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Abstract

We discuss a practical problem related to wireless transmission of a continuous stream of readings from
a sensor. The problem arose in the context of a contraption devised for monitoring the behavior patterns
of working canines with the intention of spotting signs of their stress, exhaustion, or any indication of
the animal’s fatigue or discomfort that would call for the attention of its human companion. The device
has been (is being) designed primarily as a vehicle for research in collaboration between the University of
Live Sciences and Vistula University. The point we are trying to make is this paper is that tiny embedded
systems aimed at specific applications within the realm of the so-called Internet of Things (IoT) come
out best when built following a “holistic” approach. By “holistic” we mean taking into account, from
the very bottom, the idiosyncratic aspect of the application instead of blindly relying on ready, layered,
standardized, library solutions. In addition to reducing the footprint of the application, and enabling it
to run in a cheaper and resource-frugal device, such an approach also translates into better performance.
With the right selection of tools, it may in fact speed up the development process while resulting in a
better quality of the product.
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1. The context

This paper deals with a subset of the technical aspects of a wider project aiming at researching
simple and reliable automated methods for assessing the well-being of working dogs, including
service dogs (military, police, disaster-response) as well as assistance dogs (guide, therapy).
While the goals of our research probably need no long arguments in defense of their compas-
sionate motivation, there are also solid remunerative reasons why an effective assessment of the
animal’s “quality” in providing its service matters. The dog training process is lengthy, complex,
and expensive [1, 2] and good quality service/assistance dogs are extremely valuable [3, 4]. This
stimulates studies along two lines: (1) to establish reliable criteria for early assessment of a dog’s
suitability for a particular kind of work/service [5, 6, 7, 8]; (2) to make sure that the animal is
well taken care of and, in particular, any problems related to its work stress and generally health
are quickly detected, diagnosed, and addressed [9, 10]. The latter issue can be reformulated as
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that of an effective communication in the animal-to-human direction [11], as opposed to the
more popular direction inherent in dog training.

While anomalies in a dog’s behavior indicative of deficiencies in its well-being can be spotted
by an expert human (veterinarian, behaviorist) through direct observation, our primary interest
is in harnessing to this task sensing devices that, ideally, should be able to detect such problems
automatically and signal them to the human supervisor. The issue can be viewed as falling under
the more general domain of sensor-based diagnostics, e.g., similar to taking and interpreting ECG
readings [12]. While it is obviously possible to subject the animal to extensive and authoritative
veterinary assessments, including tests and sensor data collection interpreted by a human expert,
we are interested in completely automated monitoring carried out by an inconspicuous and
(basically) maintenance-free device being (basically) unnoticeable by the animal. Such a device,
a wearable Tag, would be permanently carried by the dog, e.g., attached to a collar, and would
convey wirelessly sensor data to a nearby access point for automated interpretation [13, 14].

The unobtrusiveness premise of the sensing/monitoring device trades off against the overt
information content of the data that it can possibly collect. For example, it may seem worthwhile
to try to obtain an EKG/ECG chart of the animal, which is a valuable source of information
about the heart activity. One can expect such a chart to reasonably easily translate into a
representation of the dog’s tiredness or stress. While there exist experimental techniques
for collecting this kind of data through “wearable” sensors [15], they overtax our premise by
requiring direct access to the animal’s skin. Even the less ambitious task of taking reliable heart
rate without skin contact proves challenging [16].

Our long-term goal is to investigate how much one can accomplish with a completely
unobtrusive device, requiring no skin contact and, preferably, no rigid attachment to the
animal (in a specific position or place). The most natural sensor to try in this context is
the Inertial Measurement Unit (IMU) being a combination of an accelerometer, a gyro, and a
compass. Previous studies have reported various degrees of success in using the sensor (most
notably the accelerometer component) for diagnosing various behavioral anomalies/problems
in dogs [10, 17, 18]. We want to establish criteria for the classification of IMU data into simple
signals indicative of some threshold levels of the animal’s well-being in relation to its level of
fatigue or stress that can be easily communicated to the human companion. The next step will
be to built an actual practical device and application based on the outcome of our studies.

