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Abstract
The construction of nonlinear three-dimensional models of interconnected communities number dy-
namics is considered, taking into account competition in populations of victims. A qualitative research
of the systems is carried out, equilibrium states are found, the species number dynamics graphs are
constructed. For these models, an estimate of the model parameters is given and local phase portraits
are constructed. The transition to the corresponding stochastic models is made. In stochastic cases, the
method of constructing self-consistent stochastic models is used. A comparative analysis of deterministic
and stochastic models is carried out. Effects typical for three-dimensional models with regard to compe-
tition in prey populations are revealed. A software package for the numerical solution of differential
equations systems by modified Runge–Kutta methods is used as a software tool for researching the
model. The software package allows performing numerical experiments based on the implementation of
algorithms for generating trajectories of multidimensional Wiener processes and multipoint distributions
and algorithms for solving stochastic differential equations. The formulation of the optimal control
problem is proposed. Computer research of the models makes it possible to obtain the results of numerical
experiments on the search for trajectories and the estimation of parameters. The results obtained can find
application in problems of ecological systems computer modeling, as well as in problems of synthesis,
optimal control and analysis of the multidimensional stochastic models stability describing the dynamics
of interacting populations.
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1. Introduction

An important tool in solving problems of predicting the state of natural systems and managing
them is mathematical modeling. To solve these problems, both traditional and new methods and
approaches are used. Ecological systems with various interconnections between subsystems
and a change in the structure of these interconnections in the process of functioning leads to
the mathematical models construction, the analytical research of which is very difficult.

Mathematical models of the interacting communities dynamics taking into account competi-
tion and with food chains are considered in [1, 2, 3, 4, 5, 6, 7]. In [2], the stability conditions of
the «predator–two preys» system are investigated. In [3], a mathematical model of a system
with two competing prey and one predator is analyzed, the influence of predation on the species
coexistence is described. A model of two competitors’ prey dynamics with the addition of a
predator species to change the competition results is studied in [4]. In [5], the deterministic
stability of the three-dimensional model «predator–two preys» limit cycles is investigated.
In [6, 7], three-dimensional models of population dynamics with competition and with trophic
chains are considered.

In the process of stochastic modeling for various dynamical systems a method for constructing
self-consistent one-step models [8] is proposed and a software package [9] is developed. Some
systems of population dynamics based on the construction of stochastic self-consistent models
are considered in [10, 11, 12, 13, 14]. In [12, 13, 14, 15, 16], a number of control problems for
the models of population dynamics are considered.
When modeling population systems, various software tools are used that provide ample

opportunities for conducting computational experiments. In [17, 18], the models research is
carried out using the Python language and symbolic computation libraries.
In this paper we considered several types of three-dimensional models, taking into account

the competition among prey species and predation are studied. The stability of these models is
investigated, the equilibrium states are calculated. The transition from deterministic models
to stochastic ones is performed. A computer research is carried out to study the stability.
The estimation of the model parameters is carried out, the phase portraits of the system are
constructed, as well as the graphs of the population size dynamics in the deterministic and
stochastic cases. The research is carried out using a software package for constructing stochastic
dynamic models and searching for appropriate trajectories, as well as the Jupyter application
package. The obtained effects are analyzed. The formulations of optimal control problems for
the models with trophic chains are proposed.

2. The deterministic models description

We consider a model described by differential equations of the form

̇𝑥1 = 𝑥1(𝑎1 − 𝜀𝑥1 − 𝛿𝑥2 − 𝑏1𝑦),
̇𝑥2 = 𝑥2(𝑎2 − 𝛿𝑥1 − 𝜀𝑥2 − 𝑏2𝑦),
̇𝑦 = 𝑦(−𝑐 + 𝑑1𝑥1 + 𝑑2𝑥2 − 𝛾𝑦),

