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Abstract
A continuous-time version of portfolio management problem for a market with multiple stocks is under
study. Asset allocation policy is determined implicitly as a solution to the system of ordinary differential
equations for asset quantities. Right-hand sides of equations are derived explicitly in closed form from
given portfolio properties using techniques of construction of differential equations by given integral
manifold. Related issues of simulation for portfolio with desired properties are also addressed. We present
the results of computer experiment for verification of specified portfolio property using constructed
portfolio model in the form of the system of stochastic differential equations.
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1. Introduction

Modeling with stochastic differential equations is used extensively in many areas of modern
research [1]. Stochastic differential equations (SDE) arise in modeling and simulation of various
random dynamical systems in physical [2], chemical [3], biological [4], financial [4] and other
sciences.
Stochastic models based on SDE are an integral part of quantitative analysis of wireless

channels in communications [5]. Modeling of signals and interference in communications
requires construction of SDE with specified properties, such as given marginal probability
density function and autocovariance function. Applications of SDE in other areas usually also
imply construction of SDE with desired characteristics.

We study asset allocation problem for a portfolio with specified properties using continuous-
time continuous-state Markov decision process, determined implicitly by a system of differential
equations. Our goal is to derive right-hand sides of equations by known portfolio properties and
verify the required portfolio property in a computer experiment using simulation techniques.

Workshop on information technology and scientific computing in the framework of the XI International Conference
Information and Telecommunication Technologies and Mathematical Modeling of High-Tech Systems (ITTMM-2021),
Moscow, Russian, April 19–23, 2021
Envelope-Open shorokhov-sg@rudn.ru (S. G. Shorokhov)
GLOBE https://esystem.rudn.ru/users/3295 (S. G. Shorokhov)
Orcid 0000-0001-6835-4110 (S. G. Shorokhov)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

33

mailto:shorokhov-sg@rudn.ru
https://esystem.rudn.ru/users/3295
https://orcid.org/0000-0001-6835-4110
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Sergey G. Shorokhov CEUR Workshop Proceedings 33–44

2. Implicit Markov decision process for portfolio management

Markov decision process [6] is a widely used approach to decisionmaking, including applications
in finance.

Consider a market in which 𝑛 no dividend stocks are traded continuously and transaction cost
and consumption are not taken into account. The stock price processes 𝑠𝑖 (𝑡) , 𝑖 = 1, 𝑛 generally
satisfy the system of SDE [7]:

𝑑𝑠𝑖 = 𝜇𝑖 (𝑡, 𝑠) 𝑑𝑡 +
𝑚
∑
𝑗=1

𝜎𝑖𝑗 (𝑡, 𝑠) 𝑑𝑊𝑗, 𝑖 = 1, 𝑛, 𝑚 ⩽ 𝑛, (1)

where 𝜇𝑖 (𝑡, 𝑠) are drift terms, 𝜎𝑖𝑗 (𝑡, 𝑠) are volatility terms, 𝑊1, ..., 𝑊𝑚 are independent standard
Wiener processes, 𝑠 = (𝑠1, ..., 𝑠𝑛).

The initial stock prices at 𝑡 = 𝑡0 are assumed to be known:

𝑠𝑖 (𝑡0) = 𝑠(0)𝑖 > 0, 𝑖 = 1, 𝑛. (2)

Let 𝑥𝑖 (𝑡) be the quantity (in units) of the 𝑖-th stock in the portfolio at time 𝑡. We assume that
the quantity 𝑥𝑖 (𝑡) can be positive (long position), negative (short position) or zero (no position)
and can take fractional values.
The value process of the stock portfolio 𝑃 (𝑡) at time 𝑡 is determined by the formula

𝑃 (𝑡) =
𝑛
∑
𝑖=1

𝑥𝑖 (𝑡) 𝑠𝑖 (𝑡) . (3)

