CEUR-WS.org/Vol-2950/paper-13.pdf

Developing Contemporary Web-Based Interaction Logging
Infrastructure: The Design and Challenges of LogUI

David Maxwell!, Claudia Hauff?

Delft University of Technology, The Netherlands

Abstract

Studies involving user interfaces typically involve the capturing and recording (logging) of key user interactions between
the user and the system being examined. However, anecdotal evidence suggests that researchers often implement their own
logging infrastructure—sometimes in a piecemeal fashion—which can lead to numerous implementation mistakes (due to
misunderstanding or ignoring differences between web browsers, for example). While efforts have been made to develop
interaction logging solutions for experimentation and commercial use, many solutions either use obsolete technology, are
prohibitively expensive, are complex to use (and require extensive programming knowledge), or have no source code avail-
able. To address these issues, we have developed LogUI, an easy-to-use yet powerful interaction logging framework that
can capture virtually any user interaction within a web-based environment. LogUl has been successfully used in several
user studies since its launch. This paper provides an in-depth discussion into how we have designed LogUI, and provides

narrative on the key challenges that we are looking to address moving forward.

Keywords

Interaction Logging, Logging, Web Application, Experimental Apparatus, User Study, User Behavior

1. Introduction

Web applications [17, 26] are commonplace in our daily
lives. The interplay that takes place between a user and
a web application are in essence a series of interactions
with the elements that make up the webpage. This web-
page is rendered by the user’s web browser. Within the
web browser, the elements are represented internally as
part of the Document Object Model (DOM) [12, 34]. A user
of a contemporary web application will typically make
hundreds or thousands of interactions (such as clicking
on an element) with the rendered webpage’s DOM during
its lifespan. For example, a recent user study reported
by Roy et al. [52] observed 799 recorded interactions
(e.g. mouse clicks) on average, over 120 participants.
This average value was observed over a prescribed ten
minute period, where participants interacted with a sim-
ple Search Engine Results Page (SERP).

In order for researchers to gather insights into how
users make use of a given web application’s interface, we
need a means to capture and record (or log) the aforemen-
tioned interactions that take place [1]. This requirement
is a cornerstone of most forms of usability research [32],
and is indeed important for the Interactive Information
Retrieval (IIR) community. In order to accurately and
reliably capture a user’s interactions, we require the
use of web-based interaction logging software—something

DESIRES 2021 — 2nd International Conference on Design of
Experimental Search Information REtrieval Systems, September
15-18, 2021, Padua, Italy

& d.m.maxwell@tudelft.nl (D. Maxwell); c.hauff@tudelft.nl
(C. Hauff)

@) © 2021 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

== CEUR Workshop Proceedings (CEUR-WS.org)

which is difficult to implement correctly without exten-
sive knowledge of the many developmental nuances.

Anecdotal evidence (at least within the IIR community)
suggests that researchers often work on developing their
own web-based interaction logging software. This is of-
ten achieved in tandem with the implementation of their
main experimental apparatus [18, 46, 47, 61]. However,
we argue that this is highly undesirable. Lessons we have
learned from our own experiences—and observations
from others in the community—suggest that developing
logging infrastructure is non-trivial, with researchers
bypassing issues such as network latency (for sending
captured events to a server); misunderstanding specific
implementation details between different browsers (such
as how they interpret events in the DOM) [53]; or sim-
ply forgetting to capture key interactions. Ultimately,
these pitfalls may lead to low quality interaction logs,
with missing and/or noisy (or “raw” [23]) data. From
this, inevitable post-hoc frustrations will arise. While a
series of separate interaction logging solutions have been
developed, we argue that we lack existing, easy-to-use,
decoupled, affordable, and up-to-date implementations
that are readily available for researchers. Such a solu-
tion must abstract away the inevitable complexities for
generating high quality interaction data.

To this end, we have implemented LogUl, a complete
solution for contemporary web-based interaction logging
over any web-based application. From our initial presen-
tation of LogUI at BCS-IRSG ECIR 2021 [36], researchers
have successfully used LogUI in several user studies (e.g.
the study reported by Roy et al. [52]). We have acquired
feedback on how to improve the infrastructure further,
and are excited about many future development chal-


mailto:d.m.maxwell@tudelft.nl
mailto:c.hauff@tudelft.nl
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

= Wanusi | Automaic Capturing ]
Web-Based Interaction Logging 0
Proxies/Extensions

@ Observer (MSFT) 23] WebQuilt [24] ® MLogger [15] O®WHOSE 21] @ UXjs s8]
@ InputLogger [62] UsaProxy [3,4] @ ALF[13] Big Brother [54) @
@ Philips & Dumas [45] WebVIP (55 Wrapper [25] Search-Logger [57) YASBIL 5] ™
@ Datalogger [66] @ RUI 29 Li et al. 331"
@ Observer (Noldus) 42] @ Observer XT 8] LogUl (36) @
1990 2000 2010 2020

Figure 1: A timeline of user interaction logging solutions proposed—complete with select implementations. Time span cutoffs
are approximate. Colours correlate to the different types of solution, which in turn roughly correlate to a given era.

lenges to extend its functionality. This paper discusses
these challenges—both past and future—along with an
overview of existing interaction logging systems. LogUI
is open source, includes detailed documentation, and is
available for use at https://www.logui.net.

2. Interaction Logging History

Interaction logging software has a long history in com-
puting science literature, with pioneering implementa-
tions appearing long before the establishment of the
World Wide Web (WWW) [5] as the de facto commu-
nications medium. Early discussions on the develop-
ment of interaction logging software date back as far as
the early 1990s [23, 45], when Graphical User Interfaces
(GUIs) were becoming commonplace, with competitors
catching up to the benchmark of the classic Apple Macin-
tosh System Software [67]. GUIs result in more complex
interface designs—and were increasingly modeless' in na-
ture [23]. This section provides a high-level overview of
the seminal attempts undertaken in this research area,
leading up to the fully automated and web-based interac-
tion logging solutions of today.

