
Digital Twins Composition via Markov Decision
Processes⋆

Giuseppe De Giacomo[0000−0001−9680−7658], Marco
Favorito[0000−0001−9566−3576], Francesco Leotta[0000−0001−9216−8502], Massimo

Mecella[0000−0002−9730−8882], and Luciana Silo

Department of Computer, Control and Management Engineering,
Sapienza University of Rome,

Via Ariosto, 25, 00185 Rome RM, Italy
{degiacomo,favorito,leotta,mecella}@diag.uniroma1.it

silo.1586010@studenti.uniroma1.it

Abstract. The use of Digital Twins is key in Industry 4.0, in the Indus-
trial Internet of Things, engineering, and manufacturing business space.
For this reason, they are becoming of particular interest for different
fields in Artificial Intelligence (AI) and Computer Science (CS). In this
work, we focus on the orchestration of Digital Twins. We manage this
orchestration using Markov Decision Processes (MDP), given a specifica-
tion of the behaviour of the target service, to build a controller, known
as an orchestrator, that uses existing stochastic services to satisfy the
requirements of the target service. The solution to this MDP induces an
orchestrator that coincides with the exact solution if a composition ex-
ists. Otherwise, it provides an approximate solution that maximizes the
expected discounted sum of values of user requests that can be serviced.
We formalize stochastic service composition and we present a proof-of-
concept implementation, and we discuss a case study in an Industry 4.0
scenario.

Keywords: Service Composition· The Roman Model· Digital Twins·
Industry 4.0· Smart Manufacturing

1 Introduction

The continuous evolution of technologies in the fields of communication, net-
working, storage and computing, applied to the more traditional world of indus-
trial automation, in order to increase productivity and quality, to ease workers’
lives, and to define new business opportunities, has created the so-called smart
manufacturing, or Industry 4.0. Digital Twins (DTs)1 are up-to-date digital de-
scriptions of physical objects and their operating status. Modern information
systems and industrial machines may natively come out with their digital twin;
in other cases especially when the approach is applied to already established

⋆ Copyright © 2021 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

1 http://www.forbes.com/sites/bernardmarr/2017/03/06/what-is-digital-twin-
technology-and-why-is-it-so-important

2 De Giacomo et al.

factories and production processes, digital twins are obtained by wrapping ac-
tors that are already in place. The main goal is to establish a tight integration
between the physical world and the virtual world, in order to make production
more efficient, reliable, flexible and faster. The Digital Twin is an ideal tool to
accomplish the purpose of Industry 4.0, since it enables massive exchange of data
that can be interpreted by analytical tools, in order to improve decision making.

Inspired by the research about automatic orchestration and composition of
software artifacts, such as Web services, in [4] it has been argued that an im-
portant step towards the development of new automation techniques in smart
manufacturing is the modeling of DT services and data as software artifacts,
and that the principles and techniques for composition of artifacts in the digital
world can be leveraged to improve automation in the physical one. In particu-
lar, inspired by the Roman model for service composition [2, 1], they consider
smart manufacturing scenarios where DTs of physical systems —or, simply, twins
—provide stateful services wrapping the functionalities of machines and tasks
of human operators. Nevertheless, there is an inherent limitation of approach
based on the classical Roman model, which is the assumption that the avail-
able services, i.e. the services that can be used to realize the target service,
behave deterministically. This assumption is often unrealistic, because in prac-
tice the underlying physical system modeled as a set of services might show
non-deterministic behaviour due to the complexity of the domain, or due to an
inherent uncertainty on the dynamics of such system. In these cases, the deter-
ministic service model is not expressive enough to capture crucial facets of the
system being modelled. Moreover, the above-mentioned techniques work only
when the target is fully realizable, i.e. the specification can either be satisfied
or not, with no middle ground. In the context of Industry 4.0 this might be
seldom the case, and instead it would be preferred a technique that, rather than
returning no answer, returns the “best-possible” solution under the actual cir-
cumstances. The work [3] contributes in this direction by providing a solution
technique that coincides with the exact solution if a composition exists; other-
wise it provides an approximate solution that maximizes the expected sum of
values of the target service’s requests. Unfortunately, such model is not expres-
sive enough to capture the non-determinsitic behaviour of the available services
which, as argued above, is a must-have in our setting.