The share (weight) 𝑤𝑖 (𝑡) of the 𝑖-th stock in the portfolio 𝑃 (𝑡) is equal to

𝑤𝑖 (𝑡) =
𝑥𝑖 (𝑡) 𝑠𝑖 (𝑡)

𝑃 (𝑡)
=

𝑥𝑖 (𝑡) 𝑠𝑖 (𝑡)
∑𝑛

𝑗=1 𝑥𝑗 (𝑡) 𝑠𝑗 (𝑡)
, 𝑖 = 1, 𝑛. (4)

The weights 𝑤𝑖 (𝑡) are not all independent, because of the norming condition ∑𝑛
𝑖=1 𝑤𝑖 (𝑡) = 1.

The state of the stock portfolio can be determined either by prices s = (𝑠1, ..., 𝑠𝑛) and quantities
x = (𝑥1, ..., 𝑥𝑛), or by prices s = (𝑠1, ..., 𝑠𝑛), weights w = (𝑤1, ..., 𝑤𝑛) and total portfolio value 𝑃 (𝑡).
We assume that the portfolio state is given by price-quantity pair (s, x).

The portfolio state (s, x) varies because of changes in stock prices s due to market situation
or changes in stock quantities x due to policy (actions) of portfolio manager.

Possible actions for the 𝑖-th stock in the portfolio are to hold the stock, to buy or to sell some
units of the stock.
As a result of actions for the time period △𝑡 > 0 change in the quantity of units of the 𝑖-th

stock in the portfolio is equal to △𝑥𝑖 = 𝑥𝑖 (𝑡 + △𝑡) − 𝑥𝑖 (𝑡). If △𝑥𝑖 > 0, then △𝑥𝑖 units of the stock
are purchased, if △𝑥𝑖 < 0, then |△𝑥𝑖| units of the stock are sold, if △𝑥𝑖 = 0, then 𝑥𝑖 (𝑡) units of the
stock are being held in the portfolio.

Asset allocation policy x (𝑡) may be explicit with quantities of stocks being functions of time
and/or stock prices, i.e. x = x (𝑡, s). We assume that asset allocation policy x (𝑡) is determined
implicitly as a solution of the system of differential equations

𝑑𝑥𝑖 = 𝑓𝑖 (𝑡, s,x) 𝑑𝑡, 𝑖 = 1, 𝑛 (5)
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with initial conditions (initial stock quantities)

𝑥𝑖 (𝑡0) = 𝑥(0)𝑖 , 𝑖 = 1, 𝑛. (6)

Actually, the system (5) should be treated as a system of SDE with zero diffusion coefficients,
because right-hand sides of system (5) depend on stochastic stock price processes 𝑠𝑖 (𝑡), following
(1) with initial conditions (2).

When functions 𝑓𝑖 (𝑡, s,x) in (5) are fixed, the portfolio management policy is fully determined
by equations (1) and (5) with initial conditions (2) and (6), the portfolio dynamics depends only
on the initial state of the portfolio (s(0), x(0)) at time 𝑡0 and is independent of the past (𝑡 < 𝑡0).
Thus, we determine the portfolio policy by choosing various functions 𝑓𝑖 (𝑡, s,x) on the

right-hand side of equations (5) and receive Markov decision process for portfolio management.

3. Construction of portfolio with given properties

Construction of stock portfolio with desired characteristics and evaluation of its risk and
performance using simulation and optimization plays extremely important role in modern
financial industry [8]. The desired properties of the portfolio can be a given rate of return, a
given risk metric (variance of return, value at risk, expected shortfall), given structural (country,
industry, rating) ratios, etc.
As we will show below, portfolio management policy may be based on construction of

ordinary differential equations (ODE) by a given integral manifold. Originally, construction of
ODE from a given integral curve was proposed by Yerugin [9] and later extended to dynamical
systems of general nature by Galiullin [10], Mukharlyamov [11] and many other authors [12].
The method is widely used in investigations of controlled dynamical systems and allows

to construct equations of motion from given properties of trajectories taking into account
additional requirements, such as stability of the given manifold or optimality in some sense.
The problem of construction of equations in the class of Ito SDE by known properties of motion
was investigated by Tleubergenov [13, 14, 15].