2. The setup

Our end goal being to fabricate a practically useful device, it makes sense to start with a view
of the target application in mind. Ideally, we should use the same hardware for the experiments
and for the final application. As the classification of the animal’s activity patterns will be carried
out based on the indications of an IMU, the embodiment of the sensor (the weight of the device
and the mode of its attachment to the animal) is likely to matter because of its own (inherent)
inertia component which will tend to influence the readings. This aspect of the project makes it
similar to one of our earlier endeavors [19] where a series of research experiments carried out
with an IMU-based sensor provided data to drive the design of a classification algorithm that
could be subsequently implanted into the same device to a more practical end.



Having agreed that the experimental device should be identical to the target one, we still
have to understand that the experimental version of the application (the software run by the
device) is going to be drastically different from its target version. The role of the experiments is
basically raw data collection. We want to amass a large amount of sensor readings, taken at the
maximum rate that we can afford, from various representative animals acting under controllable
conditions where experts can annotate the collected data with authoritative labels indicative of
the dog’s state. That data will be later used off-line to search for patterns that can guide the
classification algorithms to be applied on the data collected by the target incarnation of the
device. That part of the research methodology is beyond the scope of the present paper; we
merely want to clarify the technical requirements for the experimental guise of the application.

The nature of the experiments, demanding that the animals act within environments ap-
pearing as close to their natural work conditions as possible, is an additional argument for
the experimental devices being identical to the target ones, and it obviously precludes wired
connectivity of the devices to external equipment. The footprint of the target device makes it
impossible to store large volumes of data directly on it. Besides, the data must be annotated
in real time, which makes it natural to use an external computer (a laptop or a tablet) for the
actual collection and simultaneous annotation. Therefore, the sensor device is going to stream
its readings wirelessly to the external computer. The streaming protocol is the aspect of the
application discussed in the remainder of this paper.

The device used for data collection (and envisioned for the target application) is the CC1350
SensorTag! manufactured by Texas Instruments and featuring an ARM-based CC1350 microcon-
troller [20]. The SensorTag comes equipped with a number of sensors including the MPU9250
IMU by TDK InvenSense.? The complete device weights ca. 20 g (including a CR 2032 battery)
and its dimensions are 44x32x6 mm. When attached to a dog’s collar, it is not more obtrusive
than a (slightly oversized) name tag.

The experimental setup consists of a pair of CC1350-based devices, one of them being the
Tag worn by the dog, the other a CC1350 LaunchPad,® dubbed the Peg, connected over USB to
the computer and acting as the RF access point (data sink) for the Tag. While the RF module of
CC1350 can be configured to operate in Bluetooth mode, thus eliminating the need for a special
access point, we opt for the so-called proprietary mode of the radio which gives us access to
the raw channel. We prefer to circumvent the Bluetooth standard to: 1) increase the range of
communication (to provide for a larger separation between the animal and the access point),
2) implement our private reliability scheme to increase the delivery fraction of the collected
data. The proprietary mode operates within the 915 MHz ISM band offering parameterizable
transmission power up to 14 dBm and (raw) transmission rates up to 500 kbps. Data exchanged
over the RF channel is organized into packets with the maximum packet length (practically)
limited to 60 bytes. The Bluetooth capability of the device will become handy in the target
application where the device will be able to communicate directly with a smartphone. The
essential classification will then be carried out in the Tag [19], so there will be no need for
reliable streaming of large volumes of readings to the access point.

'https://dev.ti.com/cc1350stk
*https://invensense.tdk.com/products/motion-tracking/9-axis/mpu-9250/
*http://dev.ti.com/launchxl-CC1350



3. The problem

In its most general formulation, independent of the hardware and application context, the
problem is that of implementing reliable communication across an unreliable channel. We deal
with an asymmetric link where the Tag continuously sends a stream of data to the Peg. Ideally,
we would like all the data generated by the Tag to (eventually) reach the Peg, in the proper
order, such that the complete, timed, and annotated stream of sensor readings produced by the
Tag is stored at the collection computer.

feedback

Tag Peg

Figure 1: The channel model

Standard solutions to this problem involve a feedback channel operating in the Peg-to-Tag
direction, as shown in Figure 1. The simplest of them has been known as the Alternating
Bit Protocol [21, 22] and consists in explicitly acknowledging every single packet received by
the Peg from the Tag. Various generalizations and improvements upon this simple scheme,
including the one underlying TCP, are known under the name of ARQ protocols [23, 24]. Their
primary objectives are: 1) to reduce the amount of feedback traffic, 2) to improve the continuity
of the forward traffic when the losses are low and/or the bandwidth-delay product of the link is
large [25].

