed in Section 3.1, a feature model for a set
of parameterized questions represents the relationships between fea-
tures using basic feature concepts. However, one difference lies in the
parameterized features that are often used for a specific calculation
(e.g., X + Y). Besides, the answers to a parameterized question are
not predefined. They are instead automatically calculated depending
on the selection of the parameterized features.

In the following, we present an example of parameterized question
configuration using the feature model depicted in Figure 4:

• Features f4..f7, f11, f12 are parameterized features.
• Features f4..f7 represent constraints of a CSP problem [40]. Their

relationship with feature Question - f1 is represented using a
group cardinality 〈2..4〉, that specifies the minimum and maxi-
mum numbers of constraints to tailor the question statement.

• Features f11 and f12 represent correct and incorrect answers re-
spectively, which can be automatically calculated depending on
which parameterized features have been selected for the question.
Assume features f4..f7 and the statement “What is/are the corre-
sponding minimal conflict(s)?” have been selected, #correct an-
swers = #incorrect answers = 2. Corresponding correct answers
would be {c1, c2, c3} and {c1, c4}, and corresponding incorrect
answers would be {c2} and {c3}.

• Due to the support of parameterized features and an automated
answer calculation mechanism, the definition of cross-tree con-
straints is pretty complex. Instead of using requires/excludes con-
straints, more complex constraints have to be defined. The seman-
tics of the constraints is summarized in the following:

– cstr1 specifies the domain of variables v1..v3.

– cstr2 and cstr3 assure to trigger at least one inconsistency
among the selected features f4..f7.

– cstr4 ensures the existence of many conflicts.

– cstr5 specifies which of the features (f4 .. f7) have been se-

sum(question)=40

sum(question.estimated_duration)=50

cstr6

cstr7

cstr8

cstr9

sum(question.type=multiple_choice)/Sum(question) > 0.6

sum(question.important_level=important_to_know)/sum(question) = 0.3

sum(question.important_level=extremely_important_to_know)/sum(question) = 0.2cstr10

cstr11

sum(question.important_level=nice_to_know)/sum(question) = 0.5

…
<3..3>

Question
3

Question
4

Question
2

Question
1

Question
5

cstr1

cstr3

Question
6

Question
7

Question
8

Question
9

Question
10

Question
11

Question
12

Question
13

<2..2>

<2..2>

Topic 2Topic 1 Topic 3 Topic 4 Topic 5

cstr2cstr4 cstr5

Exam

Figure 6: An example feature model for a set of exams, in which cstr1..cstr5 represent the relationship between questions, cstr6 and cstr7 are
resource constraints, cstr8..cstr10 are question complexity constraints, and cstr11 denotes a constraint w.r.t. question type.

lected and then adds the selected features to a new variable C.

– cstr6 identifies all conflicts using the conflict hsdag
function [35]. The random function is used to randomly se-
lect minimal conflicts for the correct answers.

– cstr7 indicates that if the question is “What is the preferred
minimal conflict?”, then the correct answer would be the out-
come of the quickxplain function [25].

– cstr8 and cstr9 help to generate incorrect answers.

In order to support the configuration of parameterized questions,
we propose a mock-up as shown in Figure 7, whose design is sim-
ilar to the mock-up for configuring multiple-choice questions (see
Figure 3).

3.3 Exam Configuration

A set of exams can be modeled using a feature model, in which each
feature represents a topic and/or a question (see Figure 6). The re-
lationships between questions, as well as the relationships between
exam topics and corresponding questions, can be represented by the
constraints described in basic feature models, cardinality-based fea-
ture models, and extended feature models. Constraints in basic fea-
ture models can be used to describe the relationship between topics
and questions. For instance, there exists a mandatory relationship be-
tween a topic and a question, showing that a question should belong
to a specific topic. Constraints in cardinality-based feature models
can be exploited to define the minimum number and the maximum
number of questions in a specific topic. For instance, there exists a
group cardinality 〈2..3〉 between the feature Topic 2 and its sub-
features (Question 8..Question 13), showing that there are
minimum two questions and maximum three questions to be included
in Topic 2. Constraints in extended feature models can be used
to define question complexity constraints. For instance, the distribu-
tion of question complexity in the exam should be 50% for “nice
to know” questions, 30% for “important to know” questions, and
20% for “extremely important to know questions” (see constraints
cstr8..cstr10). Further constraints regarding number of questions,
duration, and question types could also be defined (see constraints
cstr6, cstr7, and cstr11).