(1)
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where 𝑥1 is the population density of the first competitor, 𝑥2 is the population density of the
second competitor, 𝑦 is the population density of the predator, 𝑎𝑖 is the reproduction rate of
the competitor’s population in the absence of a predator, 𝑏𝑖 is the specific rate of consumption
of the prey population by the predator population, di is the conversion factor of the prey
biomass consumed by the predator in own biomass, 𝑖 = 1, 2, 𝜀 is the coefficient of intraspecific
competition, 𝛿 is the coefficient of interspecific competition, 𝑐 is the natural mortality of the
predator, 𝛾 is the intraspecific competition of the predator, 𝑦(0) ≥ 0, 𝑥𝑖(0) ≥ 0, 𝑖 = 1, 2. According
to the ecological sense, the constraints on the coefficients are: 𝜀 > 0, 𝛿 ≥ 0, 𝛾 ≥ 0, 𝑎𝑖 > 0, 𝑏𝑖 > 0,
𝑑𝑖 > 0, 𝑐 > 0, 𝑖 = 1, 2.
Model (1) is a modification of the model described in [1] with the following notation: 𝜀11 =

𝜀22 = 𝜀, 𝜀12 = 𝜀21 = 𝛿.
We introduce the following notation: 𝜌 = 𝑏1𝑑2+𝑏2𝑑1, 𝜙 = 𝑏1𝑑1+𝑏2𝑑2, 𝐷 = 𝛾(𝜀2−𝛿2)−𝛿𝜌+𝜀𝜙,

𝑥∗1 =
(𝑎2𝑏1 − 𝑎1𝑏2)𝑑2 + (𝑏2𝛿 − 𝑏1𝜀)𝑐 + (𝑎2𝛿 − 𝑎1𝜀)𝛾

𝛾 (𝛿2 − 𝜀2) + 𝛿𝜌 − 𝜀𝜙
,

𝑥∗2 =
(𝑎1𝑏2 − 𝑎2𝑏1)𝑑1 + (𝑏1𝛿 − 𝑏2𝜀)𝑐 + (𝑎1𝛿 − 𝑎2𝜀)𝛾

𝛾 (𝛿2 − 𝜀2) + 𝛿𝜌 − 𝜀𝜙
,

𝑦∗ =
𝑐(𝜀2 − 𝛿2) + 𝛿(𝑎1𝑑2 + 𝑎2𝑑1) − 𝜀(𝑎1𝑑1 + 𝑎2𝑑2)

𝛾 (𝛿2 − 𝜀2) + 𝛿𝜌 − 𝜀𝜙
.

Equilibrium states of the (1) in general form are found. The indicated equilibrium states are
as follows:

𝐸0(0, 0, 0), 𝐸1 (0, 0,
−𝑐
𝛾
) , 𝐸2 (0,

𝑎2
𝜀
, 0) , 𝐸3 (

𝑎1
𝜀
, 0, 0) ,

𝐸4 (0,
𝑎2𝛾 + 𝑏2𝑐
𝛾 𝜀 + 𝑏2𝑑2

,
𝑎2𝑑2 − 𝑐𝜀
𝛾 𝜀 + 𝑏2𝑑2

) , 𝐸5 (
𝑎1𝛾 + 𝑏1𝑐
𝛾 𝜀 + 𝑏1𝑑1

, 0,
𝑎1𝑑1 − 𝑐𝜀
𝛾 𝜀 + 𝑏1𝑑1

) ,

𝐸6 (
𝑎2𝛿 − 𝑎1𝜀
𝛿2 − 𝜀2

,
𝑎1𝛿 − 𝑎2𝜀
𝛿2 − 𝜀2

, 0) , 𝐸7 (𝑥∗1 , 𝑥∗2 , 𝑦∗) .

