
Semantics-based Framework for Personalized
Access to TV Content: the iFanzy Use Case

Pieter Bellekens14, Lora Aroyo12,
Geert-Jan Houben13, Annelies Kaptein4, and Kees van der Sluijs1

1 Eindhoven University of Technology, Computer Science
{p.a.e.bellekens, k.a.m.sluijs}@tue.nl

2 VU University Amsterdam, Computer Science l.m.aroyo@cs.vu.nl
3 Vrije Universiteit Brussels, Computer Science Geert-Jan.Houben@vub.ac.be

4 Stoneroos Digital Television, Hilversum annelies.kaptein@stoneroos.nl

1 Introduction

The ICT landscape is developing into a highly-interactive distributed environ-
ment in which people interact with multiple devices (e.g. portable devices such
as mobile phones and home equipment such as TV’s) and multiple applications
(e.g. computer programs such as Web browsers and dedicated Web services) [1].
Globally, the industry is being driven by the shift away from old models - from
physical space to digital space. New methods emerge for getting content such as
TV programs via the Web. Almost half of the people want to watch TV content
on their PC’s; they want to make a bridge between a TV and a PC, perhaps
even sitting in a home office [2]. The information overload is enormous and the
content presented is hardly adapted to the prior knowledge, to the preferences
and to the current situation of the user.

Personalization in information retrieval and information presentation has
therefore become a key issue and a key ingredient of the so-called “Web 2.0”
applications. However, such personalization is still local and cannot be used in
the context of other information services: e.g. personalized information is only
valid within one Web application such as an online TV Guide5. Moreover, the
online TV Guide cannot cater for different “modes” of a user, e.g. when watch-
ing a program himself, or when watching together with friends [3]. Thus, main
aspects we cover in this work are Data integration of distributed collections,
a Context modeling framework for temporal and spatial-specific viewpoints,
User modeling in a contextualized form, and Personalized presentation of
the combined information about data, context and user.

In this paper we present SenSee, a semantics-based framework for provid-
ing personalized access to TV content in a cross-media environment. It allows
for an integrated view on data harvested from heterogeneous and distributed
Web sources. The ultimate goal is to support individual and group TV viewers
(operating multiple devices, e.g. PC, set-top box and mobile) in finding pro-
grams that best suit their interests. Personalization here has to consider both
5 http://www.tvgids.nl



data-integration issues (how is information from different applications and de-
vices related?) as well as context-modeling issues (in which space/time/mode are
statements about a user valid?). iFanzy is a personalized TV guide application
using the SenSee framework. iFanzy consists of a Web-based front-end serving
as a Web-based remote control point to the set-top front-end. Future extension
is considered on a mobile platform.

SenSee integrates multiple data sources, such as BBC data from BBC Back-
stage6, XMLTV7 and IMDB8. Moreover, these sources are interconnected and
mapped to external vocabularies, like OWL Time [4], Geo Ontology, TV Any-
time genre classification9 and WordNet10,11. The resulting abundance of data is
controlled in the user interface by offering the user a faceted browsing view on
the data, i.e. they can search and browse the data based on facets for time, lo-
cation and genre. We daily retrieve the metadata from the different multimedia
sources on the Web. How we integrated this data is described later, in section 3.

Large part of this framework, primarily supporting the set-top box front-end,
has been developed within the context of the Passepartout project [1] in collabo-
ration with Philips Applied Technologies and Stoneroos Interactive Television12.
Currently Stoneroos, VU University Amsterdam and Eindhoven University of
Technology are working towards the commercial deployment of the framework
in the form of the personalized electronic program guide iFanzy13.

This is work in progress so expect to find changes over time, both on the
platform side as on the interface side. However, the basic functionality is ready
and available at http://wwwis.win.tue.nl:8888/SenSee, as well as a brief tutorial
on how to use the system. The Web client is built on top of GWT14, which
allows it to run on most modern JavaScript enabled Web-browsers. However,
so far we have only tested it in Firefox 2 and Internet Explorer 7. Note that
between 2:00h and 4:00h (GMT +1:00) the servers retrieve, parse and transform
broadcast information, so expect the application to be slower in that period of
time.

