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Abstract—The moment generating function completely char-
acterizes the random variable distribution. At the same time, the
natural desire of the researcher is to obtain the density and the
distribution function as more informative characteristics. The
article analyzes popular transition methods from the moment
generating function to the probability density, in particular, the
saddlepoint method, the method based on the Heaviside theorem
and Padé approximation, a significant number of the inverse
Laplace transform numerical methods. Computational complex-
ity and practical feasibility of the methods are investigated for a
number of practical problems of the inverse Laplace transform.
Recommendations on the optimal method choice are given and
the directions for the further development of the topic are
suggested as well.

Index Terms—probability density function, moment generating
function, numerical Laplace inversion methods, Padé approxima-
tion

I. INTRODUCTION

Moment generating function (MGF) is an important statisti-
cal characteristic that uniquely describes the random variable
distribution. Since the probability density function (PDF) is
related to the MGF through the inverse Laplace transform [1]:

f(t) = L−1
[
M(−s)

]
,

the computational complexity can be significantly reduced by
using the MGF instead of PDF. For example, MGF of the two
random variables sum is calculated as the product of the MGF
of these variables [1].

Flowgraph models operate MGF to obtain the stochastic
process total time distribution. They can be applied in different
areas. For example, in reliability theory for the uptime estima-
tion, in medical statistics for the disease progression and the
treatment effectiveness analysis [2], [3], for the power system
survivability analysis and it’s weak points identification [4].

Padé approximation, Heaviside’s theorem, Saddlepoint ap-
proximation and numerical inverse Laplace transform methods
are used to obtain the PDF as the MGF inversion (while
the MGF is acquired as the result of the flowgraph specific
analysis). The transform method must provide an acceptable
approximation error with a relatively low computational com-
plexity and must generate non-negative PDF values.

The paper is organised as follows. Section II introduces the
MGF transform via Padé approximation, section III presents
the Saddlepoint approximation, section IV provides the review

of eight numerical inverse Laplace transform methods. In
section V we select methods for the software implementation
and comparison on the basis of the preliminary analysis.
Finally section VI is devoted to the results discussing.

II. PADÉ APPROXIMATION

The Heaviside theorem is suggested to obtain the PDF
applying the inverse Laplace transform of the MGF [5], [6]:

L−1
[U(s)

R(s)

]
=

q∑
k=1

U(αk)

R′(αk)
∗ eαk∗t,

where αk are the roots of the polynomial R(s).
MGF Padé approximation can be straightforward provided

as series:

∞∑
i=0

ci ∗ xi =
∑p
j=0 aj ∗ xj∑q
k=0 bk ∗ xk

Padé approximation is applicable to MGF because:

M(s) =

∞∑
n=0

µn
n!
∗ sn,

where µn is n-th moment.
Ren [5] compares three methods: Padé approximation, max-

imum entropy method and saddlepoint approximation. It is
noted that the Padé approximation is more informative and
always provides an analytical approximation for the unknown
original PDF.

But this approach has a significant disadvantage: Padé
approximation requires the high order derivatives computa-
tion (because the n-th moment is the n-th derivative of the
MGF). This fact leads to great computational complexity
often exceeding the hardware possibilities for the high order
derivatives calculation in the symbolic form.

III. SADDLEPOINT APPROXIMATION

Ren [5] also considers the technique of saddlepoint approx-
imation for the MGF-PDF transform:

f(t) =
( n

2 ∗ π ∗K ′′(s)

) 1
2 ∗ exp(n ∗ (K(s)− st)),
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where K(s) = log(M(s)), K ′(s) = t, n is the number of ran-
dom variables. For one random variable PDF approximation
is equal to [7]:

f(t) =
(
2 ∗ π ∗K ′′(s)

)− 1
2 ∗ exp(K(s)− st)

The error of this approximation is estimated as O(n−
1
2 ) [5].

Collins [8] notes this method to have less efficiency than the
inverse Laplace transform.