We assume that price dynamics of stocks in the portfolio is described by SDE (1) with initial
conditions (2) and quantities of stocks follow Markov portfolio policy, implicitly determined by
equations (5) with initial conditions (6). The functions on the right-hand sides of equations (1)
and (5) are assumed to be continuous in time 𝑡 and Lipschitz in portfolio state variables s,x.
We consider portfolio properties in the form of 𝑙 equalities

𝜔𝑘 (𝑡, s, x) = 0, 𝑘 = 1, 𝑙, 𝑙 < 𝑛 (7)

where Jacobian 𝑙 × 𝑛-matrix ( 𝜕
𝜕x) is of maximum rank 𝑙.

Basically, the stochasticity of stock prices driven by SDE (1) leads to violation of equalities
(7), so our goal is to find a portfolio policy of the form (5), which ensures that equalities (7) are
satisfied on ensemble average, i.e.

𝔼 [𝜔𝑘 (𝑡, s (𝑡) , x (𝑡))] = 0, 𝑘 = 1, 𝑙, ∀𝑡 ⩾ 𝑡0, (8)
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where 𝔼 denotes expected value (ensemble average) [16] and for a stochastic process 𝑋 (𝑡)

𝔼 [𝑋 (𝑡)] =
+∞

∫
−∞

𝑥𝑓𝑋 (𝑥, 𝑡) 𝑑𝑥, (9)

where 𝑓𝑋 (𝑥, 𝑡) is the probability density function of 𝑋 (𝑡) at time 𝑡.
This statement of the problem differs from common approach to construction of stochastic

differential equations by given integral manifold [13], when properties (7) are supposed to
be satisfied exactly. But in portfolio management problem this implies restrictions on price
equations (1), which is not relevant for financial market models.

Stochastic differentials of 𝜔𝑘 can be calculated using the multidimensional Ito’s formula [17]

𝑑𝜔𝑘 = (
𝜕𝜔𝑘
𝜕𝑡

+
𝑛
∑
𝑖=1

𝜕𝜔𝑘
𝜕𝑠𝑖

𝜇𝑖 +
𝑛
∑
𝑖=1

𝜕𝜔𝑘
𝜕𝑥𝑖

𝑓𝑖 +
1
2

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝑚
∑
ℎ=1

𝜎𝑖ℎ𝜎𝑗ℎ
𝜕2𝜔𝑘
𝜕𝑠𝑖𝜕𝑠𝑗

) 𝑑𝑡+

+
𝑛
∑
𝑖=1

𝑚
∑
ℎ=1

𝜎𝑖ℎ
𝜕𝜔𝑘
𝜕𝑥𝑖

𝑑𝑊ℎ, 𝑘 = 1, 𝑙. (10)

Arbitrary (unknown) functions 𝑓𝑖 in (5) can be chosen in such a way that the following
equalities hold true

𝜕𝜔𝑘
𝜕𝑡

+
𝑛
∑
𝑖=1

𝜕𝜔𝑘
𝜕𝑠𝑖

𝜇𝑖 +
𝑛
∑
𝑖=1

𝜕𝜔𝑘
𝜕𝑥𝑖

𝑓𝑖 +
1
2

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝑚
∑
ℎ=1

𝜎𝑖ℎ𝜎𝑗ℎ
𝜕2𝜔𝑘
𝜕𝑠𝑖𝜕𝑠𝑗

= −
𝑙

∑
𝑞=1

𝜆𝑘𝑞𝜔𝑞, 𝑘 = 1, 𝑙, (11)

where 𝜆𝑘𝑞 (𝑡, s,x) are arbitrary functions. Equations (11) can be regarded as a system of 𝑙 linear
algebraic equations for 𝑛 unknown functions 𝑓𝑖:

𝑛
∑
𝑖=1

𝜕𝜔𝑘
𝜕𝑥𝑖

𝑓𝑖 = −𝜑𝑘, 𝑘 = 1, 𝑙, (12)

where

𝜑𝑘 =
𝑙

∑
𝑞=1

𝜆𝑘𝑞𝜔𝑞 +
𝜕𝜔𝑘
𝜕𝑡

+
𝑛
∑
𝑖=1

𝜕𝜔𝑘
𝜕𝑠𝑖

𝜇𝑖 +
1
2

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝑚
∑
ℎ=1

𝜎𝑖ℎ𝜎𝑗ℎ
𝜕2𝜔𝑘
𝜕𝑠𝑖𝜕𝑠𝑗

.

Applying the methodology of Moore–Penrose pseudoinverse matrices [18] to system (12),
we obtain the solution of (12) in the following matrix form:

f = −( 𝜕
𝜕x

)
+
+ [𝕀𝑛 − ( 𝜕

𝜕x
)
+ 𝜕
𝜕x

] , ( 𝜕
𝜕x

)
+
= 𝜕

𝜕x

𝑇
( 𝜕
𝜕x

𝜕
𝜕x

𝑇
)
−1

, (13)

where 𝜙 = (𝜑1, ..., 𝜑𝑙)
𝑇, 𝕀𝑛 is the identity 𝑛 × 𝑛-matrix, = (Φ1, ..., Φ𝑛) is a vector of arbitrary

functions. The pseudoinverse matrix ( 𝜕
𝜕x)

+
exists, because the Jacobian matrix 𝜕

𝜕x has the
highest rank 𝑙. Substituting the corresponding expression from (12) for 𝜙, we obtain the solution
of (12) in the following final form

f = −( 𝜕
𝜕x

)
+
[Λ𝜔 + 𝜕

𝜕𝑡
+ 𝜕
𝜕s
𝜇 + 1

2
tr (𝜎𝑇 𝜕2

𝜕x2
𝜎)] + [𝕀𝑛 − ( 𝜕

𝜕x
)
+ 𝜕
𝜕x

] , (14)
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where Λ = (𝜆𝑘𝑞), tr is matrix trace operation.
We additionally assume that for any 𝑘, 𝑞 = 1, 𝑙 the random variables 𝜆𝑘𝑞 and 𝜔𝑞 are indepen-

dent, then, averaging the equalities (10) along ensemble of trajectories under the policy (14), we
receive that

𝑑𝔼 [𝜔𝑘]
𝑑𝑡

= −
𝑙

∑
𝑞=1

𝔼 [𝜆𝑘𝑞] 𝔼 [𝜔𝑞] , 𝑘 = 1, 𝑙. (15)

The system of ODE (15) admits the trivial solution 𝔼 [𝜔𝑘] = 0, 𝑘 = 1, 𝑙, which implies that
the portfolio with stock dynamics (1) and portfolio policy (5) admits portfolio properties (8).
Thus, we receive the following statement on Markov portfolio policies with given portfolio

properties.
Markov asset allocation policy (5) with right-hand sides given by (14) admits the specified

portfolio properties (8), provided that Λ = (𝜆𝑘𝑞 (𝑡, s,x)) is an arbitrary 𝑙 × 𝑙-matrix such that the
random variables 𝜆𝑘𝑞 (𝑡, s (𝑡) , x (𝑡)) and 𝜔𝑞 (𝑡, s (𝑡) , x (𝑡)) are independent, (𝑡, s,x) is an arbitrary
column vector.
Portfolio asset allocation policy (5) with right-hand sides given by (14) can be applied to

portfolios containing stocks, currencies and commodities. By choosing arbitrary functions 𝜆𝑘𝑞
and Φ𝑖 it is possible to ensure the stability of portfolio policy or to find an optimal policy for
given reward function and discount factor.