2.1. From Manual to Automatic

Increasing interface complexity means that capturing
what users do becomes more of a challenge. Before in-
teraction logging software were established, the only
realistic way to perform usability testing [32] was for a
researcher to record a participant’s interactions with a
pen and paper [23]. This is known as manual captur-
ing [10]. Paper records were often supplemented with

! Modeless interface designs contain a number of components
(e.g. dropdown menus, multiple windows, dialog boxes) instead
of more simplistic, procedural, state-based interfaces—which were
typically text-based.

video recordings of participants interacting with the sys-
tem in question [19, 50], permitting researchers to replay
interactions post-hoc [66]. Hoiem and Sullivan [23] how-
ever note several drawbacks to this approach: keeping
pace with interactions was difficult—as was searching
through them. The Hawthorne effect [28] could also in-
fluence how participants used the system with observers
watching. Issues were compounded with the need to turn
around analyses in ever shorter time frames [11].

These concerns led to the first generation of interaction
logging systems, as shown in Figure 1 around the early
1990s. These were automatic in nature [56], whereby a
system not only supported the running of some system,
but could also log the raw user events taking place—such
as key presses on a keyboard, or movement/clicks of a
mouse (where used). In reference to their experiences
of building such software, Philips and Dumas [45] ar-
gued that interaction logging systems should: (i) allow
researchers to determine exactly what to capture; (ii) cap-
ture and record so-called discrete events (such as when a
session starts, or the press of a key); and (iii) be able to ad-
equately code the event. These early recommendations—
along with those reported by other researchers—are used
as motivations for the functionality of LogUI.

2.2. 1990s-2000s: Platform-Specific
Solutions

The following decade saw a number of platform-specific
implementations. These captured a user’s interactions
with (sometimes specific) native applications running on
a platform—with solutions developed for MS-DOS, Mi-
crosoft Windows, and Apple’s Mac OS X/macOS.

In addition to the work by Philips and Du-
mas [45], Hoiem and Sullivan [23] outlined their
implementation—an internal project developed at Mi-


https://www.logui.net

crosoft.” They discussed how their solution evolved over
a number of iterations. Separate work by Noldus [42]
reported on a MS-DOS solution that could capture and
save keyboard interactions to a plaintext file. Both so-
lutions were confusingly called Observer, with the latter
still in development today as Observer XT [68]. Observer
XT captures mouse and keyboard events, and has been
used by several researchers [14, 59, 63]. Other select solu-
tions include Datalogger [66], InputLogger [62], Record-
ing User Input (RUI) [29], and AppMonitor [1]. Aforemen-
tioned solutions recorded fine-grained, “raw” data [23]—
something that, without proper context (i.e. missing iden-
tifying names like CLICK_SEARCH_BUTTON), is high-
lighted as too detailed for researchers [23, 45].

Towards the start of the noughties, researchers were
beginning to investigate how the Internet could be used
to send interaction logs from native applications to a
central server [22]. This client-server approach to logging
profoundly increased the volume of logs that could be
captured. Advancements were made possible thanks to
improving networking capabilities at the time [44].

2.3. The WWW and DOM

The noughties saw the rise of the WWW [5]. A number
of web-based interaction logging solutions have been
proposed over the years, with early solutions such as
Listener [16] and NIST-sponsored WebVIP [55] solutions
focusing more on navigation logs (what pages did a user
visit?) rather than interaction logs (what did they do on
each page?). Vendors of web browsers now broadly follow
web standards, as dictated by the W3C—although minor
differences do exist between implementations (which
still cause issues for developers). Web browsers use now
ubiquitous technologies, such as HyperText Markup Lan-
guage (HTML), Cascading Style Sheets (CSS), and client-
side scripting (ECMAScript, or JavaScript). One such tech-
nology that is core to how browsers interpret webpages
is the Document Object Model (DOM).

The DOM, as outlined by Dogac et al. [12], is a tree-
like, object-oriented Application Programming Interface
(API) that is is used by programs that interpret HTML
documents [34]. The tree-like structure is derived from
each document’s source, and DOM objects—called ele-
ments—are linked together through inheritance. Each
element contains a number of properties, such as class
names. CSS selectors can be used to apply styling to
change the appearance of elements as rendered within
the browser’s viewport; JavaScript engines interpret code
that programmatically manipulates the DOM over the
lifespan of a webpage in the browser. Following the
event-driven programming paradigm, developers track

*The project outlined by Hoiem and Sullivan [23] is one such
solution developed at Microsoft; a later project called MSTracker
was discussed by McGrenere [38].

EIY3N. addEventListener("click”, function() {
alert("The blue box was clicked.");
});

Alert Dialog

The blue box was
clicked.

function()

Figure 2: ADOM EventListener example. Code binds the
#box element and the c1ick event together. When this event
occurs, the associated function() is executed.

interactions between users and webpages by binding one
or more EventListeners to DOM elements, which in
turn are triggered when a given interaction takes place—
as illustrated in Figure 2. Besides standard keyboard and
mouse events, new DOM events are frequently added to
support ever more diverse input means and device func-
tionalities. Examples include screen orientation and touch
events; web APIs also include viewport recording capa-
bilities, going full circle back towards aforementioned
video recordings of interactions [1, 23].

Despite clear advancements in web technologies mak-
ing interaction logging possible, there are still many nu-
anced differences between browsers that trip up develop-
ers of such software. Events can be interpreted in differ-
ent ways; developers themselves can misunderstand (or
simply miss!) key implementation details, such as the sub-
tle differences between mouseover and mouseenter
events. Further challenges are outlined throughout §3.

2.4. 2000s-Today: Web-Based Solutions

As WWW technologies began to mature, it became feasi-
ble to run user experiments through a web browser. Early
web-based interaction logging solutions captured interac-
tions on a webpage through the approach outlined in §2.3,
but recording them was a challenge—asynchronous ap-
proaches for connecting to a server (like AJAX) were
not widely available until the mid-noughties. Instead,
an intermediary proxy server, sitting between the client
(hosting the user’s browser) and server (hosting the web
application) was used. The proxy server would inject
JavaScript into the webpage as it was served to the client,
with the first recorded example using this approach being
WebQuilt [24]. For many years, this was the preferable
solution—a user’s navigation history could be logged to
the same server (the proxy server), avoiding Cross-Site
Scripting (XSS) [49] issues. The seminal UsaProxy [3, 4]
then followed, this time using AJAX to record interac-
tions within a page. This approach was used in a number
of studies [2, 8, 9, 30]. Further proxy-based solutions
included PooDLE [7], RWELS [56], and YASFIIRE [65].
Proxy-based solutions were preferred over the use of


https://www.w3.org/
https://www.javascript.com/
https://dom.spec.whatwg.org/
https://developer.mozilla.org/en-US/docs/Web/CSS/Class_selectors
https://developer.mozilla.org/en-US/docs/Web/API
https://developer.mozilla.org/en-US/docs/Web/API/Screen_Capture_API
https://developer.mozilla.org/en-US/docs/Web/API/Screen_Capture_API
https://developer.mozilla.org/en-US/docs/Web/API/Element/mouseover_event
https://developer.mozilla.org/en-US/docs/Web/API/Element/mouseenter_event
https://developer.mozilla.org/en-US/docs/Web/Guide/AJAX
https://developer.mozilla.org/en-US/docs/Glossary/Cross-site_scripting
https://developer.mozilla.org/en-US/docs/Glossary/Cross-site_scripting