IV. INVERSE LAPLACE TRANSFORM METHODS

There are over a hundred different numerical inverse
Laplace transform (ILT) methods. Being applied to the various
types of functions they differ in computational complexity and
approximation accuracy.

Some ILT methods have Gibbs oscillations – an oscillatory
error which occurs when a discontinuous function is approxi-
mated with Fourier series. Gibbs oscillations do not disappear
when more terms are added to the approximation (the ”size” of
the excess does not decrease vertically, but only horizontally
[9]).

A. Abate–Whitt framework
Different ILT numerical methods can be combined within

the same mathematical framework. Abate and Whitt propose
the unified formula (1) and notice, that such algorithms as
Gaver–Stehfest, Talbot and Fourier series method with Euler
summation can fit into this framework [10].

Abate–Whitt framework [11]:

f(t) ≈
N∑
k=1

ηk
t
F (
βk
t
), (1)

where t > 0, nodes βk and weights ηk (internal and external
scaling constants) are real or complex numbers that depend on
N , but do not depend on the transform F or the time argument
t [12].

Abate–Whitt framework has low computational complexity,
but it is characterized by a deterioration of the approximation
on periodic functions at large values of t [9]. Since PDF is
not a periodic function, this disadvantage can be ignored.

Various ILT methods in this framework differ only by
approaches to ηk and βk calculation.

Several methods belonging to the Abate-Whitt framework
are considered below.

1) CME: Method is based on the concentrated matrix-
exponential distribution [11].

Matrix-exponential distributions of order N contain positive
random variables with PDF f(t) = −αAeAt1, at t ≥ 0, where
α is a real row vector of length N , A is an NxN real matrix,
and 1 is a column vector of ones of size N [11].

Let A be diagonalizable with spectral decomposition A =∑N
k=1 ukλkνk, where λk are the eigenvalues, uk are the right

eigenvectors and νk are the left eigenvectors of A with νkuk =
1, then the PDF of the matrix-exponential distribution can be
written as:

f(t) =

N∑
k=1

cke
λkt,

where ck = −αAukvk1.
A matrix-exponential distribution is called concentrated if

its squared coefficient of variation (SCV) is minimal [13].
The density of the matrix-exponential distribution with the
minimal SCV is known analytically only for the order N < 3.
Therefore, the matrix-exponential distributions required for the
approximation were calculated using numerical optimization
by the expression:

f(t) = ce−λt

N−1
2∏
j=0

cos2(ωt− φj) =
N∑
k=1

ηke
−βkt,

where c, λ, ω, φj are positive real values.
Thus, the values ηk and βk providing the minimum SCV

for the matrix-exponential distribution are the coefficients of
the Abate-Whitt framework and are obtained from numerical
optimization [14].

It is guaranteed that the CME method is free from Gibbs
oscillations and preserves monotonicity [11]. Many of the
known methods do not have these properties: for example,
the fn(t) function for the Euler and Gaver–Stehfest methods
can take negative values.

Advantages of the method: it does not cause overshoot,
maintains monotonicity, is accurate when using floating point
arithmetic, the quality of the approximation improves with
increasing order [11].

2) Gaver–Stehfest method: Method is based on the three-
parameter exponential PDF properties (Gaver method [15]).
Stehfest [16] improves method by taking the weighted average
of a Gaver approximations sequence for fixed t.

Gaver–Stehfest algorithm does not use complex numbers;
weights and nodes are real numbers and are calculated as
follows [10]:

βk = k ∗ ln(2)

ηk = (−1)(N
2 +k) ln(2)∗

∗
min(k,N2 )∑
j=b k+1

2 c

j
N
2 2j!

(N2 − j)!j!(j − 1)!(k − j)!(2j − k)!
,

where N is the number of terms used in the equation (the
method is defined only for even N ). Wang in [10] notices that
N is recommended to be taken in the range from 10 to 14.