Asset portfolio can include cash account, be self-financing, and incorporate other additional
features. The value of portfolio with cash account and 𝑛 risky assets is equal to

𝑃 (𝑡) = 𝑥0 (𝑡) +
𝑛
∑
𝑖=1

𝑥𝑖 (𝑡) 𝑠𝑖 (𝑡) ,

where 𝑥0 (𝑡) denotes the balance of cash account at time 𝑡.
The portfolio is self-financing [17], if no external inflow or outflow of cash and stocks takes

place and the purchase of a stock must be financed by cash on cash account or by sale of some
stocks from the portfolio. The portfolio with cash account is self-financing, if [17]

𝑑𝑃 =
𝑛
∑
𝑖=1

𝑥𝑖𝑑𝑠𝑖 + 𝑟𝑥0𝑑𝑡,

where 𝑟 > 0 is the fixed interest rate of cash account. This implies that the balance of cash
account 𝑥0 satisfies the following equation [19]

𝑑𝑥0 = (𝑟𝑥0 −
𝑛
∑
𝑖=1

𝑠𝑖𝑓𝑖) 𝑑𝑡,

where functions 𝑓𝑖 from (5) determine the portfolio policy.

4. Modeling self-financing portfolio with given structure

We consider a self-financing portfolio with cash account and two risky assets (stocks), driven
by geometric Brownian motion, and assume that the portfolio management policy is given in
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implicit form (5). The portfolio dynamics is determined by the following system of SDE:

⎧
⎪⎪

⎨
⎪⎪
⎩

𝑑𝑠1 =𝜇1 𝑠1 𝑑𝑡 + 𝜎1 𝑠1 𝑑𝑊1,
𝑑𝑠2 =𝜇2 𝑠2 𝑑𝑡 + 𝜎2 𝑠2 𝑑𝑊2,
𝑑𝑥0 = (𝑟 𝑥0 − 𝑠1𝑓1 (𝑡, s, x) − 𝑠2𝑓2 (𝑡, s, x)) 𝑑𝑡,
𝑑𝑥1 = 𝑓1 (𝑡, s, x) 𝑑𝑡,
𝑑𝑥2 = 𝑓2 (𝑡, s, x) 𝑑𝑡.

(16)

Here 𝑠1, 𝑠2 are the stock prices, 𝑥0 is the balance of cash account, 𝑥1, 𝑥2 are the quantities of
stocks in the portfolio, s = (𝑠1, 𝑠2), x = (𝑥0, 𝑥1, 𝑥2), 𝜇1, 𝜇2 are the instantaneous rates of return,
𝜎1, 𝜎2 are the volatilities of stocks, 𝑊1, 𝑊2 are independent standard Wiener processes, 𝑟 is the
interest rate of cash account.

We assume that the desired portfolio property is the condition that 80% of the portfolio assets
is invested in risky assets (stocks).
The value of the portfolio under consideration is equal to 𝑃 = 𝑥0 + 𝑥1𝑠1 + 𝑥2𝑠2, and weights

of cash and stocks are equal to

𝑤0 =
𝑥0

𝑥0 + 𝑥1𝑠1 + 𝑥2𝑠2
, 𝑤1 =

𝑥1𝑠1
𝑥0 + 𝑥1𝑠1 + 𝑥2𝑠2

, 𝑤2 =
𝑥2𝑠2

𝑥0 + 𝑥1𝑠1 + 𝑥2𝑠2
.

The desired portfolio property can be expressed as the following relation between the stock
weights 𝑤1 and 𝑤2:

𝑤1 + 𝑤2 =
𝑥1𝑠1 + 𝑥2𝑠2

𝑥0 + 𝑥1𝑠1 + 𝑥2𝑠2
= 0.8,

which can be transformed into the equality

𝜔 ≡ −4𝑥0 + 𝑥1𝑠1 + 𝑥2𝑠2 = 0. (17)

Our goal is to determine the unknown functions 𝑓1, 𝑓2 in (16) to guarantee the portfolio
property (17) on ensemble average.
According to Ito’s lemma the stochastic differential of 𝜔 is equal to

