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Abstract—This paper presents a new algorithm for merging
occupancy grid maps, the cells of which are based on the
Transferable Belief Model. The developed algorithm excludes
the collision of the merged maps. There are no disjoint areas
in the source maps in the final map. In addition, this article
explores possible modifications of the ORB algorithm descriptor
using the Transferable Belief Model. Testing was conducted using
the MIT Stata center dataset. The source code is available on
https://github.com/Nightbot1448/TBMMapMerging.

Index Terms—occupancy grid map, map merging, Transferable
Belief Model, descriptor of keypoint

I. INTRODUCTION

Occupancy grid maps are one of the variants of map
representation formats that are built by robots in the pro-
cess of performing the task of simultaneous localization and
mapping[1]. The use of such maps is advisable when there
is no a priori information about the environment. Such maps
are used by autopilots, rescue robots and other robots that use
information about the space around them to move. Building
a map using data from only one robot is slow. Also there are
a lot of errors that are difficult to fix. These disadvantages
can be overcome by using more than one robot, and the maps
they build can be combined into one. The difficulty lies in
correcting conflicts that arise when merging maps.

Occupancy maps often use probabilistic theory to provide
information about the occupancy of a cell [2]. In this paper, it
is proposed to consider a different approach to storing infor-
mation about space using occupancy maps. The mathematical
basis for this approach is the Dempster–Schaefer theory (DST)
[3]. One of the directions of development of this theory is the
Transferable Belief Model(TBM) [4].

Section II will describe the difference between classical
probability theory and TBM. It will also be said about the
representation of the cell in this work. The section III will
provide a brief overview of some of the existing solutions.
Section IV will describe the presentation of the map, the
idea of the algorithm, and also talk about the modification
of descriptors and the way of aligning maps. Subsection
V-A describes the selection of a merge rule, subsection V-B
compares various descriptor modifications, and subsection V-C
describes the accuracy of the merge and the computation time
of the algorithm.

II. MATHEMATICAL BASE

Consider some of the basis of Dempster-Schafer theory and
the Transferable Belief Model. These theories are the basis of
this work. For ease of further understanding, everything will
be built by analogy with the states of the map cell.

X =
{
h, h

}
(1)

p(h) + p(h) = 1 (2)

2X =
{
∅, {h} ,

{
h
}
, X
}

(3)∑
A∈2X

m(A) = 1 (4)

Let h be some event (eq. (1)). In classical probabilistic
theory, the sum of the probabilities of an event and com-
plementary event is equal to 1 (eq. (2)). In TBM there is a
transition to the superset (eq. (3)). Accordingly, the state is
described by 4 masses, which show the measure of the fact
that the cell is in this state. The sum of the masses must be
equal to 1 (eq. (4)). Lack of knowledge or uncertainty between
the states h and h is explicitly described by the mass of X ,
and if two sources provide conflicting information, then the
mass of conflict ∅ increases.

Consider the projection of this theory onto the
cell representation of the occupancy map. The set
of states is two atoms [5] X = {Occupied, Free}.
Thus, the superset is the set of four elements
2X = {∅, {Occupied} , {Free} , {Occupied, Free}} =
{Conflict, Occupied, Free, Unknown}. In this way
m (∅) = m (Conflict) – the mass that the cell is in a
conflict state, m (Occupied) – the mass of the fact that
the cell is occupied, m (Free) – the mass that the cell is
free, m ({Occupied, Free}) = m (Unknown) = m (X) –
remaining unallocated mass that reports a lack of information.

In this paper, the differences between DST and TBM are
limited to the fact that TBM allows for the possibility that the
conflict mass will be non-zero. This is prohibited in DST. DST
always requires conflict normalization. Conflict normalization
is the distribution of the mass of the conflict between all other
possible states in proportion to their masses. However, in the
implementation, the conflict is always normalized.
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III. RELATED WORK

At the moment there are many different algorithms for
merging occupancy maps. Some of the existing algorithms
will be surveyed below. As sources of information on the ap-
proaches to merging maps, we selected articles describing the
merging of occupancy maps, differing in merging approaches
for the possibility of comparison. The articles were published
in 2005-2020.