Category 1/Overview

Question 5

#Correct answers:
min

1 -
max

2 #Incorrect answers:
min

2 -
max

3

Constraints
Add Delete Edit

#Instances: 756

of 7561

Question Instances

#Used instances: 120

Question instance #1:

This question instance has been used
1 times in the two last exams.

Settings
Randomize the order of Answers

Question Points: 1

Estimated Duration: 2 minutes

Important Level: Important to know

Question Type: Multiple choice

Question

Answers

Given the constraints

02-04

01-01

CS

S

What is/are corresponding minimal conflict(s)!

What is the preferred minimal conflict!

v1 > v2

v2 > v3

v3 > v1

v2 > v1

where variables have the domain of [1..5].

Given the constraints c1: v1 > v2, c2: v2 >
v3, c3: v3 > v1, and c4: v2 > v1, where
variables have the domain of [1..5].
What is/are corresponding minimal
conflict(s)!

{c1, c2, c3}
{c1, c4}
{c2}
{c3}

v1, v2, v3 in_domain(1,5)
(v1 > v2 and v2 > v3) requires v3 > v1
(v1 > v2 and not v2 > v3) requires v2 > v1
What is the preferred minimal conflict? requires v1 > v2 and v2 > v3 and v3 > v1
and v2 > v1
C = collect(v1 > v2 , v2 > v3 , v3 > v1 , v2 > v1)
CS = random(conflict_hsdag(C))
What is the preferred minimal conflict? requires CS = quickxplain(C)
S ≠ CS
S = random(v1 > v2 , v2 > v3 , v3 > v1 , v2 > v1)

cstr1:
cstr2:
cstr3:
cstr4:

cstr5:
cstr6:
cstr7:
cstr8:
cstr9:

Figure 7: Mock-up for parameterized question configuration repre-
senting the feature model depicted in Figure 4.

Based on the generated constraints, a set of exam instances can be
generated using a constraint solver. Before activating the solver, the
exam feature model has to be translated into a CSP [40]. On the basis
of this representation, solutions (configurations) are directly deter-
mined by the solver, such as Excel Solver [19] or Choco Solver [33].
Each configuration indicates an exam instance, which is generated
by traversing selected features in the depth-first fashion.

To support the exam configuration process, we propose a mock-up
as shown in Figure 8. Similar to the mock-up for question configura-
tion, Exam Editor (Part 1) and Constraint Editor (Part 2) are shown
on the left-hand side, which allow an examiner to describe the exam
structure (based on a feature model) as well as corresponding con-

Configuration Systems Course

Constraints
Add Delete Edit

Exam Settings

#Questions: 40

%Nice to know: 50%

%Important to know: 30%

%Extremly Important to know: 20%

Duration: 50 minutes

> 60%%Multiple choice:

%%Image Analysis:

%%Matching:

%%Reordering:

%%Freetext:

%Similar to questions in previous
exams: < 20%

#Exam instances: 120

Question 4

Question 5

Question 6

Question 7

Question 8

Question 9

Question 10

Question 11

Question 12

Question 13

Question 1

Question 2

Question 3

Topic 1

Exam

Topic 2

Topic 3

02-02

Topic 4

Topic 5

02-02

03-03

! 30% of solutions used in the two last exams !

! 40% of solutions used in the two last exams !

! 70% of solutions used in the two last exams !

Question 2 requires Question 1cstr1:
cstr2:
cstr3:
cstr4:
cstr5:

Question 6 requires Question 4
Question 4 excludes Question 9
Category 3 excludes Category 5
Question 10 excludes Question 11

1

2

3

4

5

Figure 8: Mock-up for exam configuration, consisting of five parts:
Part 1 - Exam Editor, Part 2 - Constraint Editor, Part 3 - Resource
Constraints Settings, Part 4 - Question Complexity Settings, and Part
5 - Question Type Settings. The content in these Parts is related to
the feature model depicted in Figure 6.

straints between topics and questions. Settings placed in the right-
hand slide allow an examiner to specify further constraints regarding
resource constraints (Part 3), question complexity constraints (Part
4), and the distribution of question types in the exam (Part 5). Besides
these parts, the mockup allows an examiner to specify the number of
exam instances (e.g., #Exam instances = 120) and how much each
exam instance similar to previous exams (e.g., %Similar to previous
exams < 20%).