The state of equilibrium 𝐸7 is an internal state of equilibrium for which the condition of
positivity is satisfied. Permanent coexistence of populations in the model (1) is established
under the following conditions:

1) 𝜀 > 0, 𝛿 ≥ 0,𝛾 ≥ 0, 𝑎𝑖 > 0, 𝑏𝑖 > 0, 𝑑𝑖 > 0, 𝑐 > 0, 𝑖 = 1, 2;
2) there is a unique internal equilibrium state 𝐸7 such that 𝐷 ≠ 0 and 𝑥∗1 > 0, 𝑥∗2 > 0, 𝑦∗ > 0;
3) 𝐷 > 0;
4) at least one of the following inequalities holds 𝑎1𝜀 > 𝑎2𝛿 or 𝑎2𝜀 > 𝑎1𝛿.

Next, we consider the model:

̇𝑥1 = 𝑥1(𝑎 − 𝜀11𝑥1 − 𝜀12𝑥2 − 𝑏𝑦),
̇𝑥2 = 𝑥2(𝑎 − 𝜀21𝑥1 − 𝜀22𝑥2 − 𝑏𝑦),
̇𝑦 = 𝑦(𝑐 + 𝑑𝑥1 + 𝑑𝑥2 − 𝛾𝑦),

(2)
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where 𝜀𝑖𝑗 for 𝑖 = 𝑗 = 1 and 𝑖 = 𝑗 = 2 are the coefficients of intraspecific competition, 𝜀𝑖𝑗 for 𝑖 not
equal to 𝑗 are the coefficients of interspecies competition. According to the ecological sense, the
constraints on the coefficients are: 𝜀𝑖𝑗 ≥ 0, 𝑖 ≠ 𝑗, 𝜀𝑖𝑗 > 0, 𝑖 = 𝑗, 𝑖, 𝑗 = 1, 2, 𝛾 ≥ 0, 𝑎 > 0, 𝑏 > 0, 𝑑 > 0,
𝑐 > 0. The meaning of other parameters included in the system (2) is similar to the model (1).

Model (2) is a modification of the model described in [1] with the following values: 𝑏1 = 𝑏2 = 𝑏,
𝑎1 = 𝑎2 = 𝑎, 𝑑1 = 𝑑2 = 𝑑.
Next, we introduce the following notation:

𝜌 = (𝜀11 − 𝜀12 − 𝜀21 + 𝜀22), 𝜙 = (𝜀11𝜀22 − 𝜀12𝜀21), 𝐷 = 𝑏𝑑𝜌 + 𝛾𝜙,

�̂�∗1 =
(𝑎𝛾 + 𝑏𝑐)(𝜀22 − 𝜀12)

𝐷
, �̂�∗2 =

(𝑎𝛾 + 𝑏𝑐)(𝜀11 − 𝜀21)
𝐷

, ̂𝑦∗ =
𝑎𝑑𝜌 − 𝑐𝜙

𝐷
.

Equilibrium states of the model (2) in general form are found. The indicated equilibrium
states are as follows:

𝐸0(0, 0, 0), 𝐸1 (0, 0,
−𝑐
𝛾
) , 𝐸2 (0,

𝑎
𝜀22

, 0) , 𝐸3 (
𝑎
𝜀11

, 0, 0) ,

𝐸4 (0,
𝑎𝛾 + 𝑏𝑐
𝛾 𝜀22 + 𝑏𝑑

, 𝑎𝑑 − 𝑐𝜀
𝛾 𝜀22 + 𝑏𝑑

) , 𝐸5 (
𝑎(𝜀22 − 𝜀12)

𝜙
,
𝑎(𝜀11 − 𝜀21)

𝜙
, 0) ,

𝐸6 (
𝑎𝛾 + 𝑏𝑐
𝛾 𝜀11 + 𝑏𝑑

, 0,
𝑎𝑑 − 𝑐𝜀11
𝛾 𝜀11 + 𝑏𝑑

, ) , 𝐸7 (�̂�∗1 , �̂�∗2 , ̂𝑦∗) .