Client (Web Application)

(X X J Web Browser Viewport
https://logui.net/example-web-app/ ‘_/6

ng

Even

innerText
#box

<script>

eAPI‘A'—'ALo Ul Client
° ¥

&

“Log when
#box is clicked”,

oLogUI Configuration Object

Application Server

g0 Experimental
o) Apparatus

LogUI Server @
@ Data Store
—'

® o
Xo Bt
Endpoint 0 Workerm e

® —

LogUI Control App

o Server Controls ™.

o

Data Analysis

e

Figure 3: Architectural diagram of LogUI. Blue boxes denote components specific to LogUI; refer to §3.2 for more information.
Circled numbers are used throughout §3 to highlight certain concepts; these pertain to the numbers in the illustration above.

browser extensions. Users would often be reluctant to
use these thanks to their historical reputation of being
vectors for malware delivery [60]. Despite this, notable
examples of solutions using this second approach include
Wrapper [25], Search Logger [57], and the Lemur Toolbar.

The most recent phase of web-based interaction log-
ging software follows UsaProxy [3, 4] in making use of
so-called Web 2.0 [43] technologies, such as AJAX and
advancements in client-side scripting. Feature-rich APIs
and improved client-server connectivity eliminated the
need for proxy- and extension-based solutions. Examples
of these solutions include MLogger [15], WHOSE [21],
SurfLogger [20], and ALF [13]. However, the pace of de-
velopment is such that many of these solutions are now
themselves dated. This is compounded with source code
no longer being available for many.

Nonetheless, further solutions have recently been de-
veloped such as UX7Js [58] and Big Brother [54]. These
solutions work well, but capture all events occurring on
a page without filtering, which may result in interaction
logs that are too “raw” [23]. YASBIL [6] and the solution
by Li et al. [33] are further recent examples, using con-
temporary technologies within a browser extension to
record more longitudinal experimental data. As an ex-
tension however, support depends on the browser being
used. Questions also remain over their ability to work
with client-side web applications that manipulate the
DOM extensively (even reworking the loaded DOM to
the point that it appears as if an entirely new page has
been loaded!)—such as those written with React.

This concern is also present with commercially avail-
able tools, such as Google Analytics, Hotjar, or Matomo.
Indeed, Google Analytics is largely designed for the cap-

ture of coarse-grained interactions, such as page viewing
history [48, 58] (as opposed to fine-grained interactions,
such as mouse clicks on a specific page). In addition,
Matomo requires elements one wishes to capture inter-
actions for to be given a specific class [58]. In essence,
one can argue that this increases coupling between the
logging infrastructure and apparatus.

3. LogUI

LogUI is designed to offer a complete, end-to-end solu-
tion for capturing and recording a user’s interactions
with a given web application. It abstracts many of the
complex design decisions to the point that researchers
and developers can simply embed LogUI into their appa-
ratus, and start using it. LogUI comes with both a client
and server, each with their own responsibilities. The de-
sign decisions behind LogUI have been motivated from
both our experiences and the recommendations of other
researchers [23, 45, 56]. Note that circled numbers @
refer to Figure 3 (illustrating the architecture); squared
letters Y refer to Figure 4 (illustrating a log entry).

3.1. Key Features of LogUI

The fundamental principle of LogU] is that of less is more.
From experience, we have found that if too much data
is captured, it can be overwhelming. Our principle here
(as opposed to other solutions like Big Brother [54] or
UXJs [58]) is to enable researchers to capture only what
they need (at the expense of greater complexity)—and
provide event context (through event coding [45]). As pre-
viously mentioned, Hoiem and Sullivan [23] highlighted


http://www.lemurproject.org/querylogtoolbar/
https://reactjs.org/
https://analytics.google.com
https://www.hotjar.com
https://matomo.org/

this in the context of data being too “raw”—such that data
were so fine-grained that it were not immediately useful
for analysis. This problem (amongst others) is addressed
via a number of novel constructs within LogUI.

Configuration Object Central to our attempts of
tackling the above problem is the configuration object
©. This provides custom event coding functionality [45],
and is central to the LogUI client. The configuration ob-
ject is comprised of a series of rules which state exactly
what should be captured, and when. CSS selectors and
CSS specificity rules are used to determine what listen-
ers are bound to what elements (e.g. @ uses element
#box and the click event). Names are used for bind-
ings, so that eventual logs report these names for easy
identification of a logged event Y.

Metadata One of the limitations of decoupling inter-
action logging software from the main experimental ap-
paratus is that researchers lose the ability to record the
internal state of the said apparatus with captured events.
LogUI provides a solution to this problem with so-called
metadata. Metadata is unique to the element being inter-
acted with, and can be appended to the captured event
with ease. As an example, shows the value of an
input box, which represents query terms entered by a
user. We can derive data from a number of sources, such
as the corresponding DOM element’s attributes and/or its
properties, or even from the state and/or props of the un-
derlying React component @ (if React is used—support
for other frameworks can be added in the future).

Application-Specific Data Similar to metadata de-
fined above, we also provide researchers with the ability
to append application-specific data to all captured events.
These data are global to the context in which a web-based
application is run, and has been used for capturing data
such as the user ID, group ID, and interface variant, as
shown by B These data (as well as metadata) can then
be easily filtered post-hoc to report statistics, for example,
over a given experimental condition.