In this paper, we marry the vision of employing service composition tech-
niques to orchestrate digital twins. We propose a generalization to the service
composition in stochastic setting proposed in [3], in which not only the target
but also the services are allowed to behave stochastically. Moreover, we allow
the services to be taken into account in the optimization problem by associating
a reward to each service’s transition, besides the target’s rewards.

2 Preliminaries

MDPs. A Markov Decision Process (MDP) M = ⟨S,A, T,R⟩ contains a set S
of states, a set A of actions, a transition function T : S × A → Prob(S) that

Digital Twins Composition via Markov Decision Processes 3

returns for every state s and action a a distribution over the next state, and a
reward function R : S ×A → R that specifies the reward (a real value) received
by the agent when transitioning from state s to state s′ by applying action a.
A solution to an MDP is a function, called a policy, assigning an action to each
state, possibly with a dependency on past states and actions. The value of a
policy ρ at state s, denoted vρ(s), is the expected sum of (possibly discounted
by a factor λ, with 0 ≤ λ < 1) rewards when starting at state s and selecting
actions based on ρ. Typically, the MDP is assumed to start in an initial state
s0, so policy optimality is evaluated w.r.t. vρ(s0). Every MDP has an optimal
policy ρ∗. In discounted cumulative settings, there exists an optimal policy that is
Markovian ρ : S → A, i.e., ρ depends only on the current state, and deterministic
[8]. Among techniques for finding an optimal policy of an MDP, there are value
iteration and policy iteration [9].

The Roman Model in stochastic settings. The problem of service compo-
sition, i.e. the ability to generate new, more useful services from existing ones,
has been considered in the literature for over a decade [6, 7, 5]. The goal is, given
a specification of the behavior of the target service, to build a controller, known
as an orchestrator, that uses existing services to satisfy the requirements of the
target service. Here we concentrate on the approach known in literature as the
“Roman model” [2, 1]: each available service is modeled as a finite-state machines
(FSM), in which at each state, the service offers a certain set of actions, where
each action changes the state of the service in some way. The designer is inter-
ested in generating a new service (referred to as target) from the set of existing
services. The required service (the requirement) is specified using a FSM, too.

Unfortunately, it is not always possible to synthesize a service that fully
conforms with the requirement specification. This zero-one situation, where we
can either synthesize a perfect solution or fail, often is not very applicable. Rather
than returning no answer, we may want notion of the “best-possible” solution.
A model with this notion has been developed in [3], where the authors discuss
and elaborate upon a probabilistic model for the service composition problem,
first presented in [10]. In this model, an optimal solution can be found by solving
an appropriate probabilistic planning problem (e.g. an MDP) derived from the
services and requirement specifications. Due to lack of space, we do not report
the details of such technique.

3 Problem

Before stating the problem, we give preliminary definitions. A stochastic service
is a tuple S̃ = ⟨Σs, σs0, Fs, A, Ps, Rs⟩, where Σs is the finite set of service states,
σs0 ∈ Σ is the initial state, Fs ⊆ Σs is the set of the service’s final state, A is the
finite set of services’ actions, Ps : Σs×A → Prob(Σs) is the transition function,
and Rs : Σs × A → R is the reward function. In short words, the stochastic
service is the stochastic variant of the service defined in the classical Roman
model, and it can be seen as an MDP itself.

4 De Giacomo et al.

A target service, as defined in [3], is T = ⟨Σt, σt0, Ft, A, δt, Pt, Rt⟩, where Σt

is the finite set of service states, σt0 ∈ Σ is the initial state, Ft ⊆ Σ is the set of
the service’s final state, A is the finite set of services’ actions, δt : Σ×A → Σ is
the service’s deterministic and partial transition function, Pt : Σt → π(A)∪ ∅ is
the action distribution function, Rt : Σt ×A → R is the reward function.

A stochastic system service Z̃ of a community of stochastic services C̃ =
{S̃1, . . . , S̃n} is a stochastic service where Z̃ = ⟨Σz, σz0, Fz, A, Pz, Rz⟩ are defined
as follows: Σz = Σ1 × · · · × Σn, σz0 = (σ10, . . . , σn0), Fz = {(σ1, . . . , σn) | σi ∈
Fi, 1 ≤ i ≤ n}, Az = A × {1, . . . n} is the set of pairs (a, i) formed by a shared
action a and the index i of the service that executes it, Pz(σ

′ | σ, (a, i)) = P (σ′
i |

σi, a), for σ = (σ1 . . . σn), σ
′ = (σ′

1 . . . σ
′
n) and a ∈ Ai(σi), with σi ∈ Σi and

σj = σ′
j for j ̸= i, Rz(σ, (a, i)) = Ri(σi, a) for σ ∈ Σz, a ∈ Ai(σi).