The problem of absolutely reliable data transmission primarily concerns information whose
utmost integrity is essential, i.e., the transmission of files. With streaming, the data is assumed
to be created continuously and the problem of its reliable delivery receives a different flavor.
In many cases the information is not stored at the source in the form of a complete file whose
missing fragments could be requested at random by the recipient and retransmitted later. But
even if this happens to be the case, the issue of its reliable delivery is conditioned by the real-time
character of the reception where the data often become obsolete and useless if not delivered
within a certain time window (like in streaming of voice and/or video). Consequently, while
standard streaming applications may insist on high-quality of delivery, they typically are (and
usually must be) prepared to deal with acceptable (innate) data loss [26, 27].

Our problem is specific in that: 1) the information collected by the Tag cannot be entirely
stored at the source, so the availability of its undelivered fragments is restricted; 2) there is no
issue of real-time playback at the recipient (unlike in streaming audio or video); 3) we can be
prepared to deal with (acceptable) losses (and seemingly have to because of 1). The problem is
reminiscent of one we dealt with before [28] (the hardware context was similar), and it may
be worthwhile to emphasize the difference. In the case of [28] the entire collected data set
was stored at the source Tag, and the problem was formulated as minimizing the time of its
complete delivery to the Peg (the completeness of delivery was essential, so we were basically
interested in reliable and fast file transfers). In the present case, we are inclined to deal with
occasional data loss (the stream is infinite for all practical purposes) and the issue is to maximize
the delivery fraction thus maximizing the feasible data collection rate.



If losses are unavoidable, one can often simplify the solution by eliminating the feedback
channel altogether focusing instead on enhancing the reliability of communication in the
physical layer, e.g., through forward error correction (FEC) techniques [29]. The proprietary
mode of the RF module of CC1350 comes with a number of options that can be applied to this
end. They effectively trade the transmission range and bit rate for reliability and amount to
an important set of parameters that have to be tuned for best performance regardless of any
other tools. However, depending solely on them would be too restrictive from our point of
view. The dynamic nature of the propagation environment, including the variable distance
between the Tag and the Peg, would lock the channel into a conservative setting, offering an
acceptable (or passable) loss rate for the worst case scenario, while unnecessarily reducing the
opportunities for collecting more data in a friendlier environment. Our hope is to achieve a
much better flexibility with a properly designed feedback scheme: the bandwidth to be sacrificed
for reliability will only be sacrificed when needed.

In a high-level discussion of ARQ schemes (and in many implementations of such schemes
in the wired world) it is assumed that the feedback channel (Figure 1) is separate from the
forward (data) channel. This is to say that the feedback messages do not disrupt the data stream
and, in particular, they can be sent at any rate up to some maximum with their impact being
solely positive. This is seldom true in wireless communication. Even if the two channels are in
fact separate, which they mostly aren’t, they will tend to interfere. Generally, setting aside a
sizable portion of the RF bandwidth for a “frivolous” feedback channel makes that bandwidth
unavailable for the proper use which is transmitting data. For example, in Bluetooth, e.g., within
the framework of an ACL link [30], the essentially single channel must be partitioned (time-
divided) into two parts to provide for two-way communication. Realizing that the feedback
channel is going to directly coexist with the forward data channel, we would like to make it
flexible and, in particular, avoid a rigid, time-division-based pre-allocation of bandwidth for the
two channels. Our goal is to try to reduce the impact of the feedback channel on data bandwidth
to the minimum needed by the application and demanded dynamically by the temperamental
RF medium.

4. The solution

We propose a protocol for improving the reliability of conveying sensor data from the Tag
to the Peg. The improvement will be evaluated in reference to the reliability achievable with
purely hardware means, by assuming a unidirectional data channel (no feedback). The solution
illustrates how application constraints can influence the design of low-level communication
schemes stimulating a holistic approach to programming the application.

Owing to the lack of real-time requirements, the possibility of unrecoverable losses results
solely from the finite buffers at the Tag. Whatever buffer space is available will be allocated to a
shifting window of the collected data. The Peg will be able to request retransmission of those
lost packets that are still present within the window.