Event Groupings While researchers are free to use
whatever DOM events they wish (e.g. click), we also
provide a number of so-called event groupings. These
abstract from native, browser-level events—and pro-
vide additional logic to remove much of the complex-
ity of reliably and accurately capturing certain events.
For example, we have implemented a mousehover
grouping, which internally listens for mouseenter and
mouseleave events, and logs them separately. Further-
more, a scrollable grouping listens for scroll events
on a page and/or element, reporting only start and end

events. Existing solutions may record a number of super-
fluous, confusing intermediary scroll events, leading
to noisy (and potentially confusing) data.

Browser Events Contrasting to events which are cap-
tured from interactions with DOM elements, LogUI also
supports a number of so-called browser events. Not per-
taining to a specific element, events include the resizing
of the browser’s viewport, a gain/loss of focus to the view-
port window, and a change in the URL in the address bar.
More are detailed in the documentation.

3.2. Architecture Overview

LogUI utilises the client-server architecture—with the
client responsible for capturing interaction data, and the
server currently responsible for receiving and storing it
for later access by researchers.

3.2.1. LogUI Client

The LogUI client can be used within any web-based appli-
cation, hosted on some web application server @. Built
in a highly modular way, the LogUI client uses the con-
temporary Node. js JavaScript ecosystem to create a
Browserified bundle. This bundle is then dropped into
the target application via a <script> tag @.

Source components of the LogUI client each have
their own distinct responsibilities; a noteworthy example
is the Binder component, which automatically binds
EventListeners to the elements in the DOM, as se-
lected by researchers.” The component has a bespoke
algorithm which parses the configuration object to work
out what DOM elements should be targeted. In addi-
tion, it also uses the contemporary MutationObserver
web API to listen for changes to the DOM, and automati-
cally appends listeners to new elements as necessary. As
such, this one feature alone makes LogUI an ideal fit for
contemporary web frameworks like React—and as it con-
siders the DOM directly, it is also completely framework
agnostic. The client uses the principle of unobtrusive cap-
ture [56]; LogUI functions silently, with users unaware
that it is recording their interactions.

The LogUI client is controlled through a simple API
@ that provides functionality for researchers to start and
stop interaction logging as and when required (amongst
other functionality). The only requirement is for a config-
uration object to be present @). When active, interactions
on DOM elements that were bound to @ are interpreted
by the browser @) and passed to the LogUI client. Meta-
data and application-specific data are then appended to
captured events @ if they are to be stored; the final result
is then sent to the LogUI server @.

3The Binder binds events to a specific function within LogUl,
and does not interfere with EventListeners from elsewhere.


https://developer.mozilla.org/en-US/docs/Web/CSS/Specificity
https://developer.mozilla.org/en-US/docs/Web/API/Element/attributes
https://developer.mozilla.org/en-US/docs/Web/API/Element
https://reactjs.org/docs/faq-state.html
https://github.com/logui-framework/client/wiki/Browser-Events
https://nodejs.org/
https://browserify.org/
https://developer.mozilla.org/en-US/docs/Web/API/MutationObserver
https://github.com/logui-framework/client/wiki/API

3.2.2. LogUl Server

The LogUl server’s @) primary purpose is to receive in-
coming captured events from the LogUI client—after a
connection has been established (§3.2.3). LogUI server
has been fully containerised, meaning that a new instance
of the server can be easily started on any installation with
the correct version of Docker installed. Full documenta-
tion is provided on how to do this.

The server endpoint €) accepts connections from in-
stances of the LogUI client, and stores incoming data in
backend data stores @ At present, we use an instance
of MongoDB to store data, where each log entry is stored
as a JSON object. We also include a worker process
within the containerised environment. This exposes a
web server hosting the LogUI control application (§3.4).
This web server is only intended to be accessed by re-
searchers using the given instance of LogUI server. Both
the endpoint and worker processes use the Django frame-
work to provide the necessary infrastructure for fulfilling
requests. Like the LogUI client, the design of the server
is modular in nature—with specific responsibilities for
each component.

3.2.3. Client-Server Protocol

Communications between the LogUI client and server
are achieved via WebSockets [39] @ to provide for a
full-duplex channel between them. This contemporary
solution is preferable to AJAX-based implementations,
as WebSockets are not subject to the Same Origin Pol-
icy, meaning the LogUl server can reside elsewhere from
the page’s host. WebSockets also guarantee that data
will arrive at the recipient in the order in which it was
sent—and with only one connection needing to be estab-
lished when the LogUI client starts, bandwidth and other
resource requirements are reduced [56].

Sitting on top of the WebSocket connection is the
LogUI protocol; an application-specific series of rules to
enable the client and server to be able to understand one
another. The protocol includes a handshaking routine,
whereby the LogUI client sends an encrypted authorisa-
tion token which, when decrypted, provides information
about the web application that the LogUI client is watch-
ing. This helps the LogUI server know who is connecting.
Connections are terminated by the server if the web ap-
plication is unrecognised.

The protocol also considers what happens when the
connection is lost. If this happens, the client will continue
to capture all events (and cache them). While doing so,
it will also attempt to reconnect to the server. When
reconnection is successful, the client will immediately
send its cache to the server (after the initial handshake).
This process ensures that no loss of captured interaction
events result when temporary connectivity issues occur.

{

ETEEAITE: "interactionEvent",

["eventDetails"
"type": "submit",
"name": "FORM_SUBMISSION" “

}’

"timestamps": {
"eventTimestamp": "2021-04-24T720:40:27.052Z",
"sinceSessionStartMillis": 416981,
"sinceLogUILoadMillis": 416981

pecificData" B}
"userId": "5847e60f73170700013697c6",
"groupId": "60848097ae062cf467fdbc37",

"variant": "mid"

} ’
"wildlife extinction"

"metadata"Het
"name": "QUERY_VALUE",
"value":
H,
ETTIETEETTI0g: “APPLICATIONID",
@ASTIE0H: "FLIGHTID",
ETII0g: "SESSIONID" E
}
Figure 4: A recorded log entry, adapted from the user study
reported by Roy et al. [52]. Here, a query has been submitted.

3.3. Recorded Interaction Logs

LogUI produces interaction log files in JSON format; logs
can easily be parsed by any analysis library that supports
JSON, such as Pandas. Each recorded log entry corre-
sponds to a unique JSON object; details of this output are
available as part of the LogUI documentation. Refer to
Figure 4 for an example of a logged entry.