The main disadvantage of the method is Gibbs oscillations
[11].

Abate and Whitt [12] show that Euler and Talbot methods
are more efficient than show that Euler and Talbot methods are
more efficient than those of Gaver–Stehfest. It is also noted
that the algorithm implementation requires high computational
accuracy due to manipulations with large numbers [12], [17].
However, the Gaver–Stehfest algorithm has the advantage of
using only real numbers.



3) Euler method: is an implementation of the Fourier series
method using Euler summation to accelerate convergence [18].
Method is applicable only to odd orders and assumes nodes
with positive imaginary parts.

Nodes and weights are calculated as follows [11]:

βk =
(N − 1) ln(10)

6
+ πi(k − 1)

ηk = 10
N−1

6 (−1)kξk,

where ξ1 = 1
2 ;

ξk = 1, 2 < k < n+1
2 ;

ξn = 1

2
n−1
2

;

ξn−k = ξn−k+1 + 2−
n−1
2

(n−1
2
k

)
, 1 < k < n−1

2

Method suffers from Gibbs oscillations [11].
4) Talbot method: Method is based on deforming the

contour integral in the Bromwich inversion [19]. It assumes
nodes with positive imaginary parts and also applies values of
βk with a negative real part, which is usually outside the region
of convergence, but there can be an analytic continuation of
F (s) [9].

Nodes and weights are calculated as follows [11]:

β1 =
2N

5

βk =
2(k − 1)π

5

(
cot
( (k − 1)π

N

)
+ i
)

η1 =
1

5
eβ1

ηk =
2

5

[
1 + i

(k − 1)π

N

(
1 +

[
cot
( (k − 1)π

N

)]2)−
−i cot

( (k − 1)π

N

)]
eβk

Method is not free from Gibbs oscillations [11].
5) Zakian method: Method is based on Fourier series

method with Padé approximation [11].
General formula is [10]:

f(t) =
1

t

N∑
k=1

Re{KkF (
αk
t
)}, (2)

where Kk and αk are real or complex constants. N represents
the number of terms used in the summation. According to
[10], [20] a sufficient value of N in most cases is N = 10.
Coefficients for 1 ≤ N ≤ 10 are calculated in [20].

Zakian proposes two methods for choosing coefficients Kk

and αk. In the first he compares the Laplace transform δ(t, u)
(a rational function) with the Laplace transform of δn(u− t)
(an exponential function) and chooses the coefficients so that
the rational functions are equal to the classical Padé approx-
imations of the exponential function [21]. Another method
includes least squares optimization [22].

6) Hyperbolic kernel approximation method: Method is
based on the Laplace transform inverse kernel approximation
by expressions containing hyperbolic functions sinh and cosh
or their combinations [23].

The general formula [24] is based on the combining two
approaches to the Laplace transform inverse kernel approxi-
mation est ≈ ea

2sinh(a−st) and est ≈ ea

cosh(a−st) to increase
accuracy:

f(t) =
ea

2t

(1
2
F (
a

t
) +

N∑
n=1

(−1)n
(
Re
{
F
(a
t
+ in

π

t

)}
+

+Im
{
F
(a
t
+ i(n− 1

2
)
π

t

)}))
(3)

The absolute error depends on the a as follows [24]:

εaM ≈Me−4a,

where M is the maximum absolute value of the original f(t).
The parameter a is had to be found empirically. It is

recommended to have a in the following range 2 ≤ a ≤ 6
[23], [25]. Brančı́k and Smith [26] also notice that one of
the ways to improve the accuracy of this approximation is to
increase the parameter a.

B. Post–Widder method

ILT is calculated by the formula [27]:

f(t) :=
(−1)N−1

(N − 1)!

(N
t

)N
F (N−1)(

N

t
), (4)

where F (n−1)(x) is the n-th derivative of F (x).
The main issue is that method requires high order derivatives

computation and is characterized by slow convergence [27].
Post-Widder method does not cause the overshoot and

maintains monotonicity [11]. However, according to Horvath’s
research [11], the CME method gives better approximation.
Davies [28] also notices that the method rarely gives a high
accuracy of the approximation.