The Tag side of the protocol is described by two threads: the generator of blocks of sensor
readings (dubbed the generator thread) and the transmitter of those blocks on the RF channel.
The blocks are stored in a singly-linked queue, denoted by Q and depicted in Figure 2, whose
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Figure 2: The block queue

size is limited. The queue is represented by two pointers: Qy, (the head), and Q; (the tail). When
Qis empty, we have Qp = Q; = null. One block contains readings to be expedited in a single RF
packet. In addition to the readings (whose number is the same for all blocks), a block b contains
a link to the next block in Q (or null if the block is the tail one) and the sequence number of
the block in the stream, which we shall denote by b—n. This number starts with 1 (for the first
block generated in a session) and is incremented by 1 for every new block issued by the thread,
as explained below. The maximum size of the queue (i.e., the maximum number of blocks that it
can contain at a time) is determined by the amount of storage available at the Tag and denoted
by OS,ux- OSmax can be assumed to be (roughly) equal to M/s) where M is total amount of RAM
available at the Tag for storing Q and s is the (fixed) block size. When the streaming operation
starts, Q is initialized to empty and N (the current block number) is initialized to 1.

4.1. The generator thread

Every 1/ f; seconds, where f; is the sampling frequency, a sensor reading is taken. The reading
is stored in the current buffer denoted by CB. CB is filled by consecutive readings (f; times per
second) until it becomes complete (its capacity is reached).

When CB becomes complete, the thread executes a function named add_CB which sets CB—n
to N, increments N by 1, and appends CB at the end of Q (updating O, and possibly O, as needed).
Before adding the new block to the queue the function makes sure that, after the addition of CB,
Q will not exceed its two limitations (of which both are necessary). Limitation 1 says that the
total number of blocks in the queue is never bigger than QS,,,,. Limitation 2 requires that
Q/—n — Qp—n, ie., the difference between the first and the last block number in the queue, be
less than or equal to Oy, which we call the maximum block offset. The first limitation simply
makes sure that Q never exceeds its allotted storage. The second limitation constrains the age
difference of the blocks kept in the queue. This is needed for two reasons. The first (informal)
reason is that, in the face of the storage limitations, it makes little sense to keep around old
blocks that (for one reason or another) have not made it to the collection point. The second
reason is that we want to be able to reference past blocks relative to the current place (block
number) within the session, for which we want to restrict the range of requisite offsets.

Note the CB is appended at the tail of Q becoming new Q;. To enforce the limitations, add_CB



examines the block at the front of Q (pointed to by Q) and discards it for as long as any of the
two limitations is violated when CB is included the queue. One invariant of the queue is that
the numbers of blocks stored in it are strictly increasing (they need not be consecutive as we
shall shortly see). Thus, looking at Q and the total number of blocks stored in Q is enough to
verify the limitations. Having added CB to Q, the function opens a new empty version of CB
which the thread will now be filling from scratch.

The blocks stored in Q will be transmitted to the Peg by the second thread (as explained
below), but not immediately discarded, unless new blocks, containing most recent readings,
cannot be accommodated into Q because of the limitations. When that happens, the sampling
thread will be removing blocks from the front of the queue thus giving preference to fresh
readings.

4.2. The transmitter thread

The thread operates in rounds where it transmits a train of blocks to the Peg and then reverses the
channel for a short while [28] to allow the Peg to acknowledge the train. Once the transmission
of a train is started, it is carried out back-to-back with a minimum inter-packet spacing, just to
enable the recipient to accept the individual packets from the channel.

A train always consists of the same number of packets (blocks) which we shall denote by T.
When commencing a train, the thread starts by scanning consecutive packets from Q (beginning
from Q) and transmitting them in sequence. When the last packet (the one pointed to by Q)
has been handled and the train is still incomplete, the transmitter thread will simply wait until
the generator thread delivers the next block, i.e., the remaining packets in the train will be sent
as new blocks materialize in Q. Note that the blocks are not removed from Q as they are being
transmitted.

A train packet contains the block number b—n of the block carried by the packet, and
the packaged sensor readings copied from the block. The block number always allows the
Peg to authoritatively place the contents of a received packet within the complete stream of
readings, regardless of how many packets have been lost and how the received packets have
been misordered with respect to the original stream.