Of particular interest in the illustrated log entry exam-
ple are the values for the applicationID, f1ightID,
and sessionID keys|[B}. These denote to the concepts of
an application, flight, and session, respectively. In LogUI
parlance, an application is the representation of a single
web application (e.g. experimental apparatus). A flight
is a variant of an application; think of a user study with
three conditions. In this case, the given application would
have three flights. Finally, a session is the grouping of
a single user’s interactions, over one or more webpages
pages, examined in a single sitting. These key/value pair-
ings are appended to every log entry, such that filtering
by either of the three is trivial to achieve.

3.4. LogUIl Control Application

LogUI also comes with an elementary control application
@. This React-based application allows researchers to
login to an instance of LogUI server, and control various
aspects of the server @fsuch as creating applications
and flights, or viewing session details and authorisation
tokens. Further functionality includes the ability for re-
searchers to download complete logs for a given flight,
which can then be used in subsequent data analysis @


https://www.docker.com/
https://github.com/logui-framework/server/wiki/First-Run-Guide
https://github.com/logui-framework/server/wiki/First-Run-Guide
https://www.mongodb.com/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON
https://www.djangoproject.com/
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://pandas.pydata.org/
https://github.com/logui-framework/server/wiki/Parsing-Logs

4. Experiences of Using LogUI

Since its initial release in March 2021, LogUI has been
successfully used (to the best of our knowledge) in five
unique research projects, one of which is now pub-
lished [52]. Each of the researchers who used LogUI
relayed feedback about their experiences in informal dis-
cussions. We now outline some of issues raised by the
researchers, some of which are elaborated on in §5.

Fast Setup A total of three experimental systems have
been adapted to work with LogUI so far. In addition,
LogUI has also been integrated with Jupyter Notebooks
to capture interactions within its interface (such as log-
ging what cells are being interacted with). Researchers
who have used LogUI have highlighted the ease of being
able to get everything required up and running quickly
with their experimental system. This success has been at-
tributed to the the easy-to-follow documentation, which
has a step-by-step guide for setting up LogUI.

Integrating Experimental Systems with LogUI
One of the experimental systems integrated with LogUl is
SearchX [46], a large-scale, modular, open-source search
framework designed as the apparatus to be used in high-
quality crowdsourced IIR-based user studies. Indeed, the
study reported by Roy et al. [52] used SearchX to provide
a straightforward SERP (consisting of ten blue links plus
a small interface widget) to crowdsourced workers—with
LogUI being used to record interactions by the work-
ers within the said SERPs. Five distinct interfaces were
trialled, with each interface logged as part of a unique
LogUI flight. Additional application-specific data were
supplied to LogUlI, allowing for the recording of interac-
tions alongside the unique user1d B} assigned by the
crowdsourcing platform. A LogUI configuration object
bespoke to the SERP provided by SearchX ensured that
all required browser events were captured—with all nec-
essary metadata [8] captured (such as the issued query,
or the rank of a clicked document).

Success Stories Indeed, across all systems, re-
searchers have commented on the simplicity of defining
what interactions to capture through the configuration
object (§3.1). Of course, being well-versed in web tech-
nologies, we would imagine that this may be more of
a hindrance for those less experienced. One researcher
has noted the ease with which their gathered logs could
be parsed—the lack of “fluff” (erroneous, or superfluous
events) made the post-hoc script writing process for data
analysis much quicker, and less error-prone. This is a
vindication of the less is more approach (§3.1), and also
of our event groupings which resulted in more compact
logs—especially with scrolling and mouse hover interac-
tions, two of the major obstacles we have experienced
when conducting user studies in the past [35].

Identified Difficulties Although researchers were ul-
timately successful with integrating LogUl into their ap-
paratus, this was not however without its difficulties.
Researchers at times struggled to figure out where to add
the necessary API @ calls into their codebase to start
LogUI. With SearchX being built with React, for exam-
ple, finding the correct points to start and stop LogUI
was crucial, and did require some effort to successfully
achieve. This is a crucial point: as we advertise LogUI
to be decoupled, more can be done to enable it to work
without this (potential) requirement, which we discuss
more in §5. However, other approaches we took to miti-
gate the effects of decoupling logging infrastructure from
the core experimental system—such as metadata—were
reported to be straightforward to use.

5. ldeas/Remaining Challenges

Despite the achievements in developing LogUl, a number
of non-trivial challenges remain that would add value
to the project as a whole. From researcher feedback or
discussions in the literature, we have identified a series
of challenges and potential ideas that we outline below.

Testing Infrastructure While the basic interaction
logging capabilities of LogUl are functional, and it has
been demonstrated to work over different web browsers,
are all interactions being captured in the same way across
each browser? We know that browser vendors can inter-
pret standards in different ways, leading to slight vari-
ations in how web applications look on different plat-
forms [53]. To examine this issue in more detail, we plan
to develop an extensive compatibility testing [40] frame-
work that automatically reports any differences, allowing
us to pinpoint our resources and work to ensure interac-
tion logs are recorded consistently across browsers.

Backwards Compatibility As we outlined above,
wide-ranging support a variety of web browsers and
platforms is cruicial for success of LogUI. While the ini-
tial focus of our efforts has been to ensure LogUI works
with all major, contemporary web browsers, an instance of
LogUI attempting to run on an older browser (say, with-
out support of the MutationObserver web AP, §3.2.1)
is inevitable as we gain traction.” To address this short-
coming, we should invest time in developing LogUI to
be cater for older browsers. Thanks to readily-available
Polyfills in the JavaScript ecosystem, patching holes in
what a browser supports should be straightforward.

Improving Device Support Work also needs to be
undertaken to ensure that support is sufficient for the

4According to caniuse.com, support for the
MutationObserver is high, at ~97%—but not quite 100%!