C. Laguerre method

Method is based on Laguerre polynomials. ILT is calculated
by the formula [29]:

f(t) ≈
∞∑
n=0

qnln(t), (5)

where ln is Laguerre function, qn are Laguerre coefficients,
dependent on F .

Laguerre function:

ln(x) = e−
x
2Ln(x), (6)

where Ln is Laguerre polynomial.
Laguerre polynomial:

Ln(x) =

n∑
m=0

(
n

m

)
(−x)m

m!
(7)



Laguerre coefficients generating function:

Q(z) =

∞∑
n=0

qnz
n =

1

1− z
F
( 1 + z

2(1− z)

)
(8)

Formulas 5 – 8 can be rewritten as follows [11]:

f(t) =

N−1∑
j=0

F (j)(
1

2
)

N−1∑
k=j

k!

(j!)2(k − j)!
lk(t), (9)

where F (j)(s) is the j-th derivative of F (s).
Davies [28] notices that Laguerre polynomials give an

accurate approximation over a wide range of functions.
The disadvantage of this method is that computation re-

quires high order differentiation. Laguerre method also suffers
from Gibbs oscillations [11].

D. Other methods

Cohen method is based on the power series F (s) as a
function 1

s . However, this method is not applicable when F (s)
has a pole at 0, and the approximation also gets rapidly worse
for larger values of t [11].

Honig-Hirdes and de Hoog methods are the variation of
the Fourier series method. Wellekens uses the Fourier series
method based on the Padé approximation [11]. Schapery
method is described in [30], but according to [28], it rarely
gives the high accuracy of the approximation.

V. CHOOSING METHODS FOR THE IMPLEMENTATION

We will determine the most promising solutions for the
considered methods.

Padé approximation, Post-Widder and Laguerre methods
provide high computational complexity, because of calculating
high order derivatives.

Gaver–Stehfest, Euler, Talbot methods suffer from the Gibbs
oscillations, and since PDF is restricted to have negative
values, these methods are also beyond our consideration.

So we choose four of the most promising methods for
the comparison: the saddlepoint approximation, CME method,
Zakian method and hyperbolic kernel approximation method.

VI. IMPLEMENTATION AND COMPARISON OF THE
SELECTED METHODS

The selected methods are implemented as Matlab functions
(Matlab R2020a version was used), because Matlab [31] has
one of the most powerful symbolic toolboxes. For the com-
parison with other methods the CME method is taken in the
format suggested in [32] with some parameters pre-calculated
by the authors of the method. The saddlepoint method, Zakian
method, hyperbolic kernel approximation method are Matlab
implemented according to [33]. Zakian method is realised with
pre-calculated parameters Ki and αi borrowed from [20]. The
a parameter value is selected empirically for the hyperbolic
kernel approximation method. Since Matlab has the built-in
inverse Laplace transform function, it is reasonable to compare
it with the selected methods.

The method’s average running time is stated as the per-
formance criteria. The hardware in use is Intel(R) Core(TM)

i5-1035G1 CPU @ 1.00GHz 1.19 GHz, RAM 8,00 GB with
Windows 10.

The accuracy of the methods tested is assessed by two
parameters: maximum absolute deviation εabs, to check for
the sharp exceeds in the approximation, and 1-norm of the
numerical error εn calculated by the formula:

εn =

∫ T

0

|f(t)− fappr(t)|dt ≈
1

M

M∑
m=1

|f(m)− fappr(m)|

Original function f(t) is compared with approximated PDF
fappr(t) at M = 200 equidistant points.