Having completed the current train, the transmitter thread enters a loop in which it expects
to receive a response (an acknowledgment packet) from the Peg. Within that loop, the thread
periodically sends a short EOT (end of train) packet (to make sure that the Peg has recognized
that the train has ended and a response is expected) and waits for a short while for the ACK
(which should normally arrive after a minimum delay). The EOT packet carries three items of
information: the train number modulo 256 (a single byte) used to match trains to acknowledg-
ments, the number of the last block transmitted in the train (denoted by L), and the back offset
(Op) from L to the oldest packet still held in Q (O, = L — Qp,—n + 1).

The idea is that having received an EOT packet, the Peg can assess which blocks have been
missing (it knows the number of the last block sent by the Tag) and it also knows the minimum
number of the block that it can still ask the Tag to retransmit. The reason why the latter is
specified as an offset with respect to L is technical: the offset information can be conveyed
in two bytes instead of four (needed for a full block number). It illustrates one practical and
seemingly mundane aspect of real life in the embedded world where it always makes sense to



try to save on individual bytes. Note that the generator thread enforces a limitation reducing
the maximum difference between the numbers of blocks stored in Q.

The number of the oldest block still available in Q conveyed by the Tag in the EOT packet
reflects the state of Q at the moment the EOT packet is constructed and scheduled for trans-
mission. This information may become outdated by the time the Peg builds and transmits its
response and, more importantly, by the time that response arrives and is interpreted by the
Tag, because Q can be trimmed by the generator thread independently of the transmitter thread.
This is OK. The possibility that a block may be irretrievably lost is factored into the scheme. It
can happen that the Peg asks for the retransmission of a block that is no longer available. At
the end of the next train the Peg will learn (from the new EOT packet) that the block is no more,
so it will know that it makes no sense to keep asking for it.

The transmitter thread will keep retransmitting the EOT packet (possibly updating its param-
eters) until an acknowledgment arrives from the Peg. Normally this should happen right away,
but in a pathological scenario, if the connectivity has been broken for a long time, the contents
of Q may evolve to the point where L is no longer available. This is why the minimum value of
Oy, for the situation when Q still contains the block number L is 1. When Oy, in an EOT packet is
0, it means that none of the blocks up to (and including) the end of the last train is available any
more, so the Peg need not ask for any retransmissions.

4.3. The acknowledgment

The role of the acknowledgment (ACK) packet is to indicate to the Tag which blocks have
been missing with respect to the end of the last train and relative to the Peg’s knowledge
regarding the blocks that it can still hope to receive. Again, mundane technical constraints
force us to be frugal about the representation of information within the ACK. For one thing,
the entire message should fit into a single packet whose useful (payload) size is limited to 60
bytes. Organizing the ACK message into multiple packets would introduce obscure reassembly
problems complicating things beyond practical [28]. Consequently, the ACK format should
allow the Peg to maximize the population of (independent) block numbers that it can specify
in a single packet to cover worst-case scenarios and, more generally, to minimize the size of
the (typical) ACK packet. As the ACK traffic interferes with an otherwise smooth series of
back-to-back transmissions of useful data (causing channel reversals [28]), its impact (and the
incurred reduction of bandwidth) should be minimized.

One mandatory item carried in an ACK packet is the train number (modulo 256) to which
the acknowledgment applies. Any other data included in the packet pertain to the blocks that
the transmitter thread of the Tag should retain in Q before commencing the next train. In other
words, these are the blocks that the Peg wants retransmitted. If the ACK contains no data
beyond the single mandatory byte (which is the ideal case), the message to the Tag is simple:
erase Q up to and including L, i.e., the end of the last train.

The structure of an ACK packet is best explained by the way the information is interpreted
by the Tag upon its arrival. The interpretation is carried out by function handle ACK invoked
by the transmitter thread. Following the train number stored as the first byte of the packet, the
function interprets consecutive bytes as descriptors of the blocks that have been missing by the
Peg and, if possible, should be retransmitted. Those blocks are specified within the ACK packet
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Figure 3: Descriptors of missing blocks

in the increasing order of their numbers.