The state of equilibrium 𝐸7 is an internal state of equilibrium for which the condition of
positivity is satisfied. Permanent coexistence of populations in the model (1) is established
under the following conditions:

1) 𝜀12 ≥ 0, 𝜀21 ≥ 0, 𝜀11 > 0, 𝜀22 > 0, 𝛾 ≥ 0, 𝑎 > 0, 𝑏 > 0, 𝑑 > 0, 𝑐 > 0;
2) there is a unique internal equilibrium state 𝐸7 such that 𝐷 ≠ 0 and �̂�∗1 > 0, �̂�∗2 > 0, ̂𝑦∗ > 0;
3) 𝐷 > 0;
4) at least one of the following inequalities holds 𝜀22 > 𝜀12 or 𝜀11 > 𝜀21.

In [1], a theoretical research of the generalized model «predator–two preys» stability is
carried out. However, the numerical research of this model in order to identify the conditions
of oscillating modes causes a number of difficulties. We carry out a computer research of the
models (1) and (2), which are special cases of the model [1]. Subsequently, the transition to the
stochastic case is made based on the method of self-consistent stochastic models.

3. Transition to stochastic models

We carry out the transition to stochastization of the models (1) and (2) using the method
of constructing self-consistent stochastic models. This method is based on a combinatorial
methodology.
We write down the scheme of interaction between elements for the «predator–two preys»

system in general form
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𝑋𝑖
𝑎𝑖−→ 2𝑋𝑖, 𝑖 = 1, 2,

𝑋𝑖 + 𝑋𝑗
𝜀𝑖𝑗
−−→ 𝑋𝑗, 𝑖, 𝑗 = 1, 2,

𝑋𝑖 + 𝑌
𝑑𝑖−→ 2𝑌 , 𝑋𝑖 + 𝑌

𝑏𝑖−→ 𝑌 , 𝑖 = 1, 2,

𝑌 + 𝑌
𝛾
−→ 𝑌 ,

𝑌
𝑐
−→ 0.

(3)

In the interaction scheme (3), the first line corresponds to the natural reproduction of prey in
the absence of other factors, the second line symbolizes intraspecific (at 𝑖 = 𝑗) interspecific (at
𝑖 ≠ 𝑗) competition, and the third describes the predator-prey relationship. The fourth line is
responsible for intraspecific competition among predators, and the fifth describes their natural
mortality.

The method of constructing self-consistent stochastic models assumes, in the course of math-
ematical transformations, a transition from the interaction scheme to obtaining the coefficients
of the Fokker–Planck equation. This transition is carried out using the upgraded software
package described in [9]. This software package is implemented in the Python programming
language using the NumPy and SyPy libraries.
The software package consists of the following modules: IS_to_SDE.py and stochastic.py.

The IS_to_SDE.py module is designed to obtain the coefficients of the Fokker–Planck equation
from the interaction scheme. The stochastic.py module is a module for obtaining solutions for
the stochastic model.
The algorithm of the software package is shown in Diagram 1.
The IS_to_SDE.py module takes as input the matrices M and N of the system states before

and after interaction, vectors K_plus and K_minus interaction coefficients) and a vector X (the
system state vector). As a result, we obtain a symbolic representation of the Fokker–Planck
equation coefficients. Using the SymPy library allows you to get the code of these coefficients
in TeX, which makes them easier to read.
The IS_to_SDE.py module consists of several functions. Hereafter there is a description of

the main ones.
The S_plus function for obtaining the forward interaction coefficients has the following

description:

def S_plus(X, K_plus, M):
""" interaction coefficient [s^{-}_{1}(x),...,s^{-}_{s}(x)]"""

res = []
for i in range(len(K_plus)):

Prod_s = [Prod_(x, int(n)) for (x, n) in zip(X, M[i, :])]
res.append(K_plus[i]* sp.prod(Prod_s))

return res

The derivation function drift_vector for obtaining the drift vector A in the Fokker–Planck
equation is described as follows:

23
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Figure 1: Algorithm of the software package.

def drift_vector(X, K_plus, K_minus, N, M):
""" drift vector"""

res = sp.zeros(rows=len(X), cols=1)
R = M.T - N.T
for i in range(len(K_plus)):

res += R[:, i] * S(X, K_plus, K_minus, N, M)[i]
return res

In addition, we use the following description of the diffusion_matrix function to obtain
the diffusion matrix B in the Fokker–Planck equation:

def diffusion_matrix(X, K_plus, K_minus, N, M):
""" diffusion matrix"""

res = sp.zeros(rows=len(X), cols=len(X))
R = M.T - N.T
R = sp.Matrix(R)
for i in range(len(K_plus)):
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res += R[:, i] * R[:, i].T * S(X, K_plus, K_minus, N, M)[i]
return res

In fig. 2. the result of the functions for obtaining the Fokker–Planck equation coefficients for
the model (1) is presented.

Figure 2: The Fokker-Planck equation coefficients for the model (1).

Figure 3 shows the derivation and the result of the functions for obtaining the Fokker–Planck
equation coefficients for the model (2).

Figure 3: The Fokker-Planck equation coefficients for the model (2).

Further, the obtained coefficients are transferred to the stochastic.py module for the
numerical solution of the generated stochastic differential equations and drawing the graphs of
these solutions.
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The stochastic.py module can be used to study and numerically solve systems of ordinary
differential equations and their corresponding stochastic differential equations based on the
Runge–Kutta method and its modifications. A detailed description of this module is performed
in [8, 9].

4. Results of computer experiments

For the models (1) and (2), we carry out a series of computational experiments using the
above-described software package designed to study and numerically solve systems of ordinary
differential equations and the corresponding stochastic differential equations. Computational
experiments are carried out for both the deterministic case and the stochastic case.

For the model (1), calculations are carried out at 𝜀 = 𝛿. We consider the following sets of pa-
rameters: (𝑥1, 𝑥2, 𝑦) = (2, 1.6, 1.2), (𝑎1, 𝑎2, 𝑐, 𝜀, 𝑏1, 𝑏2, 𝑑1, 𝑑2, 𝛾 ) = (0.2, 0.4, 0.8, 0, 0.2, 0.4, 0.3, 0.6, 1).
With this set of parameters, the approximate equilibrium states are obtained.

Further, for the model (1), we consider the following sets of parameters: (𝑥1, 𝑥2, 𝑦) =
(0.5, 0.4, 0.3), (𝑎1, 𝑎2, 𝑐, 𝜀, 𝑏1, 𝑏2, 𝑑1, 𝑑2, 𝛾 ) = (0.2, 0.4, 0.8, 0.2, 0.2, 0.4, 1.3, 2.4, 0.1). With this set of
parameters, we obtained the approximate equilibrium states.

Figures 4 and 5 show the dynamics of population density for given sets of initial conditions.
The dashed line indicates the fluctuations of species number of the deterministic model (1), the
solid line indicates the stochastic one. Taking into account the results presented in Fig. 4, we
note that the trajectories have an oscillating character with conservation of amplitudes. For the
corresponding stochastic model, damping of oscillations takes place with an approximation to
the stationary mode. Taking into account the results presented in Fig. 5, we note the proximity
of the trajectories of the deterministic and stochastic models. In the case under consideration,
stochastization does not affect the of the system behavior, which is characterized by damping
of oscillations.
For the model (2), the following sets of parameters are considered: (𝑥1, 𝑥2, 𝑦) = (2, 1, 6),