How would we cater for the 3% without support?


https://jupyter.org/
https://github.com/logui-framework/server/wiki/First-Run-Guide
https://polyfill.io/v3/
https://caniuse.com/?search=MutationObserver

increasing number of events associated with touchscreen
devices like smartphones (or other input devices). Exam-
ples include multi-touch gestures (like ‘pinching’ on an
image to shrink it or zoom out). Moving away from web-
based applications, support for interaction event logging
on native apps under Android or iOS would also be bene-
ficial, and increase the potential number of use cases for
LogUI even further. A recent patent by Google demon-
strates a possible alternative view of interaction logging
without necessarily using a web browser [41]. Work
by Jeong et al. [27] discusses a framework for capturing
interactions on native Android apps. (Conversational) as-
sistants and other associated systems/devices—and how
one could potentially log interactions with these—should
also be considered as part of LogUI.

Analytics Dashboard One of our major goals with
LogUl is to develop a functional and intuitive analytics
dashboard to allow researchers to examine, filter, and
compare interaction logs from one flight against another,
for example. Dashboards have been devised for simi-
lar projects in the past [21, 27]; our major challenge
here is how to design an analytics interface that caters
for any kind of interface layout, or even supports interac-
tions from different devices/systems. LogUI should not be
constrained purely to IIR research; flexibility should be
available, but not at the expense of adding complexity.
From this, we could also provide functionality to auto-
matically compute aggregated, segmented, or individual
measures [31]. A prototypical analytics interface has
already been developed. The interface produces box-
plots that visualise the average time taken to perform
selected events (e.g. the time between the focus of a
query box, and the submit event for a query to be is-
sued). Feedback will be required from researchers to fully
understand what can be manipulated and presented—at
both an aggregated and individual (per user) level.

Improving the LogUI Stack As part of developing
LogUI to provide a solution for providing analytics and
the visualisation of captured data, we will need to modify
the LogUI server-side stack to promote such analyses—
especially at scale. At present, the stack simply acquires
and stores interaction data for post-hoc download by re-
searchers. For future development, we may follow the
path of the ELK stack, using Kibana, Logstash, and Elas-
ticsearch to provide the necessary groundwork and func-
tionality for data analysis. We must also consider the
scalability of any developed stack, both in terms of the
number of users, plus the volume of data that must be
examined for any analysis to take place.

Recording Viewports To complement the proposed
changes above, recording the viewport of a user’s
browser would also be desirable. While there are un-
doubtedly challenges to capturing, storing and synchro-

nising video against captured events [1, 23], context pro-
vided by a video stream of a user’s interactions will offer
insights as to why events took place [1]. The Screen Cap-
ture API (alluded to earlier) provides the functionality to
achieve this without additional software.

Reducing Integration Barriers As discovered
by Hoiem and Sullivan [23], integrating logging software
requires considerable knowledge of the software your
code integrates into. This is still an issue with LogUlI,
as highlighted in §4. Our objective is to reduce the
need for individuals to write code to integrate LogUI.
A major stumbling block at present is the need for the
configuration object (§3.1), a necessary trade-off to
uphold the less is more principle. Taking this further,
GUI-based tools to generate this object may be useful
(as demonstrated by uBlock Origin [37]); or even storing
configurations on the server, and sending the correct
configuration object for the page in question. An ideal
solution would be to develop this line (if indeed possible)
to the point where only a solitary <script> tag needs
to be dropped into the application’s template.

Community Engagement With a number of open-
source interaction logging solutions recently presented
at conferences [6, 33, 36, 54], interaction logging is clearly
an area of interest to other researchers. We have begun
to work together to explore whether collaboration with
each other is possible, starting with the consideration of
a common interaction log format—a format that could in
theory be used by any future pipeline for interaction log
analysis, be it through a GUI or APL

Privacy Concerns A further important point to raise
is how we store data. By capturing user interactions,
researchers would be subject to data privacy regulations
in their jurisdiction, such as the EU’s GDPR [64], or Cali-
fornia’s CCPA [51]. We could also explore the potential
use of data pods, which would allow users to control use
and access to stored data. The Solid Project is an example
of how this could be realised in practice.

6. Conclusions

In this paper, we have presented discussed LogUI, our
new web-based interaction logging infrastructure. Based
on the recommendations and observations of researchers
who have developed similar systems, our implementation
has been well-received by several researchers who have
successfully used LogUI for their experimentation since
its initial release in March 2021. Despite the positive
feedback we have received, several exciting ideas for fu-
ture development have been discussed that will improve
the offering that LogUI provides to potential end users.
Our end goal for LogUI is to be a complete end-to-end
solution for interaction logging, all without the need for
researchers to write a line of (analysis) code.


https://developer.mozilla.org/en-US/docs/Web/API/GestureEvent
https://www.android.com/
https://www.elastic.co/kibana/
https://www.elastic.co/logstash/
https://www.elastic.co/
https://www.elastic.co/
https://developer.mozilla.org/en-US/docs/Web/API/Screen_Capture_API/Using_Screen_Capture
https://developer.mozilla.org/en-US/docs/Web/API/Screen_Capture_API/Using_Screen_Capture
https://solidproject.org/

Acknowledgments

Research and development of LogUI has been supported
by NWO projects SearchX (639.022.722) and Aspasia
(015.013.027). Thanks to Benuua, Johanne, and Nir-
mal for their much-appreciated proofreading efforts. We
would also like to thank our two anonymous reviewers
for their comments—especially those of reviewer two.
Your pointers greatly improved the clarity of this work,
and will hopefully lead to interesting discussions.

References

(1]

(7]

(8]

J. Alexander, A. Cockburn, R. Lobb, AppMonitor:
A tool for recording user actions in unmodified
Windows applications, Behavior Research Methods
40 (2) (2008) 413-421.

A. Apaolaza, S. Harper, C. Jay, Longitudinal Anal-
ysis of Low-Level Web Interaction through Micro
Behaviours, in: Proc. 26™ ACM HT, 337-340, 2015.
R. Atterer, Logging usage of AJAX applications with
the “UsaProxy" HTTP proxy, in: Workshop on Log-
ging Traces of Web Activity, Proc. 15™ WWW, 2006.
R. Atterer, M. Wnuk, A. Schmidt, Knowing the
User’s Every Move: User Activity Tracking for Web-
site Usability Evaluation and Implicit Interaction,
in: Proc. 15" WWW, 203-212, 2006.