While interpreting the descriptors, the function stores in r the last block number mentioned
by a previous descriptor, to be used as a reference. The value of ris initialized to L — O,;5, — 1
where Oy, is the maximum legal difference between block numbers in Q (see above). The ACK
bytes are interpreted in the following way (see Figure 3):

1. If the two most significant bits of the byte are zero, then its remaining six bits are
interpreted as a forward offset from r minus 1, i.e., r is incremented by the nonnegative
integer value stored on those bits plus 1, and block number r is marked to be retained in
Q. Note that the minimum sensible value of an offset is 1.

2. If the two most significant bits of the byte are 01, then the remaining six bits of the byte
are prepended (on the left) to the next byte and the two bytes form together a 14-bit
(forward) offset from r minus 1.

3. If the most significant bit of the byte is 1, then the remaining seven bits are treated as a
bit map, each bit indicating an individual block relative to the value of . For this purpose,
the bits are numbered from 1 to 7 (right to left), and when bit number i is set, the block
number r + i is marked to be retained. At the end of processing the byte, ris set to r + 7,
i.e., the last block number covered by the bit map, regardless of whether the block was
marked as retained or not.

The important point is that the interpretation of the consecutive bytes, starting from the front
of the packet’s payload, produces increasing values of r which eases the operation of updating
Q. The queue is scanned in place, in the most natural manner, starting from Qy,, and any blocks
whose numbers are not mentioned in the ACK are discarded. Before interpreting the first byte
of the ACK, handle_ACK initializes r to L — O,,,4 — 1 to provide a sensible, default, initial value
(so the first byte of the ACK can be a forward offset). It might seem natural to initialize r to
L — Oy (based on the value of Oy passed in the EOT packet), which would make the range of
the initial offset better contained. However, while the value of L is nailed to the train, O, may
change in the different (retransmitted) versions of the EOT packet for the same train. As the
Tag cannot know which particular copy of EOT served the Peg as the basis for its ACK, Oy, is
not a well-known value that both parties can always agree on.

Following the reception of an ACK packet from the Peg, the transmitter thread will start
the next train with a trimmed-down version of Q. The queue will have been emptied of all
blocks that 1) have numbers less than or equal to L from the previous train, and 2) have not
been mentioned in the ACK packet.?

“Strictly speaking, the packet carries a negative acknowledgement.



Table 1
A tentative setting of protocol parameters

Parameter Value Units
Channel transmission rate 50 kbps
Samples per block 12 3-vectors
Max. Qsize: QS,,.x 128  blocks
Train length: T 64 packets
Max. block offset: O,,,, 2047  blocks
Packet space (within train) 5 ms

End of train space (for the ACK) 20 ms

4.4. The Peg

The device passes the received blocks to the computer, locally keeping track of the holes in
the received sequence, down to the maximum negative offset from the end of the last train.
The blocks are tallied in a bit map whose fixed size covers the interval O,,,,. For the ease of
calculations, the actual momentary coverage of the map is described by the current base block
number B which is shifted to the newest value of L — Oy learned by the Peg. As B is updated,
the (logical) beginning of the bit map shifts automatically (in a circular fashion), so the bit map
itself is not shifted (no copying is involved), except for clearing the obsolete entries at the tail.

Having received an EOT packet, the Peg updates the base of its bit map to L — Oy, sets its
reference block number rto L — O,,,, — 1, and begins constructing the consecutive bytes of the
ACK packet. Given the next missing block to be accounted for, there are these possibilities
which are greedily examined in this order: 1) the last entry in the ACK packet is a bit map byte
and the block number falls under its coverage, 2) the block number is within a bit-map range
from the current value of , 3) the block number can be represented by a short offset from r,
4) a long (two byte) offset is needed. In the first case, the block is simply added to the bit map
byte without extending the ACK packet. In the second case, if the difference between the block
number and r is less than 7, a new bit map byte is added to the packet. Note that a bit map byte
comes at the same storage expense as a short offset from r, so there is no point in looking ahead
(a greedy approach works fine). Preference is given to the bit map when, based on the current
block number alone, the map stands a chance of accommodating at least one more block.

In the unlikely case when the ACK packet becomes filled up to the limit of its size, the
receiving Tag will assume that all the blocks falling behind the last block number represented in
the ACK are implicitly marked as missing. Note that this will only happen in highly abnormal
conditions where pessimistic assumptions regarding the unknown are probably warranted.