𝑑𝜔 = (−4𝑟𝑥0 + 𝜇1𝑥1𝑠1 + 𝜇2𝑥2𝑠2 + 5𝑠1𝑓1 + 5𝑠2𝑓2) 𝑑𝑡 + 𝜎1𝑠21𝑑𝑊1 + 𝜎2𝑠22𝑑𝑊2. (18)

We set the unknown functions 𝑓1, 𝑓2 so, that the drift term at 𝑑𝑡 is equal to −𝛼𝜔, 𝛼 ∈ ℝ:

− 4𝑟𝑥0 + 𝜇1𝑥1𝑠1 + 𝜇2𝑥2𝑠2 + 5𝑠1𝑓1 + 5𝑠2𝑓2 = −𝛼𝜔. (19)

Equality (19) is the linear algebraic equation for the determination of unknown functions
𝑓1, 𝑓2, and the general solution of equation (19) is:

𝑓1 = −
𝑠1

𝑠21 + 𝑠22
𝜑 + 𝑠2𝜓 , 𝑓2 = −

𝑠2
𝑠21 + 𝑠22

𝜑 − 𝑠1𝜓 , (20)

where 𝜑 = 0.2𝛼𝜔 − 0.8𝑟𝑥0 + 0.2𝜇1𝑥1𝑠1 + 0.2𝜇2𝑥2𝑠2, 𝛼 ∈ ℝ, 𝜓 is an arbitrary function of 𝑡 , s,x.
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Thus, SDE system (16) for modeling prices and quantities of the portfolio with given property
(17) takes the following form with an arbitrary constant 𝛼 ∈ ℝ and an arbitrary function 𝜓:

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

𝑑𝑠1 =𝜇1 𝑠1 𝑑𝑡 + 𝜎1 𝑠1 𝑑𝑊1,
𝑑𝑠2 =𝜇2 𝑠2 𝑑𝑡 + 𝜎2 𝑠2 𝑑𝑊2,
𝑑𝑥0 = (𝛼𝜔 + 0.2𝑟𝑥0 + 0.2𝜇1𝑥1𝑠1 + 0.2𝜇2𝑥2𝑠2) 𝑑𝑡,

𝑑𝑥1 = (−
𝑠1

𝑠21 + 𝑠22
(0.2𝛼𝜔 − 0.8𝑟𝑥0 + 0.2𝜇1𝑥1𝑠1 + 0.2𝜇2𝑥2𝑠2) + 𝑠2𝜓) 𝑑𝑡,

𝑑𝑥2 = (−
𝑠1

𝑠21 + 𝑠22
(0.2𝛼𝜔 − 0.8𝑟𝑥0 + 0.2𝜇1𝑥1𝑠1 + 0.2𝜇2𝑥2𝑠2) − 𝑠1𝜓) 𝑑𝑡.

(21)

5. Simulation of self-financing portfolio with given structure

To verify that the portfolio model (21) satisfies the portfolio property (17) we simulate the
trajectories of system (21) for the time segment [𝑡0, 𝑇].

So we divide the segment [𝑡0, 𝑇] into𝑁 equal parts of length ℎ = 𝑇−𝑡0
𝑁 and simulate a discretized

version of SDE (21).
There exists a number of discretization schemes available, such as Milstein scheme [20] and

stochastic version of Runge-Kutta methods [21, 22], but the most intuitive, easy to implement
and common is Euler-Maruyama scheme [23]. Euler-Maruyama discretization of (21) gives us
the following equations:

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

𝑠1,𝑘+1 = 𝑠1,𝑘 + 𝜇1 𝑠1,𝑘 ℎ + 𝜎1 𝑠1,𝑘 √ℎ𝑍1,𝑘,

𝑠2,𝑘+1 = 𝑠2,𝑘 + 𝜇2 𝑠2,𝑘 ℎ + 𝜎2 𝑠2,𝑘 √ℎ𝑍2,𝑘,
𝑥0,𝑘+1 =𝑥0,𝑘 + (𝛼𝜔𝑘 + 0.2𝑟𝑥0,𝑘 + 0.2𝜇1𝑥1,𝑘𝑠1,𝑘 + 0.2𝜇2𝑥2,𝑘𝑠2,𝑘) ℎ,