T. Berners-Lee, R. Cailliau, A. Luotonen, H. F.
Nielsen, A. Secret, The world-wide web, Comm.
ACM 37 (8) (1994) 76-82.

N. Bhattacharya, J. Gwizdka, YASBIL: Yet Another
Search Behaviour (and) Interaction Logger, in: Proc.
44" ACM SIGIR, 2585-2589, 2021.

R. Bierig, J. Gwizdka, M. J. Cole, A user-centered
experiment and logging framework for interactive
information retrieval, in: Proc. 32" ACM SIGIR,
8-11, 2009.

J. Bigham, A. Cavender, Evaluating Existing Audio
CAPTCHAs and an Interface Optimized for Non-
Visual Use, in: Proc. 27" ACM CHI, 1829-1838,
2009.

D. Bilal, J. Gwizdka, Children’s eye-fixations on
google search results, Proc. ASIS&T 53 (1) (2016)
1-6.

M. D. Byrne, B. E. John, N. S. Wehrle, D. C. Crow,
The tangled web we wove: A taskonomy of WWW
use, in: Proc. 17" ACM CHI, 544-551, 1999.

S. Denning, D. Hoiem, M. Simpson, K. Sullivan,
The value of thinking-aloud protocols in industry:
A case study at Microsoft Corporation, in: Proc.
Human Factors Society Annual Meeting, vol. 34,
1285-1289, 1990.

A. Dogac, I. Durusoy, S. Arpinar, N. Tatbul, P. Kok-
sal, I. Cingil, N. Dimililer, A workflow-based elec-

(13]

(27]

(28]

tronic marketplace on the web, ACM SIGMOD
Record 27 (4) (1998) 25-31.

M. Doolan, L. Azzopardi, R. Glassey, ALF: A Client
Side Logger and Server for Capturing User Inter-
actions in Web Applications, in: Proc. 35" ACM
SIGIR, 1003, 2012.

D. A. Ducharme, I. Arcand, Using Noldus Observer
XT for research on deaf signers learning to read: An
innovative methodology, Behavior Research Meth-
ods 41 (3) (2009) 833-840.

A. Edmonds, R. W. White, D. Morris, S. M. Drucker,
Instrumenting the Dynamic Web, J. Web Eng. 6 (3)
(2007) 244-260.

R. D. Ellis, T. B. Jankowski, J. E. Jasper, B. S. Tharu-
vai, Listener: A tool for client-side investigation
of hypermedia navigation behavior, Behavior Re-
search Methods, Instruments, & Computers 30 (4)
(1998) 573-582.

P. Fraternali, Tools and approaches for developing
data-intensive web applications: a survey, ACM
Computing Surveys (CSUR) 31 (3) (1999) 227-263.

M. Hall, E. Toms, Building a common framework
for IIR evaluation, in: Proc. 4™ CLEF, 17-28, 2013.

M. L. Hammontree, J. J. Hendrickson, B. W. Hens-
ley, Integrated data capture and analysis tools for
research and testing on graphical user interfaces,
in: Proc. 10™ ACM CHI, 431-432, 1992.

J. He, SurfLogger: A logging browser and data pro-
cessing method in web-based studies, Proc. Soc. of
Computer in Psychology .

D. Hienert, W. van Hoek, A. Weber, D. Kern,
WHOSE - A Tool for Whole-Session Analysis in
IIR, in: Proc. 37" ECIR, 172-183, 2015.

D. M. Hilbert, D. F. Redmiles, Agents for collecting
application usage data over the Internet, in: Proc.
2" AGENTS, 149-156, 1998.

D. E. Hoiem, K. D. Sullivan, Designing and using
integrated data collection and analysis tools: chal-
lenges and considerations, Behaviour & Informa-
tion Technology 13 (1-2) (1994) 160-170.

J. L Hong, J. A. Landay, WebQuilt: a framework for
capturing and visualizing the web experience, in:
Proc. 10" WWW, 717-724, 2001.

B.J. Jansen, R. Ramadoss, M. Zhang, N. Zang, Wrap-
per: An Application for Evaluating Exploratory
Searching Outside of the Lab, in: Proc. 29 ACM
SIGIR, 2006.

M. Jazayeri, Some trends in web application devel-
opment, in: Proc. Future of Software Engineering,
IEEE, 199-213, 2007.

J. W. Jeong, N. H. Kim, H. P. In, GUI information-
based interaction logging and visualization for asyn-
chronous usability testing, Expert Systems with
Applications 151 (2020) 113289.

S.R. G. Jones, Was there a Hawthorne effect?, Amer-



(30]

(31]

ican J. of Sociology 98 (3) (1992) 451-468.

U. Kukreja, W. E. Stevenson, F. E. Ritter, RUI: Record-
ing user input from interfaces under Windows and
Mac OS X, Behavior Research Methods 38 (4) (2006)
656-659.

M. Lassila, T. Paiakkonen, P. Arvola, J. Kekalii-
nen, M. Junkkari, Unobtrusive Mobile Browsing
Behaviour Tracking Tool, in: Proc. 4th 1IiX, 278-281,
2012.

F. Lettner, C. Holzmann, Automated and unsuper-
vised user interaction logging as basis for usability
evaluation of mobile applications, in: Proc. 10
MoMM, 118-127, 2012.

J. R. Lewis, Usability testing, Human factors & er-
gonomics .

H. Li, H. Lu, S. Huang, W. Ma, M. Zhang, Y. Liu,
S. Ma, Privacy-Aware Remote Information Retrieval
User Experiments Logging Tool, in: Proc. 44" ACM
SIGIR, 2615-2619, 2021.

F. Manola, Towards a richer Web object model,
ACM SIGMOD 27 (1) (1998) 76-80.

D. Maxwell, L. Azzopardi, Y. Moshfeghi, A study
of snippet length and informativeness: Behaviour,
performance and user experience, in: Proc. 40t
ACM SIGIR, 135-144, 2017.

D. Maxwell, C. Hauff, LogUI: Contemporary Log-
ging Infrastructure for Web-Based Experiments, in:
Advances in IR (Proc. 43 ECIR), 525-530, 2021.

J. Mazel, R. Garnier, K. Fukuda, A comparison of
web privacy protection techniques, Computer Com-
munications 144 (2019) 162-174.

J. McGrenere, The design and evaluation of mul-
tiple interfaces: A solution for complex software,
University of Toronto, 2002.