5. Performance

The first implementation of our scheme addresses a planned series of experiments with animals
aimed at collecting 128 acceleration samples per second. Our intention was to tune the parame-
ters of the protocol until we get a satisfying performance for the task at hand. Table 1 lists the
numerical values of the parameters assumed for the initial tests.



While the values in Table 1 must be treated as tentative, they were produced by confronting
our expectations with the parameters and capabilities of hardware. One sample of acceleration
amounts to three scalars which we pack into 30 bits (10 bits per value). With some modest
creativity, a 50-byte packet encodes 12 samples plus the 32-bit block number. The collection rate
of 128 samples per second translates into about 11 packets per second, the total (transmitted)
length of every packet being 60 bytes. This implies the (continuous) rate of 5280 bits per second
and clearly suggests that the raw RF channel bandwidth of 50 kbps is more than sufficient to
accommodate the transfers.

Our experiments have demonstrated, at first sight somewhat surprisingly, that it is virtually
impossible to lose data in a streaming session for as long as the session operates within the
framework of raw technical feasibility. We can easily cater to sampling frequencies up to 512
samples per second (which is just one notch below the maximum capacity of the the sensor)
without increasing the channel rate, and up to the maximum of 1024 samples per second at a
slight increase of the channel rate, practically without losing any samples!

This can be argued quite formally. Let R denote the raw rate at which blocks can be transmit-
ted, back-to-back, assuming smooth operation and no errors (we shall ignore the ACKs for a
while). Let r, denote the target effective rate corresponding to the frequency at which we would
like to reliably collect samples of sensor readings. Let 7, be the block error rate of the channel.
The system can be modeled as a server shown in Figure 4.

Ta T,
— —
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Figure 4: The performance model

The bottom path represents the traffic incurred by errors and the consequent retransmissions
requested by the Peg in its acknowledgments. This is what the queue Q is really for: to
accommodate blocks that have to be retransmitted because of errors.

Consider the system at equilibrium and note that the upper path is stable and deterministic:
blocks arrive at a steady rate r,, their processing time is fixed, and they leave the server at the
same rate. Consequently, we can ignore the dynamics of the upper part assuming that its impact
consists in removing from R a fixed portion amounting to r,. Whatever is left, i.e., R — r, can be
treated as the bandwidth available for the bottom part of the traffic, i.e., for retransmissions.

Suppose that the errors are independent and they occur at the same probability P, for every
transmitted block. Then we have:

N e
re=raxZPe’=ﬁ (1)
i=1 T e

The bottom part of the service can be approximated as an M/D/1 queue where p =r,/(R—r,)
(the utilization parameter) indicates the fraction of the spare bandwidth (whatever remains after



accounting for r,) taken by the retransmissions. The expected occupancy of the queue is then:

2
2\1—p

The graph of C versus p (Figure 5) is quite illuminating. It shows that unless the utilization
factor becomes very close to unity, i.e., the retransmissions fill all the bandwidth left to them,
the demand for queue space is extremely modest. Consequently, to see the queue overflow (for
any size above the train length T), and actual losses start to materialize, we have to bring the
system to the very edge of its equilibrium. Then, of course, there is no surprise that the system
refuses to cooperate: it could not possibly do any better under the best possible scheme.

C

0

Figure 5: C = the average occupancy of Q versus the utilization factor p

The above model is oversimplified a bit by its abstraction from the acknowledgments. Their
main impact is in stealing a fraction of R proportional to the total portion of the bandwidth
used by the trains. To factor them in, we should express the utilization parameter as:

re
R_ra_fAX(re+ra)
where f, is the amount of bandwidth (expressed in blocks) used up by the exchange of one
acknowledgment.

p= ®3)

6. Summary

We have presented a protocol for reliable streaming of telemetric data over an unreliable wireless
channel. Our scheme seems to make a good use of the available bandwidth, especially in the
specific context of its inspiring application. On the sender’s side, this is accomplished by an
efficient organization of storage for the outstanding (unacknowledged) packets. The feedback
sent by the recipient is minimized to reduce the impact of channel reversals on the bandwidth
available for the forward traffic. The proposed scheme is intended for small-footprint wireless
sensing devices where the amount of memory for packet buffers is drastically limited.
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