𝑥1,𝑘+1 =𝑥1,𝑘 −
0.2𝛼𝜔𝑘 − 0.8𝑟𝑥0,𝑘 + 0.2𝜇1𝑥1,𝑘𝑠1,𝑘 + 0.2𝜇2𝑥2,𝑘𝑠2,𝑘

𝑠21,𝑘 + 𝑠22,𝑘
𝑠1,𝑘ℎ + 𝑠2,𝑘𝜓ℎ,

𝑥2,𝑘+1 =𝑥2,𝑘 −
0.2𝛼𝜔𝑘 − 0.8𝑟𝑥0,𝑘 + 0.2𝜇1𝑥1,𝑘𝑠1,𝑘 + 0.2𝜇2𝑥2,𝑘𝑠2,𝑘

𝑠21,𝑘 + 𝑠22,𝑘
𝑠2,𝑘ℎ − 𝑠1,𝑘𝜓ℎ,

(22)

where 𝑠𝑖,𝑘 = 𝑠𝑖 (𝑡𝑘), 𝑥𝑖,𝑘 = 𝑥𝑖 (𝑡𝑘), 𝑡𝑘 = 𝑡0 + 𝑘ℎ, 𝜔𝑘 = −4𝑥0,𝑘 + 𝑥1,𝑘𝑠1,𝑘 + 𝑥2,𝑘𝑠2,𝑘, 𝑍𝑖,𝑘 are i.i.d. random
variables with standard normal distribution, i.e. 𝑍𝑖,𝑘 ∼ 𝒩 (0, 1).

Basically, simulation of SDE is a resource-intensive application, so to speed up the simulation
one has to enable GPU acceleration. PyOpenCL [24] is a programming environment for access
to OpenCL parallel computation framework [25] from Python language.
To apply PyOpenCL environment for portfolio simulation, one has to follow the typical

sequence of steps:

1. Import the OpenCL API, obtain an OpenCL platform and a GPU device id:

import pyopencl as cl
plat = cl.get_platforms()[0]
dev = plat.get_devices()[2]
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2. Initialize a context for the selected GPU device, create a Queue object (with profiling
enabled to track computation time), create memory buffers on GPU for input and output
data (here p, q and s_gpu are NumPy arrays):

opencl_context = cl.Context(devices=[dev])
command_queue = cl.CommandQueue(opencl_context,

properties=cl.command_queue_properties.PROFILING_ENABLE)
p_buffer = cl.Buffer(opencl_context,

cl.mem_flags.READ_ONLY | cl.mem_flags.COPY_HOST_PTR, hostbuf=p)
q_buffer = cl.Buffer(opencl_context,

cl.mem_flags.READ_ONLY | cl.mem_flags.COPY_HOST_PTR, hostbuf=q)
s_buffer = cl.Buffer(opencl_context,

cl.mem_flags.WRITE_ONLY, s_gpu.nbytes)

3. Store the source code of C functions for GPU execution in Python strings (sde_step_src
contains source code of one step of SDE simulation according to (22), simulate_sde_src
contains source code of main kernel function, being called from Python):

sde_step_src = """
// One step of SDE simulation
static void sde_step(__global double *p, double *x, double W)
{
double s1n, s2n, x0n, x1n, x2n;
x[5] = -0.8*x[2] + 0.2*x[3]*x[0] + 0.2*x[4]*x[1]; // omega
s1n = p[P_M1]*x[0]*p[P_DT] + p[P_S1]*x[0]*p[P_SQRDT]*W;
s2n = p[P_M2]*x[1]*p[P_DT] + p[P_S2]*x[1]*p[P_SQRDT]*W;
x0n = (p[P_A]*x[5] + 0.2*p[P_R]*x[2] + 0.2*p[P_M1]*x[3]*x[0] +