The problem of the PDF mining from the flowgraph is stated
for the beforehand known PDFs just for the testing purpose.
The methods are checked on the approximation of exponential,
normal, triangular and uniform distributions with well known
Laplace transforms. The flowgraph with 5 nodes shown on
fig. 1 is also investigated on the subject of the transition time
distribution from the node 1 to the node 5. The flowgraph
parameters are presented in the Table I. It should be noted
that for this graph the 10-th MGF derivative calculation takes
2 seconds, the 12-th derivative calculation takes 4.5 seconds.
It confirms that methods based on the high order derivatives
calculation are not suitable for the implementation.

Fig. 1. Flowgraph

TABLE I
FLOWGRAPH PARAMETERS

Edge Probability Distribution Parameters
q12 0.2 Exponential λ = 0.2
q14 0.8 Uniform a = 2.4, b = 9.6
q23 1 Triangular a = 1.6, b = 6.4, c = 4
q34 0.9 Exponential λ = 0.5
q35 0.1 Uniform a = 6, b = 24
q43 0.5 Triangular a = 4, b = 16, c = 10
q45 0.5 Exponential λ = 0.3

A. Exponential distribution

Built-in Matlab function demonstrates the best performance
and the highest approximation accuracy (tables II - III) for the
exponential distribution (λ = 0.5) among all the methods in
question. A visual comparison (Fig. 2) confirms these results.



TABLE II
EXPONENTIAL DISTRIBUTION APPROXIMATION TIME

Matlab function, s Zakian, s Saddlepoint, s
0.0110± 0.0005 0.055± 0.005 0.111± 0.002

Order CME, s Hyperbolic, s
5 0.319± 0.009 0.098± 0.004
10 0.356± 0.009 0.182± 0.012
20 0.406± 0.007 0.353± 0.009
50 0.5915± 0.0104 0.860± 0.012

100 0.888± 0.019 1.714± 0.021

TABLE III
EXPONENTIAL DISTRIBUTION APPROXIMATION ERRORS

Matlab function Zakian Saddlepoint
εn εabs εn εabs εn εabs
0 0 2.51E-03 6.81E-03 3.25E-04 2.56E-02

CME Hyperbolic
Order εn εabs εn εabs

5 3.40E-04 3.70E-03 2.68E-03 1.79E-02
10 5.62E-05 8.02E-04 1.62E-03 6.11E-03
20 1.03E-05 1.74E-04 1.02E-03 3.15E-03
50 9.60E-07 2.30E-05 8.29E-04 4.36E-03

100 3.60E-07 9.00E-06 5.54E-04 5.00E-03

B. Normal distribution

The Matlab built-in function is unable to provide the inverse
Laplace transform of the normal (Gauss) distribution with the
expected value µ = 30 and standard deviation σ = 3. It returns
an unevaluated call to ilaplace function. Saddlepoint approx-
imation provides the set of values that exactly approximates
the Gauss distribution only for the bounded segment [0;116].
Zakian and CME methods show sharp spikes in the values
of the approximated function. Only the hyperbolic method
gives a sufficiently accurate approximation (Table V). A visual
comparison shows that CME method is characterized by the

Fig. 2. PDF approximation. Exponential distribution

sharp exceed of values in small t, but Zakian method cannot
provide an accurate approximation for t > 30 (Fig. 3). Zakian
method ensures maximum performance, but because of low
accuracy, we recommend to use hyperbolic approximation for
this distribution.

TABLE IV
NORMAL DISTRIBUTION APPROXIMATION TIME

Matlab function, s Zakian, s Saddlepoint, s
- 0.072± 0.004 0.112± 0.004

Order CME, s Hyperbolic, s
5 0.319± 0.005 0.096± 0.003

10 0.376± 0.014 0.219± 0.009
20 0.44± 0.02 0.420± 0.018
50 2.92± 0.03 2.955± 0.009
100 4.55± 0.06 5.89± 0.02

TABLE V
NORMAL DISTRIBUTION APPROXIMATION ERRORS

Matlab function Zakian Saddlepoint, t ∈ [0; 116]
εn εabs εn εabs εn εabs
- - p. inf. p. inf. 0 0