2 Architecture

Figure 1 gives an overview of the architecture of the SenSee framework (i.e.
excluding the front-end interfaces) complying with the main requirements to be
scalable, extensible and flexible. For more details on the architecture see [3].

A key element in this framework is the use of Semantic Web languages
RDF(S)/OWL to model all input data and its relationships, so that we can
6 http://backstage.bbc.co.uk/
7 http://xmltv.org/wiki/
8 http://imdb.com
9 http://www.tv-anytime.org/

10 http://wordnet.princeton.edu/
11 http://www.w3.org/2001/sw/BestPractices/WNET/wn-conversion
12 http://www.stoneroos.nl/
13 http://www.stoneroos.nl/portfolio/case-study/Passepartout-personalised-EPG
14 http://code.google.com/webtoolkit/



Fig. 1. SenSee Architecture

reason and navigate over it in a uniformly connected way. In this case it means
navigating via shared facets like time, location and genre.

For the scalability we rely on the RDF storage, inferencing and querying
framework Sesame. All data handled within the SenSee platform is stored and
retrieved by Sesame, including all metadata sources as well as the ontological
sources, the user model, and the context models.

Various client applications can use the SenSee platform. These are not only
front-end interfaces (e.g. the iFanzy settop box and Web-based applications)15,
but could also be sensored-devices like the sensor-enhanced pillow [5] we have
also developed in collaboration with V2 and CWI.

3 Data Integration

Program information from BBC broadcasts are retrieved directly from BBC
Backstage in TV-Anytime XML format. We have transformed this into OWL/RDF
and used SKOS to describe relations between concepts in the loosely struc-
tured vocabulary (i.e. by using the relations skos:broader, skos:narrower and
skos:related). Furthermore we mapped the TV-Anytime time definition to the
OWL-TIME notion of time. So, for every crawl of the data source we transform
the input XML data to RDF-instances of our schema and we transform the
data by using XPath. Another broadcast source is XMLTV program informa-
tion grabbed from several program information websites. XMLTV covers various
countries worldwide16. For demonstration purposes we have chosen to focus on
15 http://en.wikipedia.org/wiki/IFanzy
16 see http://xmltv.org/wiki/xmltvworlddomination.html for an overview



the broadcast information from UK and the Netherlands. This choice does not
imply any restrictions in the generality of the framework. Both data sources are
crawled on a daily basis.

Movie-related information we gather from the IMDB dataset (text dump
of the IMDB database; data model translated by us in RDF(S)). This text
dump however does not contain photos and movie trailers URLs. Thus, we made
scripts that on access of movie details retrieve such information live from the
Web with screen scrapers and then cache that data in the database. The IMDB
information is used for detailed descriptions of movies in the regular broadcasted
TV programming as well as in the option ”movie on demand”, e.g. on a pay-
per-view basis. As there is currently no commercial pay-per-view party involved
in the project we show-case only that it is possible to integrate such a movie
source with no time-dimension, e.g. broadcast time. For the pay-per-view option
we use the 10.000 most popular movies in the IMDB dataset (determined by the
number of IMDB votes). The information coming from BBC Backstage and the
XML-TV sources can be seen as a sliding window of 8 effective days, where the
first day is the current day. With other words, if it is now Wednesday, we have
metadata from today until and including next Wednesday.

An overview of all the datasets we use within the demo:

Data source #triples
User Model (schema) 319
IMDB schema 408
TV Anytime Genre Classification 3.971
Geo Ontology 59.835
Time Ontology 1.547
Country Codes 2.023
WordNet 1.942.887
BBC dataset (random pick) 91.447
XMLTV dataset (random pick) 1.278.718
IMDB dataset 7.969.199

Table 1. Size of data sources

4 Faceted Browsing

Bringing together TV content available from a high number of broadcasting
channels and a number of shared vocabularies for its semantics-rich representa-
tion, requires a special attention of the search and browse interface presented to
the user. Thus, we provide two ways to access and navigate within TV content,
i.e. by basic search and by facet browsing.