4 RECOMMENDATION ALGORITHM

As mentioned in Section 1, to counteract exam cheating, besides in-
creasing the question bank, the exam generation process should be
supported by a recommendation mechanism that helps to select ex-
ams that are less similar to previous exams as much as possible. To
address this goal, we use a content-based recommendation approach
that filters exams based on the similarity between the questions of
the generated exams and the questions of previous exams.

Given a set of question instances, we need to specify instances
that have been used in previous exams as well as their frequency.
Instances that were frequently used in the previous exams should be
omitted. To do this, for a question instance P , we need to calculate
the frequency fP of instance P to be used in a previous exam Ej .
We first build the profile for the question using a vector space model
[32]. The question is represented as a n-dimensional vector, in which
each dimension corresponds to a term. The value of each term is
the frequency of the term appearing in the question. The similarity
between P and a question Qi in exam Ej is calculated using cosine

similarity [43] (see Formula 1).

sim(P,Qi) =
P ·Qi

||P || · ||Qi||
(1)

The calculated similarity between two questions P and Qi is then
compared with a threshold θ that has been specified by the exam-
iner. In our mock-up shown in Figure 8, the examiner can specify the
threshold in the item “%Similar to questions in previous exams”. If
the similarity is greater than θ, we can conclude that P is very sim-
ilar to Qi and increases fP by 1. The same procedure can be done
for other previous exams. Finally, the frequency of P to appear in
n previous exams can be identified by Formula 2. The lower the fP
value, the higher the probability of choosing question instance P for
the exam.

fP = |sim(P,Qi) > θ : ∀Qi ∈ Ej , i ∈ [1..m] , j ∈ [1..n] | (2)

where n is the number of the previous exams andm is the number of
questions in Ej .

5 CONCLUSION
The paper has proposed an approach that exploits configuration and
recommendation techniques to counteract exam cheating. Thank to
question and exam configuration mechanisms, our approach is able to
generate a large number of exam instances, which assures the distri-
bution of different exams to students. Supported by a content-based
recommendation algorithm, our approach also helps to generate ex-
ams that are different from previous exams. This way, it can prevent
students from dishonesty behaviors regarding item harvesting, item
pre-knowledge, and item memorizing.

Our approach, however, shows some limitations. Automated ques-
tion and exam generation could trigger issues regarding the precise-
ness of generated questions and exams, emerging as a gap to be
bridged within the scope of future work. Although we have devel-
oped mock-ups to support examiners’ question and exam generation
processes, the implementation of an exam generator prototype is still
needed to further analyze user needs, the applicability of the pro-
posed mock-ups, and the effectiveness of our approach.

Future work will include the analysis of the applicability of
the presented concepts in the exam configuration domain (e.g.,
we will identify a complete set of typically relevant domain con-
straints) as well as in further multi- configuration scenarios. Fur-
thermore, we will analyze new user interfaces and interaction re-
quirements triggered by the application of multi-configuration con-
cepts. The knowledge representation concepts discussed within
the context of our exam configuration scenario are currently in-
tegrated into the KNOWLEDGECHECKR elearning environment
(www.knowledgecheckr.com) [13]. Our major motivation is to in-
crease the flexibility of exam generation but also to counteract cheat-
ing in online exams through an increased exam variability. In cases
where individual user requirements induce an inconsistency with the
exam model constraints, we propose the application of model-based
diagnosis concepts [5, 9, 10] which can help to deter- mine mini-
mal conflict resolutions that also take into account aspects such as
fairness and representativeness of the remaining questions.

ACKNOWLEDGMENTS
The presented work has been conducted in the PARXCEL project
funded by the Austrian Research Promotion Agency (880657).

References
[1] Gediminas Adomavicius and Alexander Tuzhilin, ‘Toward the next

generation of recommender systems: A survey of the state-of-the-art
and possible extensions’, IEEE Trans. on Knowl. and Data Eng., 17(6),
734–749, (Jun. 2005).

[2] Helaine Alessio, Nancy Malay, Karsten Maurer, A. Bailer, and Beth Ru-
bin, ‘Examining the effect of proctoring on online test scores’, Online
Learning, 21(1), (2017).

[3] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake, Feature-
Oriented Software Product Lines: Concepts and Implementation,
Springer Science & Business Media, 2013.

[4] Don Batory, ‘Feature Models, Grammars, and Propositional Formulas’,
in International Conference on Software Product Lines, eds., Henk Ob-
bink and Klaus Pohl, pp. 7–20, Berlin, Heidelberg, (2005). Springer
Berlin Heidelberg.

