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Abstract. SMART (Semantic web information Management with automated 
Reasoning Tool) is an open-source project, which aims to provide intuitive 
tools for life scientists for represent, integrate, manage and query heterogeneous 
and distributed biological knowledge. SMART was designed with 
interoperability and extensibility in mind and uses AJAX, SVG and JSF 
technologies, RDF, OWL, SPARQL semantic web languages, triple stores (i.e. 
Jena) and DL reasoners (i.e. Pellet) for the automated reasoning. Features 
include semantic query composition and validation using DL reasoners, a 
graphical representation of the query, a mapping of DL queries to SPARQL, 
and the retrieval of pre-computed inferences from an RDF triple store. With a 
use case scenario, we illustrate how a biological scientist can intuitively query 
the yeast knowledge base and navigate the results. Continued development of 
this web-based resource for the biological semantic web will enable new 
information retrieval opportunities for the life sciences. 
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1 Introduction 

The primary goal of the Semantic Web is to add semantics to the current Web in such 
a way that machines can reason about the content [1]. Research activities in the 
Dumontier Lab are focused on using semantic web technologies to enable 
biochemical knowledge discovery [2, 3]. In combination with complimentary efforts, 
we expect that more powerful knowledge discovery tools will facilitate data 
integration in bioinformatics and create powerful new data mining opportunities over 
heterogeneous biochemical knowledge. However, friendly interfaces to query over the 
semantic web remain a critical limitation in their use and adoption. 

The open-source Semantic web information Management with automated 
Reasoning Tool (SMART) project aims to provide intuitive interfaces for the 
representation, integration, management and querying of knowledge using the 
semantic web. In this paper, we describe an initial web-based application that adopts 
an ontology centric model to perform semantic query answering over heterogeneous 
yeast biological knowledge. Ontologies in this application are described using OWL 
DL, a sublanguage of the Web Ontology Language (OWL) [4]. Features of the 



application include semantic query composition and validation using DL reasoners, a 
graphical representation of the query, a mapping of DL queries to SPARQL1 and the 
retrieval of pre-computed inferences from an RDF triple store. 

2 System Architecture 

The system architecture shown in Fig. 1 is composed of several components including 
an application mediator, a web-based user interface, an ontology repository, an 
ontology index, a hybrid reasoner which optimizes the reasoning process by 
converting a DL expression into SPARQL, and a SPARQL query engine for querying 
a database/triple store. SMART was implemented using the Java programming 
language and interoperates with other open source and Semantic Web technologies, 
including the WonderWeb OWL API2, Pellet3, Jena4, and Protégé5.  

 

 
Fig. 1. SMART Architecture 

 
SMART Mediator: The SMART Mediator is the core component of the system 
which enables decoupled interactions among components, controls the behavior of the 
system, and manages ontologies used by the application. The mediator loads URI-
identified ontologies via the ontology repository. The retrieved ontology becomes the 
active ontology upon which reasoning and query answering may occur. The mediator 
will also resolve and load ontologies imported by the active ontology. The mediator 
enables communication between components and this supports sophisticated multi-
component behavior such as the use of a reasoner or ontology index by the user 

                                                           
1 http://www.w3.org/TR/rdf-sparql-query/ 
2 http://wonderweb.man.ac.uk/owl/ 
3 http://pellet.owldl.com/ 
4 http://jena.sourceforge.net/ 
5 http://protege.stanford.edu/ 



interface. The manipulation of OWL documents and data structures by multiple 
SMART components is facilitated by the OWL API. 
 
Ontology Repository: The ontology repository supports storage and retrieval of URI-
identified ontologies. The current implementation will store new or modified 
ontologies into the repository. Ontologies can be stored and retrieved in/from the 
repository by using its URI or the combination of the URI and a version number, thus 
it provides a simple mechanism for versioning modified ontologies. This 
implementation uses a file based system to store ontologies, but other 
implementations could use more sophisticated storage solutions such as relational 
databases or version control systems. 
 
Ontology Indexer: The ontology indexer enables fast and easy access to entities 
defined in the active ontology. Indexed entities include class, property, individual 
names and their types. Thus, this component supports partial entity name matches, 
and retrieval of specific types of entities. The current implementation leverages the 
speed and power of the Lucene6 Text Indexer, therefore, it eliminates the need for in-
memory data structures for caching entity metadata. 
 
Hybrid Reasoner: Reasoning about large ontologies can be expensive both in terms 
of time and space. For this reason, we have implemented a “cached-reasoning” 
service that retrieves pre-computed inferences about an OWL-DL ontology. 
Ontologies loaded into the system are sent to a DL reasoner offline and the inferences 
retrieved are explicitly stored in the triple store. The Hybrid Reasoner component uses 
the DL2SPARQL component to convert an OWL Class expression to a SPARQL 
query which is sent to a SPARQL query engine via the SMART mediator. The hybrid 
reasoner currently answers queries that involve subsumption, realization and role 
restrictions. Queries composed of negation or cardinality restrictions currently require 
a DL reasoner, or a knowledge base that integrates a DL reasoner. Nevertheless, this 
component optimizes the querying of large OWL ontologies that could take a long 
time to reason about or would require more memory than is currently available. 
 