0.2*p[P_M2]*x[4]*x[1])*p[P_DT];
x1n = -x[0]*(p[P_A]*x[5] - 0.8*p[P_R]*x[2] + 0.2*p[P_M1]*x[3]*x[0] +

0.2*p[P_M2]*x[4]*x[1])*p[P_DT]/(x[0]*x[0]+x[1]*x[1]);
x2n = -x[1]*(p[P_A]*x[5] - 0.8*p[P_R]*x[2] + 0.2*p[P_M1]*x[3]*x[0] +

0.2*p[P_M2]*x[4]*x[1])*p[P_DT]/(x[0]*x[0]+x[1]*x[1]);
x[0] += s1n; x[1] += s2n; x[2] += x0n; x[3] += x1n; x[4] += x2n;
}"""

simulate_sde_src = """
// GPU kernel function to simulate trajectories of SDE
__kernel void simulate_sde(__global double *p, __global int *q,

__global double *s)
{
// Indexing the current element (trajectory) to process
int i = get_global_id(0);
// Pointer to the i'th row of s (output)
__global double *s_i = &s[i*6]; // 6 values in output
// Simultaneous calculation of SDE trajectories within OpenCL kernel
double x[6]; // placeholders for s1,s2,x0,x1,x2,omega
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int q_i = (int) q[i], *seed = &q_i;
const double r4_pi = 3.141592653589793;
double v1,v2;

for (int j = 0; j < 5; j++) { x[j] = p[P_S10+j]; }

for (int j = 0; j < (int) p[P_N]/2.; j++) { // 2 steps of SDE
v1 = r8_uniform_01 ( seed );
v2 = r8_uniform_01 ( seed );
sde_step( p, x, sqrt(-2.0*log(v1))*cos(2.0*r4_pi*v2) );
sde_step( p, x, sqrt(-2.0*log(v1))*sin(2.0*r4_pi*v2) );

}
for (int j = 0; j < 6; j++) { s_i[j] = x[j]; }
}"""

4. Compile the GPU C program from source:

opencl_program = cl.Program(opencl_context,
sde_hdr_src+sde_rng_src+sde_step_src+simulate_sde_src).build()

5. Enqueue the SDE simulation program on the GPU device and wait until the program
completion:

event = opencl_program.simulate_sde(command_queue, s_gpu.shape, None,
p_buffer, q_buffer, s_buffer)

event.wait()

6. Get back the output data from GPU memory into NumPy array s_gpu:

cl.enqueue_copy(command_queue, s_gpu, s_buffer).wait()

Function r8_uniform_01 is an implementation of uniform random number generator [26],
C++ versions of other random number generators may be found in [27]. Standard normally
distributed random variables 𝑍𝑖,𝑘 are implemented with Box–Muller transform [28].
Simulation of discretized equations (22) is performed using computer program in Python

with the following parameters:

𝑠1,0 = 0.9, 𝑠2,0 = 1.1, 𝜇1 = 0.3, 𝜎1 = 0.4, 𝜇2 = −0.1, 𝜎2 = 0.3, 𝑡0 = 0., 𝑇 = 1.
𝑥0,0 = 90., 𝑥1,0 = 110., 𝑥2,0 = 100., 𝑟 = 0.05, 𝛼 = 1., 𝜓 ≡ 0, 𝑁 = 100.

The results of the computer experiment are shown in Fig. 1. Green line on the last plot with
stock weights shows that the total share of stocks 𝑤1 + 𝑤2 tends to the value of 0.8, which is the
target property of the portfolio under consideration.

Thus, constructed equations (22) generate trajectories with empirical portfolio property close
to the given property (17).
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Figure 1: Simulation of portfolio with cash and two stocks and given structural ratio 𝑤1 + 𝑤2 = 0.8
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