Figure 2 shows a screenshot of the Web interface search panel. On the left one
can browse selected facets, e.g. time, genre and location. Time is visualized as



Fig. 2. SenSee Screenshot

a calender showing the current day, and the following six days. Users can select
a day and further specify the time period. Broadcast information is time-bound
as opposed to on-demand movies, so a time-selection will only filter broadcast
results. Genre is visualized as a TV-Anytime classification tree. Users can select
one or more genres for the program their are searching for. Location information
is visualized as a IMDB-location tree. In the IMDB dataset every movie has film-
ing locations. Such location is composed as a hierarchical string. For instance,
for the movie The Godfather one of the filming locations is Bronx, New York
City, New York, USA. We parsed these strings building a hierarchy, and cre-
ated a structure modelled similar to the RFDS subclass structure, i.e. Bronx
-subComponentOf-> New York City -subComponentOf-> USA. When we en-
countered equally named location names with different parents, we created dif-
ferent unique nodes for them. For instance there is an Athens in both the USA
and in Greece, but the locations are different. It appeared that locations were
uniquely named in the database (i.e. there were no derivations like USA in one
place and United States of America in another). Users can select one or more
locations in the tree, similar as we do for genres, which limits movies that were
shot in the selected locations. Locations are in a separate store with inferencing,
so we compute the closure. If a user selects a location that has sub-components,
those will also be returned as a result.

The basic search field accepts a Google-like string input. By default the input
strings are matched to title, keywords and actor names in all sources available.
The advanced search triggers the following actions before the query execution:

– Keywords broadening: configured to query for synonyms in WordNet,
i.e. terms appearing in the same set as the input term. We currently limited



the keyword expansion to 5 new terms per keyword. The output is a set of
keywords.

– Keyword conceptualization: all facet-sources (e.g. time, genre and lo-
cation) are parsed for match for every keyword in the broader set. This
matching has three modes, i.e. strict, loose and free. In the strict match the
keyword should be syntactically equal to the concept (ignoring case), e.g.
the keyword News and the genre concept News match. Loose match looks
for sub-strings, e.g. the keyword News and the genre concept Daily News
match, where it would not match in strict mode. Free match does pattern
matching and would find the term day as a match with Friday, where it
would not match in loose match. The output is a set of concepts.

– Concepts broadening: for a given object property we traverse the corre-
sponding graphs and find related concepts (including inverse relationships).
For example, the current TIME ontology configuration is to consider the
inverse time:after relationship, i.e. we find all concepts that are connected
to a given time concept via the time:after relationship. Given, for instance,
the time:Noon concept, we will also find the time:afterNoon concept. For
the TV-Anytime genre classification we consider the skos:broader rela-
tionship, resulting in all concepts that are narrower than the input con-
cept. For example, for the tva:3.2 (Sports) concept we will also find the
tva:3.1.1.9 (Sports News), as all programs of the genre Sports News are
also about Sports.

These actions lead to execution of a number of queries in a time that depends
on number of keywords, the number of ontologies, the size of ontologies and the
configured number of extension steps. The more generic a search keyword is,
the more extensive the set of additional terms and concepts is. In the current
implementation, these broadening and conceptualization actions take on average
about 4 or 5 seconds to execute on a reasonable modern single server machine.
Currently, we perform various optimizations of the demonstrator, for example
by using keyword indexes that can considerately speed-up the process.

Results can be grouped in several facets. The user can determine which facets
to be used and in what order the results will be grouped (by dragging and
dropping the facet names in the desired order). The grouping is arranged in a
tree, where the top priority facet will make the first level of the tree. If Genre is
of highest importance to the user, the first level tree will contain the genres of
the first N results in alphabetic order. Grouping occurs in a similar fashion for
the extra facets. Note that programs can have several genres, and that results
will therefore occur more than once in the tree.

5 Personalization and Adaptation

In our previous work with a sensor-enhanced pillow [5] in combination with the
set-top box front-end, we have collected bio-sensor data in order to calibrate
the user profile. In the current Web application use case we gather user data



by monitoring the user behavior, or as we have shown in previous research by
re-using data from other application [6]. The current implementation does not
include a user interface to create user profiles yet. For the purposes of this
demo we created three different user and context profiles. The current time
is determined dynamically, however other context information, such as current
location, is for demo purposes pre-set in the context user profiles. One user
preference is language. Currently we support English, Dutch and Swedish. If
several users log at the same time their profiles are combined and the common
language is chosen. The default language is English, however if all logged users
prefer another language that language will be chosen (i.e. in general we compute
an intersection of the profiles).