Andreas Birk and Stefano Carpin in work [6] propose an
algorithm based on the Adaptive random walk algorithm with
heuristics. The heuristic used in the algorithm is based on a
special image similarity function, calculated in linear time.
To determine the quality of the merge, a special function is
introduced that shows the quality of the merge of the maps:

ai (m1,m2) = 1− agr(m1,m2)

agr(m1,m2) + dis(m1,m2)
,

where agr(m1,m2) – measure of map consistency,
dis(m1,m2) – measure of inconsistency. In this work,
a cell can be in one of three states - occupied, free, no
information. If the cell values do not match when merged,
then the cell is marked as unknown. The runtime is 170
seconds on a Pentium IV 2.2 GHz processor. The main
disadvantage in this work is the discrete representation of the
cell state. This is a disadvantage, since it does not express a
measure of confidence in the correctness of the data. Also the
disadvantage is the duration of the work. However, the merge
method is an advantage, since the lack of information is of
higher priority than the presence of unreliable information.

In [7] Li Hao and his colleagues describe an objective
function based on the probability of being occupied in the
map fusion section. Also presented are some methods that are
developed on the basis of a genetic algorithm to optimize the
objective function. Based on this method, a general solution for
the association of several robots is the additionally described
strategy for indirect estimation of the relative position of
robots. The proposed method can perform the task of merging,
even with a larger initial map alignment error and high
inconsistency inherent in the map. The merging process is
averaging the values of the corresponding cells in the original
maps. The operating time is 15 seconds on a processor with
a frequency of 3.0 GHz. In this work, the disadvantage is the
averaging of the values of the cells of the merged maps. This is
a disadvantage as the conflict remains. Among the considered
analogs, this algorithm has the highest performance.

Sajad Saeedi and colleagues in their work [8] extend the
Generalized Voronoi Diagram (GVD) to encapsulate prob-
abilistic information encoded in the occupancy grid map.
A new construct, called Probabilistic GVD (PGVD), works
directly with occupancy grids and is used to determine the
relative transformation (offset and rotation) between maps and
combine them. The merging process consists of several stages.
Initially, there is a relative transformation between the two
maps. Then the probabilities are combined and then filtered
to get the final map. The data obtained as a result of the map

transformation is included using the additive property of the
logarithmic representation of occupancy. An entropy filter is
applied to the merged map. The entropy filter compares the
merged and original maps and rejects updates that increase
entropy. Mutual information is defined as the decrease in
entropy in cell (i, j) between the original map and the merged
map. The resulting map is defined as follows: if the value of
the mutual information for the cell is non-negative, then data
is taken from the merged map, otherwise - from the original
one. The runtime is 34 seconds on a Core2Duo 2.66 GHz
processor. In this work, the main disadvantage is the operating
time. The main advantage of this work is the way of resolving
the conflict when merging maps.

In paper [9] by Guillaume Trehard and colleagues, the
merging algorithm is based on a Transferable Belief Model for
occupancy maps. The cell representation used in this paper is
described in section II. The merge is performed according to
the conjunctive rule [10]. When determining map consistency,
the disjunctive orthogonal operator [9] is used. The main
advantage of this work is the cell presentation. Using TBM
for representation broadens the view of the space. As will be
shown later, this work is the foundation for the current.

Andrew Howard suggests the approach [11], which uses
the Bayesian inference [12] and the particle filter [13]. The
algorithm works in conjunction with the task of simultaneous
localization and mapping. Merging takes into account the time-
reversed sequence of maps states. The resulting cell value is
calculated by calculating the average of the merged maps.
The advantage is the use of a particle filter as this allows to
choose the best option among the many. However, averaging
the merge value is a disadvantage.

The articles do not provide a link to the code, as a result
of which there is no way to test it under equal conditions -
on the same processor and the same dataset. As a result, the
numbers are taken from the works themselves, and information
about the processors and/or their frequency is indicated for
comparison.