SPARQL Query Engine: The SPARQL Query Engine provides the ability to query a 
triple store repository using SPARQL. The interface provides an API for components 
that require SPARQL query services, such as sending a SPARQL query and obtaing a 
result set. Implementations for Jena, AllegroGraph and Sesame serve as wrappers for 
the vendor-specific APIs, hiding them from the components that use the services. 
 
Graphical User Interface: SMART’s web-based, graphical user interface supports 
semantic query construction and validation, result retrieval and presentation. The 
graphical interface is built primarily on the combination of two important 
technologies: Java Server Faces (JSF)7 and Asynchronous Javascript and XML 
(AJAX)8. This combination supports the development of reusable event-driven UI 
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components connected to a server application that eliminates the need to reload pages. 
Such behavior was desirable as certain components were expected to be re-used by 
different parts of the user interface, and in which the ability to react to user content in 
real time was also deemed essential. The user interface has been tested and operates 
optimally with Mozilla FireFox 1.5. 

3 Semantic Query Answering 

We believe that semantic query answering occurs when ontologically-defined entities 
and roles are used to answer conjunctive queries. In this way, ontologies define the 
lexical granularity from which queries may be formulated and offer the necessary 
semantics to evaluate whether an answer to a query may possibly exist.  

A query language will determine the possible questions that a user can ask to the 
system. For example, in the relational database world, SQL is the standard language 
used for creating queries. Several rich query languages exist for querying RDF/OWL 
data. These include RQL [5, 6], nRQL [7]. While powerful queries may be formulated 
using these languages, they require training and thus pose a challenge for non-experts 
users. To facilitate semantic query formulation, we utilize the Manchester OWL 
Syntax [8] to define DL queries (i.e. queries defined by a class description). An 
important feature of this language, which makes it more readable and easier to 
understand than traditional descriptive logics syntax, is that it uses an infix notation 
rather than a prefix notation for keywords. E.g. the traditional DL expression: Father 
! ! isMarriedTo.Architect would be written as “Father that isMarriedTo some 
Architect” in this syntax. While room for improvement still exists, constructing class 
expressions using this syntax is substantially easier to formulate by non-DL experts, 
and reduces the technical barrier of learning another query language.  

In SMART, DL queries are created in a text box using the web-based user 
interface. Real-time feedback allows users to construct syntactic, semantic and logical 
valid queries. This feedback is given as follows: First, a list of entities contained in 
the knowledge base (class, property, and individual names) are suggested based on a 
partial word matches as they are entered by the user. The user may continue typing 
the word or select one of the suggested words. However, if the user types a word that 
is not found in the system, an error appear as the query is not valid. Moreover, the 
correct type of entity is suggested for the phrase under construction thereby 
encouraging users to build grammatically valid queries. Second, a valid DL query is 
verified by a DL reasoner on the server side, and a message appears below the query 
expression which notifies, as the user enters the query, if his/her class expression is 
valid or not. This allows early recognition of semantic errors, and enforces logically 
valid expressions. Finally, a graphical representation of the query is displayed to aid 
in the interpretation of complex or nested expressions. These dynamic features were 
made possible by leveraging the Manchester OWL Syntax parser from Protégé 4 
(alpha) that convert the DL query into an OWL API object that can be exchanged 
with a DL reasoner. 



 Use Case Scenario: Querying Yeast Biological Knowledge 

This section aims to illustrate how SMART may be used for semantic query 
answering over yeast biological knowledge. We loaded the yOWL ontology and 
3,423 instances populated from the Saccharomyces Genome Database (SGD). For 
more information about this ontology, refer to [2]. The yOWL ontology currently 
contains 244 classes, from which 38 are defined, 57 object properties and 22 
annotation properties9.  

In this scenario, a scientist wants to know which yeast genes/proteins that exhibit 
transferase activity (aka transferases) are part of a molecular complex and have been 
associated with a nonviable (or fatal) outcome when removed. 

Our scientist will first access SMART online at http://smart.dumontierlab.com and 
begin composing her query in the query text box. She first tries “transferase”, but 
SMART offers no matching terms in the suggestion box. She decides to make her 
query more explicit by defining exactly what she means. She starts by typing “Gene”, 
SMART suggests this word among others based on partial word matching to 
knowledge base entities. She selects “Gene” by hitting the tab button, presses the 
space bar, and begins typing a character. A message indicates that the expression is 
not valid and when she presses the “why?” link, a window appears to explain that 
SMART expects a boolean class constructor (and, or, not, that) to formulate a 
conjunctive query. She quickly types the “and” operator.  

 

 
Fig. 2. SMART web-based interface for query composition with suggestions. 