The key personalization feature is adapting the search results with respect
to the user profile, i.e. content with user preferred terms and genres is ranked
higher. Negative preferences are also taken into account. Context information
is applied in a similar fashion. It can be configured in the concrete application
and adapted to the context needed there. In the current demo we assume that
people would prefer to look at certain types of TV programs that relate to the
location they are in. For example, traffic information, news and police reports
for a location in London if the user is situated there.

6 Lessons Learned and Future Work

Several problems and issues have been tackled during the work on this project.
In this section we present a brief reflection on them and draw lessons learned.

Sesame performance and scalability: In close collaboration with Aduna17

we used Sesame as the backbone RDF storage and querying. The new alpha (and
later beta) allowed us to use the newest Sesame features related to context mod-
eling. However, this came in a package with a poor query optimization (for now),
especially critical when using large datasets like IMDB. The overall result is a
slower and less scalable demonstrator. By cross testing queries in Sesame 1 and
2, and regarding that the query and data model should lead to better optimiza-
tion in the second version lead us to believe that some queries will improve in
evaluation time up to a factor 10. Similarly, by using Googles GWT toolkit for
programming the front-end we depend on its portability and efficiency (which is
for example currently rather slow and inflexible with tree-rendering).

Code optimization: Currently we undergo various optimizations of the sys-
tem, e.g. free text indexing for matching keywords. The application now runs
on a single (single-core) server because of resource limitations, while the appli-
cation lends itself quite well for parallelization, especially if we move specific
functionality to different machines. So if the application feels a bit sluggish now
(especially with multiple users), expect it to greatly speed up in the following
months.

Use of live data: Initially we aimed at working with all live data. For
instance, we did not want to store the IMDB-text dump (as it is not refreshed
17 http://www.aduna-software.com



that often), but query it live all of the time and scrape its HTML-pages. However,
after experiencing many layout changes, and thus rewrites of the screen scrapers,
we had to give that up because of the amount of work it gave us. We are using
live metadata from the BBC Backstage website.

User interface: The current faceted-based presentation of the search result
is a good demonstration of combining multiple perspectives in one view. How-
ever, we are exploring options to use timeline18 for the temporal aspect and a
map19 for the location facet. Furthermore, we aim at realizing combinations of
different facets, e.g. conventional paper TV guides typically combine the channel
facet with the time facet.

Recommendations: Recommendation functionality (currently implemented
for an empty query) needs features currently not available in our backbone
database’s query engine, such as sorting, aggregation, query nesting and update
queries. Further developments in the context of recommendations will involve
social aspects and focus more on group recommendations, content sharing, etc.

References

1. Bjorkman, M., Aroyo, L., Bellekens, P., Dekker, T., Loef, E., Pulles, R.: Personalised
home media centre using semantically enriched tv-anytime content. In: EuroITV
2006 Conference. (2006) 156–165

2. Aroyo, L., Bellekens, P., Bjorkman, M., Houben, G.J.: Semantic-based framework
for personalised ambient media. Multimedia Tools and Applications in print (2007)

3. Aroyo, L., Bellekens, P., Bjorkman, M., Houben, G.J., Akkermans, P., Kaptein, A.:
Sensee framework for personalized access to tv content. In: Interactive TV: a Shared
Experience, Amsterdam, the Netherlands, Springer (2007) 156–165

4. Hobbs, J.R., Pan, F.: An ontology of time for the semantic web. ACM Transactions
on Asian Language Information Processing (TALIP) 3(1) (2004) 66–85

5. Aroyo, L., Nack, F., Schiphorst, T., Schut, H., KauwATjoe, M.: Personalized am-
bient media experience: move.me case study. In: IUI ’07: Proceedings of the 12th
international conference on Intelligent user interfaces, New York, NY, USA, ACM
Press (2007) 298–301

6. van der Sluijs, K., Houben, G.J.: A generic component for exchanging user models
between web-based systems. IJCEELL Journal 16(1/2) (2006) 64–76

18 http://simile.mit.edu/timeline/
19 http://www.google.com/apis/maps/