We define the set of joint histories of the target and the system service as
Ht,z = Σt ×Σz × (A×Σt ×Σz)

∗. A joint history ht,z = σt,0σz,0a1σt,1σz,1a2 . . .
is an element of Ht,z. The projection of ht,z over the target (system) actions is
πt(ht,z) = ht (πz(ht,z) = hz). An orchestrator γ : Σt ×Σz × A → {1, . . . , n}, is
a mapping from a state of the target-system service and user action (σt, σz, a) ∈
Σt × Σz × A to the index j ∈ {1, . . . , n} of the service that must handle it.
Crucially, since the stochasticity comes also from the services, the orchestrator
does affect the probability of an history ht,z. Moreover, in general, there are
several system histories associated to a given target history.

Let Pγ(h) =
∏|h|

i=0 Pt

(
σt,i, ai+1

)
Pz

(
σz,i+1 | σz,i, ⟨ai+1, γ(σt,i, σz,i, ai+1)⟩)

)
be

the probability of a (joint) history h = σt0σz0⟨a1, j1⟩σt1σz1⟨a2, j2⟩ . . . under
orchestrator γ. Intuitively, at every step, we take into account the probability,
determined by Pt, that the user does action ai+1 in the target state σt,i, in
conjunction with the probability, determined by Pz, that the system service

does the transition σz,i
(ai+1,j)−−−−−→ σ′

z,i+1, where j is the choice of the orchestrator
at step i under orchestrator γ, i.e. j = γ(σt,i, σz,i, ai+1).

The value of a joint history under orchestrator γ is the sum of discounted re-

wards, both from the target and the system services: vγ(h) =
|h|∑
i=0

λi

(
Rt

(
σt,i, ai+1

)
+

Rz

(
σz,i, ⟨ai+1, γ(σt,i, σz,i, ai+1)⟩)

))
Intuitively, we take into account both the re-

ward that comes from the execution of action ai+1 in the target service, but also
the reward associated to the execution of that action in service j chosen by or-
chestrator γ. Now we can define the expected value of an orchestrator to be:
v(γ) = Eht,z∼Pγ

[
vγ(ht,z) · realizable(γ, πt(ht,z))

]
where realizable(γ, πt(ht,z))

is 1 if ht = πt(ht,z) is realizable in γ (i.e. all the possible target histories
are processed correctly), and 0 otherwise. That is, v(γ) is the expected value
of histories realizable in γ. Finally, we define an optimal orchestrator to be
γ = argmaxγ′ v(γ′).

It can be shown that, under certain assumptions (i.e. target is realizable,
every history has strictly positive value, and the target’s rewards are always
greater than services’ rewards), optimality of the orchestrator implies that the
target is realized by the orchestrator.

Digital Twins Composition via Markov Decision Processes 5

4 Solution technique

The solution technique is based on finding an optimal policy for the compo-
sition MDP. The composition MDP is a function of the system service and
the target service as follows: M̃(Z̃, T̃) = ⟨SM̃, AM̃, TM̃, RM̃⟩, where SM̃ =
ΣZ̃ × ΣT̃ × A ∪ {sM0}, AM̃ = {aM0, 1, . . . , n}, TM̃(sM0, aM0, (σz0, σt0, a)) =
Pt(σt0, a), TM̃((σz, σt, a), i, (σ

′
z, σ

′
t, a

′)) = Pt(σ
′
t, a

′) · Pz(σ
′
z | σz, ⟨a, i⟩), if Pz(σ

′
z |

σz, ⟨a, i⟩) > 0 and σt
a−→ σ′

t and 0 otherwise, RM̃((σz, σt, a), i) = Rt(σt, a) +
Rz(σz, ⟨a, i⟩), if (a, i) ∈ A(σz) and 0 otherwise.

This definition is pretty similar to the construction proposed in [3], with the
difference that now, in the transition function, we need to take into account
also the probability of transitioning to the system successor state σ′

z from σz

doing the system action ⟨a, i⟩, i.e. Pz(σ
′
z | σz, ⟨a, i⟩). Moreover, in the reward

function, we need to take into account also the reward observed from doing
system action ⟨a, i⟩ in σz, and sum it to the reward signal coming from the
target. By construction, if ρ is an optimal policy, then the orchestrator γ such
that γ(σz, σt, a) = ρ(⟨σz, σt, a⟩ is an optimal orchestrator.