CME Hyperbolic
Order εn εabs εn εabs

5 2.94E-03 6.03E-02 5.03E-03 1.95E-02
10 1.75E+00 3.49E+02 2.82E-03 6.01E-03
20 p. inf. p. inf. 8.91E-04 2.92E-03
50 p. inf. p. inf. 4.66E-05 2.44E-03

100 p. inf. p. inf. 1.85E-05 2.44E-03
*p. inf. (practically infinite) stands for values larger than 1000

Fig. 3. PDF approximation. Normal distribution

C. Triangular distribution

The saddlepoint approximation for the triangular distribu-
tion with parameters a = 10; b = 50; c = 30 is unable
to find the answer: method fails with error ”Unable to find



explicit solution”. The highest approximation accuracy and
performance is demonstrated by the built-in Matlab function
(Tables VI, VII). Zakian method does not provide the required
approximation accuracy (Fig. 4).

TABLE VI
TRIANGULAR DISTRIBUTION APPROXIMATION TIME

Matlab function, s Zakian, s Saddlepoint, s
0.0108± 0.0005 0.16± 0.03 -

Order CME, s Hyperbolic, s
5 0.46± 0.08 0.144± 0.005
10 0.68± 0.02 2.56± 0.03
20 1.068± 0.018 5.03± 0.04
50 2.34± 0.08 13± 1

100 3.39± 0.04 25.56± 0.17

TABLE VII
TRIANGULAR DISTRIBUTION APPROXIMATION ERRORS

Matlab function Zakian Saddlepoint
εn εabs εn εabs εn εabs

2.50E-04 5.00E-02 1.17E-03 5.28E-02 - -
CME Hyperbolic

Order εn εabs εn εabs
5 9.24E-04 5.92E-02 3.86E-03 5.23E-02
10 4.08E-04 5.43E-02 1.25E-03 5.15E-02
20 2.88E-04 5.20E-02 4.13E-04 5.07E-02
50 2.58E-04 5.07E-02 2.84E-04 5.03E-02

100 2.55E-04 5.05E-02 2.59E-04 5.02E-02

Fig. 4. PDF approximation. Triangular distribution

D. Uniform distribution

The saddlepoint approximation for the uniform distribution
with parameterss a = 20; b = 40 fails with the error
”Unable to find explicit solution”. The error for the built-in
Matlab function and CME method is explained by the PDF
approximation corners rounding (Fig. 5). The CME method
provides the best accuracy for the order of N = 50 (Table IX).

The built-in Matlab function provides the highest performance
with the approximation error of the order 10−2, that makes it
the best option among the considered methods. The hyperbolic
approximation method suffers from Gibbs oscillations. The
Zakian method does not provide the required approximation
accuracy.

TABLE VIII
UNIFORM DISTRIBUTION APPROXIMATION TIME

Matlab function, s Zakian, s Saddlepoint, s
0.0114± 0.0016 0.18± 0.08 -

Order CME, s Hyperbolic, s
5 0.331± 0.004 0.21± 0.08

10 0.6± 0.10 0.42± 0.16
20 0.83± 0.03 3.55± 0.03
50 1.70± 0.07 10.2± 0.2
100 2.98± 0.11 21.6± 0.8

TABLE IX
UNIFORM DISTRIBUTION APPROXIMATION ERRORS

Matlab function Zakian Saddlepoint
εn εabs εn εabs εn εabs

2.50E-04 2.50E-02 3.14E-03 2.72E-02 - -
CME Hyperbolic

Order εn εabs εn εabs
5 1.93E-03 2.56E-02 5.59E-03 2.68E-02

10 8.93E-04 2.55E-02 2.50E-03 2.60E-02
20 4.45E-04 2.52E-02 1.55E-03 2.58E-02
50 2.61E-04 2.51E-02 8.91E-04 2.52E-02
100 2.52E-04 2.51E-02 6.91E-04 2.52E-02

Fig. 5. PDF approximation. Uniform distribution

E. Flowgraph

For the flowgraph with different transition time distributions
(Fig. 1, Table I) the saddlepoint approximation method fails
with the error ”Unable to find explicit solution” and the same



result is demonstrated by the built-in Matlab function that
returns an unevaluated call to ilaplace function. The Zakian
method does not provide the required approximation accuracy
(Fig. 6). The best approximation is provided by the CME
method (Table XI). For this case the CME method is faster
than the hyperbolic approximation and the Zakian method as
well (Table X).