[5] Razan Bawarith, Abdullah Basuhail, Anas Fattouh, and Shehab
Gamalel-Din, ‘E-exam cheating detection system’, International Jour-
nal of Advanced Computer Science and Applications, 8(4), 176–181,
(2017).

[6] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés, ‘Automated
Analysis of Feature Models 20 Years Later: A Literature Review’, In-
formation Systems, 35(6), 615 – 636, (2010).

[7] James Bennett and Stan Lanning, ‘The netflix prize’, in Proceedings of
KDD Cup and Workshop, pp. 3–6, New York, (2007). ACM.

[8] Robin Burke, Alexander Felfernig, and Mehmet H. Göker, ‘Recom-
mender systems: An overview’, AI Magazine, 32(3), 13–18, (Jun.
2011).

[9] Mason Chen, ‘Detect multiple choice exam cheating pattern by apply-
ing multivariate statistics’, in Proceedings of the International Confer-
ence on Industrial Engineering and Operations Management, pp. 173–
181, Bogota, Colombia, (Oct. 2017).

[10] Chia Yuan Chuang, Scotty D. Craig, and John Femiani, ‘Detecting
probable cheating during online assessments based on time delay and
head pose’, Higher Education Research & Development, 36(6), 1123–
1137, (2017).

[11] Gregory J. Cizek and James A. Wollack, eds., Detecting Potential Col-
lusion among Individual Examinees using Similarity Analysis, chap-
ter 3, 47–69, Routledge, Oct. 2016.

[12] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker, ‘Formaliz-
ing cardinality-based feature models and their specialization’, Software
Process: Improvement and Practice, 10(1), 7–29, (2005).

[13] Jennifer P. Davis. Using data forensics to detect cheating: An illustra-
tion, 2018.

[14] Seife Dendir and R. Maxwell, ‘Cheating in online courses: Evidence
from online proctoring’, Computers in Human Behavior Reports, 2,
100033, (Aug. 2020).

[15] Martin Dick, Judy Sheard, Cathy Bareiss, Janet Carter, Donald Joyce,
Trevor Harding, and Cary Laxer, ‘Addressing student cheating: Defini-
tions and solutions’, SIGCSE Bull., 35(2), 172–184, (Jun. 2002).

[16] George M. Diekhoff, Emily E. LaBeff, Robert E. Clark, Larry E.
Williams, Billy Francis, and Valerie J. Haines, ‘College cheating: Ten
years later’, Research in Higher Education, 37, 487–502, (1996).

[17] Alexander Felfernig, David Benavides, José Galindo, and Florian
Reinfrank, ‘Towards Anomaly Explanation in Feature Models’, in
ConfWS-2013: 15th International Configuration Workshop (2013), vol-
ume 1128, pp. 117–124, (Aug. 2013).

[18] Alexander Felfernig and Robin Burke, ‘Constraint-based recommender
systems: Technologies and research issues’, in Proceedings of the 10th
International Conference on Electronic Commerce, ICEC’08, pp. 1–10,
New York, NY, USA, (2008). ACM.

[19] Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach, Christian
Russ, and Markus Zanker, ‘Developing Constraint-Based Applications
with Spreadsheets’, in Developments in Applied Artificial Intelligence,
eds., Paul W. H. Chung, Chris Hinde, and Moonis Ali, volume 2718 of
IEA/AIE 2003, pp. 197–207, Berlin, Heidelberg, (2003). Springer.

[20] Alexander Felfernig, Viet Man Le, and Trang Tran, ‘Supporting feature
model-based configuration in microsoft excel’, in 22nd International
Configuration Workshop, (2020).

[21] Alexander Felfernig, Monika Schubert, and Christoph Zehentner, ‘An
efficient diagnosis algorithm for inconsistent constraint sets’, Artif. In-
tell. Eng. Des. Anal. Manuf., 26(1), (Feb. 2012).

[22] Joanna Golden and Mark Kohlbeck, ‘Addressing cheating when using
test bank questions in online Classes’, Journal of Accounting Educa-
tion, 52(C), (2020).

[23] Hicham Hage and Esma Aı̈meur, ‘Exam question recommender sys-
tem’, in Proceedings of the 2005 Conference on Artificial Intelligence
in Education: Supporting Learning through Intelligent and Socially In-
formed Technology, p. 249–257, NLD, (2005). IOS Press.

[24] Lothar Hotz, Alexander Felfernig, Markus Stumptner, Anna Ryabokon,
Claire Bagley, and Katharina Wolter, ‘Chapter 6 - Configuration
Knowledge Representation and Reasoning’, in Knowledge-Based Con-
figuration, eds., Alexander Felfernig, Lothar Hotz, Claire Bagley, and
Juha Tiihonen, 41 – 72, Morgan Kaufmann, Boston, (2014).