IV. IMPLEMETATION

This section describes the map representation used in the
proposed occupancy grip map merging algorithm. The occu-
pancy map is a two-dimensional grid of cells. In this paper,
the cell is based on TBM. Thanks to this, it is possible to store
in the cell more information about the space. The algorithm is
based on images of different occupancy map representations.
To select an algorithm for detecting keypoints, a comparison of
various algorithms for detecting features has been performed.

A. Map representation

The TBM cell is the main feature of the occupancy grid
representation considered in this algorithm. The cell of the
map is similar to that considered in the [9] algorithm.

The cell representation used in this paper is described in
section II. In fact, the map can be represented as 3 different
maps, each of which carry some specific information about
the area on the map. It is possible to get maps showing an
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Figure 1. Map representations. (a) – a probabilistic representation, (b) – a
representation showing an occupied area, (c) – a representation showing an
free area, (d) a representation showing an area that is unknown

occupied area, a free area, an area about which there is no
information. There is possible convert a cell of type TBM to
the usual probabilistic value [4] using the formula

PBet(x) =
∑

x∈A⊆X

m(A)

|A|
,

where x ∈ X are atoms, |A| is the number of x atoms that
appear in A, X is the set of states.

Fig. 1a provides the probabilistic representation of the
occupancy map, in which an unoccupied cell corresponds to
1.0 (white), an occupied cell - 0.0 (black), a cell about which
there is no information - 0.5. Different representations of the
occupancy map are illustrated in fig. 1b - 1d. In these figures,
white color corresponds to the fact that the entire mass of the
cell is concentrated on this belief, black color - the mass of
this belief is equal to 0 in this cell. As it was said, the conflict
is normalized, so the mass is distributed among the three
indicated beliefs. The sum of the masses of these three beliefs
is 1, that is, m (Occupied)+m (Free)+m (Unknown) = 1.

B. Algorithm idea

On the probabilistic map (1a), keypoints are extracted
using the ORB [14] feature detector. Then the descriptors of
the feature points in the images corresponding to the three
maps listed above are calculated. The resulting descriptors
are concatenated. Thus, descriptors of keypoints of the map
are obtained. Next, the descriptors are matched. The matched
keypoints are split according to the maps to which they
belong. Then the computation of the affine transformation is
performed. Once a transform is found, it is applied to the map
for which it was calculated. The maps are merged using the
disjunctive rule, which is described below. Alg. 1 demonstrates
pseudocode of the algorithm.

C. Comparison of descriptors

Initially, ORB, BRIEF [15], SURF [16], SIFT [17] were
considered as variants of the used detectors and descriptors.

Algorithm 1 TBM map merging
imgs← get imgs from maps()
keypoints1, keypoints2 ← get ORB keyposints(imgs)
d1, d2 ← get descriptors(keypoints1, keypoints2)
desc map1, desc map2 ← concatenate(d1, d2)
matched← match and filter(desc map1, desc map2)
transform← compute transform(matched)
transfomed← apply transform(map2, transform)
return merge disjunctive(map1, transfomed)

Table I
COMPARISON OF DIFFERENT DETECTORS AND DESCRIPTORS ON THE

MAPS IMAGES

Expiriment ORB(1) BRISK(2) SIFT(3) SURF(4) Best

1 0.958 0.889 0.25 0.0 1

2 1.0 1.0 1.0 0.951 1, 2, 3

3 0.714 0.5 0.0 0.0 1

4 0.993 1.0 1.0 1.0 2, 3, 4

5 0.96 0.818 0.0 0.0 1

6 0.999 1.0 1.0 1.0 2, 3, 4

7 0.999 0.998 1.0 0.996 3

For comparative analysis, several maps of the 2nd floor of
the MIT Stata Center were built. After that, images of the
probabilistic representations of these maps were obtained. On
these images, about 1000 features were detected using of
various detectors. Next, the descriptors were computed. The
imprecise count of the detecting keypoints is due to the fact
that in OpenCV the BRISK and SURF algorithms do not
provide the ability to explicitly specify the number of points.
This count can only be influenced through some of the input
parameters.

The table I shows the ratios of correctly matched feature
points to the total number of matched feature points. Each line
corresponds to a pair of different maps to merge. Repeated
running with averaging of the results were not carried out,
because algorithms for detecting and calculating descriptors
do not depend on random variables.