TABLE X
FLOWGRAPH APPROXIMATION TIME

Matlab function, s Zakian, s Saddlepoint, s
- 5.09± 0, 14 -

Order CME, s Hyperbolic, s
5 2.48± 0.05 10.20± 0.12

10 4.83± 0.11 20.25± 0.19
20 8.77± 0.12 32.40± 0.18
50 21.8± 0.6 81.50± 0.82
100 34.5± 1.6 182± 8

TABLE XI
FLOWGRAPH APPROXIMATION ERRORS

Matlab function Zakian Saddlepoint
εn εabs εn εabs εn εabs
- - 2.26E-03 9.85E-03 - -

CME Hyperbolic
Order εn εabs εn εabs

5 5.52E-04 7.08E-03 3.87E-03 9.15E-03
10 5.34E-04 7.95E-03 2.26E-03 1.06E-02
20 5.67E-04 9.83E-03 1.04E-03 1.08E-02
50 5.80E-04 1.05E-02 6.21E-04 1.04E-02

100 5.81E-04 1.04E-02 5.90E-04 1.05E-02

Fig. 6. PDF approximation of the transition time between the first and the
last nodes of the graph

VII. CONCLUSION

In this paper we consider some well-known MGF inversion
methods. Next, we have identified a group of methods that,

according to the sources, are characterized by the least com-
putational complexity and the absence of Gibbs oscillations.
This group, which includes saddlepoint approximation, CME
method, Zakian method and hyperbolic kernel approximation
method, was tested on inverse Laplace transform problems
for a number of distributions (exponential, normal, triangular,
uniform). We also tested these methods on the meaningful
problem represented by the five-state flowgraph. All methods
are compared with the built-in Matlab function according
to the criteria of accuracy and performance. The following
conclusions were made on the test results:
• the Zakian method with the recommended in [10], [20]

order N = 10 failed in most cases. So the calculation of
parameters for higher orders is required;

• the hyperbolic kernel approximation method is not free
from Gibbs oscillations and also requires the empirical
selection of the a parameter, which makes it difficult to
use method in the real cases when true distribution is
unknown;

• the saddlepoint method gives an exact approximation for
exponential and normal distributions, but it unable to
provide the acceptable approximation of the PDF for
uniform and triangular distributions;

• the built-in Matlab function provides the most accurate
and fast result for exponential, triangular and uniform
distributions, but does not cope with the MGF transform
for the normal distribution and the flowgraph (fig. 1);

• thus, we can recommend the built-in Matlab function
or the saddlepoint approximation only for a number of
distributions;

• the CME method is the most stable among the considered
methods. It is not subject to Gibbs oscillations, uses
pre-calculated parameter values, so it has a relatively
low computational complexity. In fact the definition of
PDF here is reduced to summation and depends only on
the complexity of the MGF expression. It is advisable
to test the method on flowgraphs with large number of
probabilistic transitions.
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[9] I. Horváth, Z. Talyigás, and M. Telek, “An optimal inverse laplace
transform method without positive and negative overshoot–an integral
based interpretation,” Electronic Notes in Theoretical Computer Science,
vol. 337, pp. 87–104, 2018.

[10] Q. Wang and H. Zhan, “On different numerical inverse laplace methods
for solute transport problems,” Advances in Water Resources, vol. 75,
pp. 80–92, 2015.
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