A. Melnikov, I. Fette, The WebSocket Protocol, RFC
6455, 2011.

A. Mesbah, M. R. Prasad, Automated cross-browser
compatibility testing, in: Proc. 33" ICSE, 561-570,
2011.

A. K. Moshe, E. Wu, X. Wu, Dynamically Con-
figurable Client Application Activity, U.S. Patent
16/564298, September 2019.

L. P.].J. Noldus, The Observer: a software system
for collection and analysis of observational data,
Behavior Research Methods, Instruments, & Com-
puters 23 (3) (1991) 415-429.

T. O’Reilly, What is Web 2.0: Design patterns and
business models for the next generation of software,
Communications & strategies (1) (2007) 17.

F. Paterno, G. Ballardin, RemUSINE: a bridge be-
tween empirical and model-based evaluation when
evaluators and users are distant, Interacting with
computers 13 (2) (2000) 229-251.

B. H. Philips, J. S. Dumas, Usability Testing: Iden-
tifying Functional Requirements for Data Logging

Software, In Proc. Human Factors Society Annual
Meeting 34 (4) (1990) 295-299.

S.R. Putra, F. Moraes, C. Hauff, SearchX: Empower-
ing collaborative search research, in: The 41 ACM
SIGIR, 1265-1268, 2018.

G.Renaud, L. Azzopardi, SCAMP: a tool for conduct-
ing interactive information retrieval experiments.,
in: Proc. 4" I1iX, 286-289, 2012.

S. Ripp, S. Falke, Analyzing user behavior with
Matomo in the online information system Grammis,
in: Proc. 18™ EURALEX, 87-1000, 2018.

G. E. Rodriguez, J. G. Torres, P. Flores, D. E. Bena-
vides, Cross-site scripting (XSS) attacks and mitiga-
tion: A survey, Computer Networks 166.

[50] J. Roschelle, S. Goldman, VideoNoter: A productiv-

[54]

(55]

(58]

ity tool for video data analysis, Behavior Research
Methods, Instruments, & Computers 23 (2) (1991)
219-224.

M. A. Rothstein, S. A. Tovino, California takes the
lead on data privacy law, Hastings Center Report
49 (5) (2019) 4-5.

N. Roy, A. Camara, D. Maxwell, C. Hauff, Incorpo-
rating Widget Positioning in Interaction Models of
Search Behaviour, in: Proc. 7" ACM ICTIR, 2021.
T. Saar, M. Dumas, M. Kaljuve, N. Semenenko,
Cross-browser testing in browserbite, in: Proc. 14"
ICWE, 503-506, 2014.

H. Scells, Jimmy, G. Zuccon, Big Brother: A Drop-In
Website Interaction Logging Service, in: Proc. 44™
ACM SIGIR, 2021.

J. Scholtz, S. Laskowski, L. Downey, Developing
usability tools and techniques for designing and
testing web sites, in: Proc. 4" HFWeb, vol. 98, 1-10,
1998.

L. Shah, L. Al Toaimy, M. Jawed, RWELS: A remote
web event logging system, J. King Saud University-
Computer & Information Sciences 20 (2008) 1-11.
G. Singer, U. Norbisrath, E. Vainikko, H. Kikkas,
D. Lewandowski, Search-Logger: Analyzing Ex-
ploratory Search Tasks, in: Proc. 26™ ACM SAC,
751-756, 2011.

J. Solis-Martinez, J. P. Espada, R. Gonzélez Crespo,
B. C. Pelayo G-Bustelo, J. M. Cueva Lovelle, UX]Js:
Tracking and Analyzing Web Usage Information
With a Javascript Oriented Approach, IEEE Access
8 (2020) 43725-43735.

R. Sun, G. Zhang, Z. Yuan, The Preliminary Applica-
tion of Observer XT (12.0) in a Pilot-Behavior Study,
in: Proc. 15™ EPCE, 686-700, 2018.

M. Ter Louw, J. S. Lim, V. N. Venkatakrishnan, En-
hancing web browser security against malware ex-
tensions, J. Computer Virology 4 (3) (2008) 179-195.
E. Toms, L. Freund, C. Li, WiIRE: the Web interac-
tive information retrieval experimentation system
prototype, Information Processing & Management



(63]

40 (4) (2004) 655-675.

S. Trewin, InputLogger: General-purpose logging
of keyboard and mouse events on an Apple Macin-
tosh, Behavior Research Methods, Instruments, &
Computers 30 (2) (1998) 327-331.

A. van Drunen, E. L. van den Broek, A. J. Spink,
T. Heffelaar, Exploring workload and attention mea-
surements with uLog mouse data, Behavior re-
search methods 41 (3) (2009) 868-875.

P. Voigt, A. Von dem Bussche, The EU general data
protection regulation (GDPR), A Practical Guide,
1st Ed. 10.

X. Wei, Y. Zhang, J. Gwizdka, YASFIIRE: Yet An-
other System for IIR Evaluation, in: Proc. 5 IIiX,
316-319, 2014.

S. J. Westerman, S. Hambly, C. Alder, C. W. Wyatt-
Millington, N. M. Shryane, C. M. Crawshaw, G. R. J.
Hockey, Investigating the human-computer inter-
face using the Datalogger, Behavior Research Meth-
ods, Instruments, & Computers 28 (4) (1996) 603—
606.

G. Williams, Apple Macintosh computer., Byte 9 (2)
(1984) 30-31.

P. H. Zimmerman, J. E. Bolhuis, A. Willemsen, E. S.
Meyer, L. P.J. ]. Noldus, The Observer XT: A tool for
the integration and synchronization of multimodal
signals, Behavior research methods 41 (3) (2009)
731-735.



	1 Introduction
	2 Interaction Logging History
	2.1 From Manual to Automatic
	2.2 1990s-2000s: Platform-Specific Solutions
	2.3 The WWW and DOM
	2.4 2000s-Today: Web-Based Solutions

	3 LogUI
	3.1 Key Features of LogUI
	3.2 Architecture Overview
	3.2.1 LogUI Client
	3.2.2 LogUI Server
	3.2.3 Client-Server Protocol

	3.3 Recorded Interaction Logs
	3.4 LogUI Control Application

	4 Experiences of Using LogUI
	5 Ideas/Remaining Challenges
	6 Conclusions