[25] Ulrich Junker, ‘QUICKXPLAIN: Preferred explanations and relaxations
for over-constrained problems’, in Proceedings of the 19th National
Conference on Artifical Intelligence, AAAI’04, p. 167–172. AAAI
Press, (2004).

[26] Kyo Kang, Sholom Cohen, James Hess, William Novak, and A. Peter-
son, ‘Feature-Oriented Domain Analysis (FODA) Feasibility Study’,
Technical Report CMU/SEI-90-TR-021, Software Engineering Insti-
tute, Carnegie Mellon University, Pittsburgh, PA, (1990).

[27] Viet-Man Le, Thi Ngoc Trang Tran, and Alexander Felfernig, ‘A con-
version of feature models into an executable representation in microsoft
excel’, in Intelligent Systems in Industrial Applications, eds., Martin
Stettinger, Gerhard Leitner, Alexander Felfernig, and Zbigniew W. Ras,
pp. 153–168, Cham, (2021). Springer International Publishing.

[28] Greg Linden, Brent Smith, and Jeremy York, ‘Amazon.com recommen-
dations: Item-to-item collaborative filtering’, IEEE Internet Computing,
7(1), 76–80, (Jan. 2003).

[29] Donald McCabe, ‘Cheating on tests: How to do it, detect it, and pre-
vent it (review)’, The Journal of Higher Education, 73, 297–298, (Jan.
2002).

[30] Donald L. McCabe, Kenneth D. Butterfield, and Linda Klebe Treviño,
‘Academic dishonesty in graduate business programs: Prevalence,
causes, and proposed action’, Academy of Management Learning and
Education, 5(3), 294–305, (Sep. 2006).

[31] James Moten Jr, Alex Fitterer, Elise Brazier, Jonathan Leonard, and
Avis Brown, ‘Examining online college cyber cheating methods and
prevention measures’, Electronic Journal of e-Learning, 11, 139–146,
(2013).

[32] Michael J. Pazzani and Daniel Billsus, Content-Based Recommenda-
tion Systems, 325–341, Springer Berlin Heidelberg, Berlin, Heidelberg,
2007.

[33] Charles Prud’homme, Jean-Guillaume Fages, and Xavier Lorca, Choco
Solver Documentation, TASC, INRIA Rennes, LINA CNRS UMR
6241, COSLING S.A.S., 2016.

[34] Hong Qian, Dorota Staniewska, Mark Reckase, and Ada Woo, ‘Using
response time to detect item preknowledge in computer-based licen-
sure examinations’, Educational Measurement: Issues and Practice,
35, n/a–n/a, (Feb. 2016).

[35] Raymond Reiter, ‘A theory of diagnosis from first principles’, Artificial
Intelligence, 32(1), 57–95, (1987).

[36] Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B. Kantor,
Recommender Systems Handbook, Springer-Verlag, Berlin, Heidelberg,
1st edn., 2011.

[37] Neil C. Rowe, ‘Cheating in online student assessment: Beyond pla-
giarism’, Online Journal of Distance Learning Administration, 7(2),
(2004).

[38] Thi Ngoc Trang Tran, Müslüm Atas, Alexander Felfernig, and Martin
Stettinger, ‘An overview of recommender systems in the healthy food
domain’, Journal of Intelligent Information Systems, 50(3), 501–526,
(Jun. 2018).

[39] Thi Ngoc Trang Tran, Alexander Felfernig, Christoph Trattner, and
Andreas Holzinger, ‘Recommender systems in the healthcare domain:
state-of-the-art and research issues’, Journal of Intelligent Information
Systems, 1–31, (Dec. 2020).

[40] Edward Tsang, Foundations of Constraint Satisfaction, Academic
Press, London, 1993.

[41] W. J. van der Linden and Guo Fanmin, ‘Bayesian procedures for iden-
tifying aberrant response-time patterns in adaptive testing’, Psychome-
trika, 73, 365–384, (2008).

[42] George Watson and James Sottile, ‘Cheating in the digital age: Do
students cheat more in online courses?’, Online Journal of Distance
Learning Administration, (Jan. 2010).

[43] Qian Zhang, Jie Lu, and Zhang Guangquan, ‘Recommender systems in
e-learning’, J Smart Environ Green Comput, 1, 76–89, (Jun. 2020).