(𝑎, 𝑐, 𝜀11, 𝜀12, 𝜀21, 𝜀22, 𝑏, 𝑑, 𝛾 ) = (8, 2.5/3, 8, 4, 4.125, 1, 1, 1, 0). With this set of parameters, the
approximate equilibrium states are obtained.
Fig. 6 shows the population density dynamics for two sets of initial conditions indicated

above. For stochastic and deterministic cases, the trajectories are located close to each other.
As in the deterministic case, the mean values graphs of various realizations of the stochastic
differential equation solutions reach a stationary mode.
Computational experiments show that the character of the systems (1) and (2) stability

is significantly influenced by the coefficients of intraspecific and interspecific competition.
Oscillations are formed if 𝜀 = 𝛿 = 0 and if 𝑎1 = 𝑘𝑎2,𝑑1 = 𝑙𝑑2 at 𝑙 = 𝑘. At 𝜀 = 𝛿 ≠ 0, the
oscillations have a damping character. At 𝑎1 = 𝑘𝑎2, 𝑑1 = 𝑙𝑑2 at 𝑙 ≠ 𝑘 one of the prey populations
dies out. Next, we proceed to the consideration of controlled models and formulate the optimal
control problem.
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Figure 4: The populations dynamics 𝑥1, 𝑥2, 𝑦 of the model (1) under initial conditions: (𝑥1, 𝑥2, 𝑦) =
(2, 1.6, 1.2), (𝑎1, 𝑎2, 𝑐, 𝜀, 𝑏1, 𝑏2, 𝑑1, 𝑑2, 𝛾 ) = (0.2, 0.4, 0.8, 0, 0.2, 0.4, 0.3, 0.6, 1).

Figure 5: The populations dynamics 𝑥1, 𝑥2, 𝑦 of the model (1) under initial conditions: (𝑥1, 𝑥2, 𝑦) =
(0.5, 0.4, 0.3), (𝑎1, 𝑎2, 𝑐, 𝜀, 𝑏1, 𝑏2, 𝑑1, 𝑑2, 𝛾 ) = (0.2, 0.4, 0.8, 0.2, 0.2, 0.4, 1.3, 2.4, 0.1).

5. The problem of optimal control

Let us formulate an optimal control problem for a three-dimensional model of the interconnected
communities number dynamics, taking into account competition in populations of preys. For a
three-dimensional model (1), the controlled model is given by a system of differential equations
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Figure 6: The populations dynamics 𝑥1, 𝑥2, 𝑦 of themodel (2) under initial conditions: (𝑥1, 𝑥2, 𝑦) = (2, 1, 6),
(𝑎, 𝑐, 𝜀11, 𝜀12, 𝜀21, 𝜀22, 𝑏, 𝑑, 𝛾 ) = (8, 2.5/3, 8, 4, 4.125, 1, 1, 1, 0).

̇𝑥1 = 𝑥1(𝑎1 − 𝜀𝑥1 − 𝜀𝑥2 − 𝑏1𝑦) − 𝑢1𝑥1,
̇𝑥2 = 𝑥2(𝑎2 − 𝜀𝑥1 − 𝜀𝑥2 − 𝑏2𝑦) − 𝑢2𝑥2,
̇𝑦 = 𝑦(−𝑐 + 𝑑1𝑥1 + 𝑑2𝑥2 − 𝛾𝑦) − 𝑢3𝑦,

(4)

where 𝑢𝑖 = 𝑢𝑖(𝑡) are control functions. The input parameters is explained in section 2.
Constraints for model (4) are specified in the form

𝑥1(0) = 𝑥10, 𝑥2(0) = 𝑥20, 𝑥3(0) = 𝑥30, 𝑥1(𝑇 ) = 𝑥11, 𝑥2(𝑇 ) = 𝑥21, 𝑥3(𝑇 ) = 𝑥31, 𝑡 ∈ [0, 𝑇 ], (5)

0 ≤ 𝑢1 ≤ 𝑢11, 0 ≤ 𝑢2 ≤ 𝑢21, 0 ≤ 𝑢3 ≤ 𝑢31, 𝑡 ∈ [0, 𝑇 ]. (6)

With regard to problem (4)–(6), we consider the functional to be minimized in the form

𝐽 (𝑢) = ∫
𝑇

0

3
∑
𝑖=1

𝑘𝑖𝑢𝑖(𝑡)𝑑𝑡. (7)

Control quality criterion (4) corresponds to minimizing losses from regulation of the popula-
tion, and in this case, the positive coefficients are denoted by 𝑘𝑖 in (7).