The columns with the names of the algorithms indicate the
coefficients that show the ratio of correctly matched pairs to
the total number of matched pairs of features. As you can
see from the table, the ratio of points that the ORB detects is
better, or close to the best, so this feature detector was chosen.

D. Maps alignment

After calculating the descriptors, the found points must
be matched. For this, brute force matching is used using
the Hamming norm [18]. This method is the main one for
matching binary keypoints descriptors. The Lowe test [17] is
then used to partially eliminate false matches. After filtering,
the matched pairs that passed the test are copied into two
vectors of features that correspond to their map. The optimal
affine transformation is calculated between these vectors. The
result of the function operation is the 2×3 matrix [R|t], where
R is the rotation matrix 2×2, t is the translation vector 2×1.
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Figure 2. Comparison of conjunctive and disjunctive rules. (a) - the original
map, (b) - 51 % of the left side of the map, (c) - 51 % of the right side of
the map, (d) - the map combined using the conjunctive rule, (e) - the map
combined using disjunctive rule

The found transformation is applied to the map for which it
was calculated.

E. Merging using the disjunction rule

The conjunctive rule is used if all sources are considered
reliable, disjunctive – if at least one source is considered
unreliable. Maps, which are built by robots, can have various
anomalies, such as incorrect scales (a robot in some area
covered more/less distance than shown on the map), inconsis-
tency of angles on the map and in reality (rotation error), and
others. Therefore, it was decided to use the disjunctive rule,
which allows you to exclude areas that have strong differences
from the resulting map. For a comparison of conjunctive and
disjunctive rules, see V-A.

Conjunctive rule:

m1∩2 (A) =
∑

B∩C=A

m1 (B)m2 (C) (5)

Disjunctive rule:

m1∪2 (A) =
∑

B∪C=A

m1 (B)m2 (C) , (6)

where A,B,C ∈ 2X 6= ∅.
After the maps are aligned, they are merged using the

disjunctive rule (6). Since the maps are aligned, an iterative
traversal of the cells occurs. For each pair, the specified rule
is applied, and the information obtained during the merging is
set in a cell with the same index as those taken in the original
maps.

V. EXPERIMENTS

The algorithm for searching for transformation and merging
of maps was described above. It has been said that there
are different merge rules in TBM. As part of the work,
conjunctive and disjunctive rules are considered. The reasons
for choosing a disjunctive merge rule will be presented below.

(a)

(b)

Figure 3. Graph of the ratio of correctly matched keypoints to the total number
of matched keypoints depending on (a) - the initial number of extracting
keypoints(the value of the Lowe coefficient - 0.7), (b) - the value of the Lowe
coefficient (the number of extracting keypoints - 1000)

In the section IV-B it was said that descriptor concatenation
is used. This section will look at the various modifications
to existing descriptors and compare these modifications. The
accuracy of the found transformation is determined by finding
the distance between the coordinates of the keypoints of the
first map and the coordinates of the keypoints of the second
map after applying the found transformation. This will be
discussed below.

A. Comparison of conjunctive and disjunctive rules

As mentioned above, the conjunctive rule is used when all
sources are considered reliable, and the disjunctive one is used
when at least one source is not. The difference between merges
using conjunctive and disjunctive rules is considered in the
following example. The original map is shown in fig. 2a. Fig.
2b - 2c are represented by 51% of the left and right parts
of the original map with the same size of the original map,
the remaining 49 % are set as cells, about which there is no
information. Fig. 2d is demonstrated the result of merging
using the conjunction rule, so the resulting map contains the
parts that are present on both merged maps. The cells that are
in the overlapping area have reduced the mass of the belief
corresponding to the lack of information about this cell and
redistributed it according to the rule (5). This can be seen