 
Next, she would like to look for genes that have the transferase function as defined 

by the Gene Ontology (GO)10. Fig. 2 illustrates the property suggestions starting with 
the letters “has”. She selects “hasFunction” and is now prompted to select 
existential/universal or cardinality restrictions (some, only, value, min, max, exactly) 
to modify the range of the predicate. Knowing that genes/proteins often have multiple 
functions, she wants to find “some” that have at least this function and defines the 
property range as the GO term Transferase_activity. She formulates the following 
syntactically, logically and semantically correct DL query to her question: 
 
Gene and hasFunction some Transferase_activity and isPartOf some Complex and 
isParticipantIn some (Experiment and hasOutcome some Nonviable) 
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http://ontology.dumontierlab.com/yOWL-1.0


 
A corresponding graphical representation of the text query can simultaneously be 

seen in the Query Graph tab (Fig. 3). This graph query will allow our scientist to 
visualize the query in a more intuitive way. Once the user is satisfied with the query, 
she can then click the Answer button to obtain the results. 

 

  
Fig. 3. SMART web-based interface screenshot showing the synchronization between 
the text query and the query graph generated.  

This query will now be answered by the hybrid reasoner which maps the DL query 
to the following SPARQL query to be answered, in this case, by Jena: 

 
SELECT DISTINCT ?i  
WHERE {{{  
{?i <http://ontology.dumontierlab.com/bro-.0#isParticipantIn> _:var2. 
 _:var2 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> 
<http://ontology.dumontierlab.com/yowl-1.0#Experiment>.  
_:var2  <http://ontology.dumontierlab.com/yowl-.0#hasOutcome> _:var3.  
_:var3  <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> 
<http://ontology.dumontierlab.com/yowl-1.0#Nonviable>}} 
{?i  <http://ontology.dumontierlab.com/bro-.0#isPartOf> _:var0.  
_:var0  <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> 
<http://ontology.dumontierlab.com/yowl-1.0#Complex>.  
?i  <http://ontology.dumontierlab.com/bro-1.0#hasFunction> _:var1.  
_:var1  <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> 
<http://ontology.dumontierlab.com/goslim-1.0#Transferase_activity>.  
?i  <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> 
<http://ontology.dumontierlab.com/yowl-1.0#Gene>}}} 
 
The result is then displayed in the Results tab (Fig. 4), which supports HTML 

navigation of RDF/OWL graphs by dynamically retrieving individuals (nodes) their 
associated properties (edges) from the knowledge base. For instance, on selecting the 
“BET4” protein, a new panel to the right of the one selected lists properties associated 
to “BET4”. On selecting the “isParticipantIn” property, a new panel opens to the right 
of the property panel. By selecting one of the results such as “experiment_30”, she 
may further explore what is know about “experiment_30” or backtrack to explore 
other individuals. Thus, the path across multiple related individuals can be kept while 
providing the flexibility to investigate other individuals and their relations. 
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Fig. 4. SMART web-based interface screenshot showing the results navigation.  

4 Discussion 

SMART empowers users to create simple expressions that allow them to pose 
sophisticated conjunctive queries over a knowledge base. Query answering operates 
under the open world assumption and the lack of unique name assumption according 
to the Semantic Web semantics. The results obtained from these queries may include 
class membership inferences (using necessary and sufficient conditions to define 
classes) that are not available from browsing the original SGD database. Moreover, 
capturing user-generated definitions (i.e. transferase as defined in the use case) will 
create opportunities for capturing ontological concepts with more powerful semantics 
than with Web 2.0 tagging. SMART can handle any ontology in the OWL language 
for semantic query answering. To overcome problems with on the fly reasoning about 
a large knowledge base, we used pre-computed inferences using a DL reasoner. This 
substantially speeds up query answering on typical queries involving class 
subsumption and class membership over a large amount of distributed and 
heterogeneous biological data. However, substantial challenges remain for truth 
maintenance upon the addition of new knowledge.  

A general design principle of the user interface, based on results obtained from a 
recent survey carried out in our lab for Canadian scientists, was to investigate the use 
of English-like phrases for query composition. Surveys on the ease of use and 
functional aspects by biology and computer science students in the lab have yielded 
positive feedback, although a more rigorous usability study has yet to be performed. 
While the user-tested Manchester OWL syntax and the Protégé expression parser lend 
a first step towards this directly, it is anticipated that other, more sophisticated 
controlled natural languages such as Sydney OWL syntax [9] will play a major role as 
an enabling technology. In this work, we also explored the use of a graphical 
language (similar to GLOO [10]) for simplifying the interpretation of complex 
(and/or) nested expressions. We expect that the addition of interactive elements to our 
graphical graph query interface will enable an interesting and alternative mechanism 



for query formulation that might appeal to a large segment of the public. Since a user 
never has to read/write/understand XML/RDF/OWL, SPARQL, SQL or any other 
query language created for machine consumption, we consider that further 
developments in this area is essential for non-experts to tap into the potential of the 
semantic web.  

5 Conclusions and Future Work 

In this paper, we described the modular architecture and basic functionality of 
SMART, an easy to use web-based application for the semantic web. Initial 
functionality includes semantic query answering and browsing the results over an 
OWL knowledge base using (when possible) pre-computed inferences. Ongoing work 
includes exploratory content browsing, interactive graphical query formulation, 
knowledge composition, and truth maintenance. Efforts are also being directed to 
support user-specified ontology imports, queued reasoning, and implementation of 
DL extensions for SPARQL. 
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