To summarize, given the specifications of the set of stochastic services and
the target service, first compute the composition MDP, then find an optimal
policy for it, and then deploy the policy in an orchestration setting and dispatch
the request to the chosen service according to the computed policy,

5 Use case

Consider the following scenario: there is an industrial process of ceramics pro-
duction in which a product must be processed sequentially in different ways.
Each sub-task can be completed by a set of available services. The tasks to be
carried out in order to complete the industrial process are: provisioning, mould-
ing, drying, first baking, enamelling, painting, second baking and shipping. Such
tasks can be accomplished by different types of machines or human workers.
Each available service that can perform the task can be seen as finite state ma-
chines with a probability and a reward associated to each action. There could be
multiple services for the same task, e.g. multiple version of a machine (new one
and old one) and a human that can perform the task required, and so on. When
an available service is being assigned a task, this has a task cost in terms of time
taken and resources needed for the completion of the operation on that specific
service. Usually, in terms of task cost, machines are cheaper than human work-
ers, because they can perform their task much faster. However, the machines
have a certain probability to break when they perform their job. In such a case,
the machine must be repaired as soon as the operation has been carried out,
that incurs in a repair cost for that specific machine.

From the above description of the use case scenario, it is clear that the compo-
sition technique must be able to handle the stochasticity of the available services’
transitions, as well as their reward/cost. Indeed, an optimal orchestration de-
pends on several parameters, like the task costs, the breaking probabilities and

6 De Giacomo et al.

the repair costs, one for each candidate service for accomplishing a certain task.
Therefore, it is not straightforward to determine a priori which service a certain
task must be assigned to. For example, it might be the case that despite the task
cost of a machine is low, its breaking probability might be high, and considering
the repair cost it might let us to prefer a human worker for that task. We argue
that our model can fit very well our use case. Indeed, we can reduce the prob-
lem to an instance of stochastic service composition suggested above in which a
service can capture the task cost, the breaking probability, and the repair cost.

6 Conclusions

In this paper, we have proposed an extension to previous work on stochastic
service composition, in which also the services are allowed to have stochastic be-
haviour and rewards on the state transitions. We formally specified the problem
and proposed a solution based on a reduction to MDPs. Furthermore, we moti-
vated the contribution by showing how it is well-suited for a realistic Industry
4.0 scenario. As a future work, we would like to investigate different improve-
ments such as: the possibility of including exception handling, having separate
rewards specifications for the target, employing high-level formalisms to express
a non-Markovian reward (e.g. LTL), and to employ learning techniques to learn
a model of the target behaviour from data.

References

1. Berardi, D., Calvanese, D., De Giacomo, G., Hull, R., Mecella, M.: Automatic
composition of transition-based semantic web services with messaging. In: VLDB.
vol. 5, pp. 613–624 (2005)

2. Berardi, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Mecella, M.: Automatic
composition of e-services that export their behavior. In: International conference
on service-oriented computing. pp. 43–58. Springer (2003)

3. Brafman, R.I., De Giacomo, G., Mecella, M., Sardina, S.: Service composition in
stochastic settings. In: Conference of the Italian Association for Artificial Intelli-
gence. pp. 159–171. Springer (2017)

4. Catarci, T., Firmani, D., Leotta, F., Mandreoli, F., Mecella, M., Sapio, F.: A con-
ceptual architecture and model for smart manufacturing relying on service-based
digital twins. In: 2019 IEEE international conference on web services (ICWS). pp.
229–236. IEEE (2019)

5. De Giacomo, G., Mecella, M., Patrizi, F.: Automated service composition based
on behaviors: The roman model. In: Web services foundations (2014)

6. Hull, R.: Artifact-centric business process models: Brief survey of research results
and challenges. In: OTM Confederated International Conferences. pp. 1152–1163.
Springer (2008)

7. Medjahed, B., Bouguettaya, A.: Service composition for the Semantic Web (2011)
8. Puterman, M.L.: Markov Decision Processes (1994)
9. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction (2018)

10. Yadav, N., Sardina, S.: Decision theoretic behavior composition. In: AAMAS
(2011)