For themodel (4), the optimal control problem can be formulated as follows: find theminimum
of functional (7) under conditions (5), (6) taking into account 𝑥𝑖 ≥ 0.

We also generalize model (2) for the controlled case and formulate the corresponding optimal
control problem. At the same time, we consider the criterion of control quality, which also
consists in minimizing losses from regulation of the population.
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It is possible to construct the control laws 𝑢1, 𝑢2, 𝑢3 by different methods. For example, it is
possible to use PID controllers [19] or controllers using sliding mode [20].
For a population model with competition and migration flows in [13], the authors use a

polynomial control of the form

𝑢𝑖(𝑡) = ‖𝑅𝑇‖ , 𝑅 = (𝑟𝑖1, 𝑟𝑖2, ..., 𝑟𝑖𝑛)𝑇, 𝑇 = (𝑡0, 𝑡1, ..., 𝑡𝑚), 𝑖 = 1, 2, 3.

In this case, the model parameters are the coefficients 𝑟𝑖1, 𝑟𝑖2, ..., 𝑟𝑖𝑛 of polynomial functions.
Methods of global parametric optimization [21, 22] are usually used to calculate the parameters.

We propose to use control methods based on machine learning and regulators using artificial
intelligence. In particular, it is possible to use machine learning in combination with controllers
based on fuzzy logic or artificial neural networks [23, 24]. The generalized algorithm for
constructing the optimal trajectory of the model (4) based on machine learning is shown in
Fig. 7.
Thus, the optimal control problem is to find 𝑢𝑖 = 𝑢𝑖(𝑡) those that satisfy, firstly, the phase

constraints of problem (5), and secondly, the optimality criterion (7). To solve the problem, it is
necessary:

a) to construct the loss function,
b) to build a parametric control model,
c) to use the global parametric optimization algorithm for search the coefficients of the

control model with the minimum loss function.

We propose the construction of stochastic controlled models taking into account the
«predator–two preys» interaction. To study such models, it is advisable to consider the control
laws 𝑢1, 𝑢2, 𝑢3 using the algorithm for constructing the optimal trajectory of the model (4).
For population models with model migration, a number of computer experiments are carried
out in [12, 14]. In [14], the «predator–prey» model is studied taking into account migration
flows. In [12], multidimensional models of competing populations with migration, without
trophic chains, are studied. In [13, 14], the indicated approach to the construction of stochastic
controlled models is effective. A similar approach can be used for the models (1) and (2).

6. Conclusion

Computer research of two competing individuals interaction of prey with a predator population
nonlinear models makes it possible to study the proposed models stability. The obtained results
of themodels research at different variables sets and initial conditionsmake it possible to estimate
the influence of the predator species on the result of the prey competition. It is established that
the presence of trophic chains has a positive character on the result of competition, and this,
in turn, contributes to the coexistence of species. By the aid of developed software package,
graphs of population dynamics are constructed. For the systems (1) and (2), the transition to the
corresponding stochastic differential equations is carried out. The introduction of stochastics
makes it possible to take into account the probabilistic nature of the reproduction processes and
species death, as well as random fluctuations occurring in the environment in time and leading
to random fluctuations of the model parameters. We formulated an optimal control problem,
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Figure 7: Generalized algorithm for solving the optimal control problem.

proposed a criterion for the quality of control and developed the corresponding generalized
algorithm. To solve the problem of optimal control, it is proposed to use numerical optimization
methods and intelligent algorithms for symbolic computations. The obtained results can find
application in the research of the proposed models, taking into account the requirements of
control and optimization.
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