Table II
COMPARISON OF DIFFERENT DESCRIPTOR MODIFICATIONS

1 2 3a 3b 3c 3d 3e 4

100

0.5 0.53± 0.10 0.55± 0.08 0.52± 0.15 0.34± 0.09 0.32± 0.10 a,b,c
0.6 0.53± 0.11 0.74± 0.04 0.67± 0.02 0.52± 0.08 0.38± 0.10 b
0.7 0.52± 0.15 0.75± 0.03 0.52± 0.01 0.56± 0.07 0.50± 0.15 b
0.8 0.62± 0.02 0.78± 0.02 0.35± 0.02 0.55± 0.02 0.58± 0.09 b

500

0.5 0.75± 0.09 0.76± 0.04 0.49± 0.08 0.63± 0.11 0.42± 0.13 a, b
0.6 0.70± 0.11 0.77± 0.04 0.43± 0.03 0.56± 0.05 0.56± 0.10 a, b
0.7 0.82± 0.03 0.84± 0.01 0.31± 0.01 0.35± 0.01 0.64± 0.06 a, b
0.8 0.66± 0.03 0.65± 0.04 0.18± 0.01 0.23± 0.01 0.39± 0.02 a, b

1000

0.5 0.61± 0.13 0.62± 0.09 0.32± 0.06 0.48± 0.09 0.49± 0.12 a, b
0.6 0.72± 0.11 0.77± 0.03 0.45± 0.02 0.45± 0.05 0.65± 0.10 a, b
0.7 0.74± 0.02 0.83± 0.03 0.50± 0.06 0.49± 0.14 0.22± 0.05 b
0.8 0.59± 0.04 0.68± 0.03 0.19± 0.00 0.16± 0.00 0.33± 0.03 b

2500

0.5 0.69± 0.11 0.63± 0.11 0.28± 0.03 0.57± 0.08 0.26± 0.10 a
0.6 0.76± 0.07 0.78± 0.02 0.30± 0.01 0.40± 0.04 0.62± 0.02 a, b
0.7 0.70± 0.03 0.85± 0.01 0.33± 0.05 0.32± 0.03 0.40± 0.02 b
0.8 0.54± 0.06 0.58± 0.05 0.30± 0.10 0.16± 0.01 0.24± 0.02 a, b

5000

0.5 0.69± 0.09 0.90± 0.03 0.18± 0.03 0.31± 0.06 0.49± 0.09 b
0.6 0.83± 0.01 0.83± 0.03 0.21± 0.03 0.26± 0.03 0.48± 0.03 a, b
0.7 0.62± 0.06 0.65± 0.05 0.25± 0.06 0.27± 0.02 0.23± 0.02 a, b
0.8 0.49± 0.07 0.51± 0.06 0.26± 0.02 0.17± 0.01 0.23± 0.01 a, b

if attention is paid to the overlapping 2% vertically of the
resulting map – the color has become whiter, that is, the mass
of the belief that the cell is free, and therefore the likelihood
that this cell is free, has increased. Fig. 2e is shown the result
of merging using the disjunction rule. So only that part of the
original map that is present on both merged maps gets into the
resulting map. The choice of the disjunctive rule is explained
by the fact that the absence of information is of higher priority
than the presence of unreliable information.

B. Comparison of descriptor modifications

Comparative analysis of different modification of the 128-
bit ORB descriptor can be seen in the table II. The columns
contain the following information: 1 – the number of keypoints
to be detected initially; 2 – Lowe coefficient used when
filtering false matches; 3 – the ratio of the number of correctly
matched features to the total number of matched features ξ
(experiments were carried out on 10 different pairs of maps);
4 – the columns showing the highest coefficients indicated in
columns 3. Modifications in column 3: a – approach without
modification of descriptors; b – descriptors concatenation:
for each keypoint, three 128-bit descriptors are concatenated,
resulting in a 384-bit descriptor; c – using the logical and
operation: applying a bitwise logical and for three 128-bit
descriptors, the result is a 128-bit descriptor; d – applying
of a logical or operation: applying of a bitwise logical or for
three 128-bit descriptors, the result is a 128-bit descriptor; e –
applying a logical exclusive or operation: applying a bitwise
logical exclusive or for three 128-bit descriptors, resulting in
a 128-bit descriptor.

It can be concluded that the concatenation of feature point
descriptors obtained using TBM almost always shows a greater
value of the ξ ratio than any other proposed modification. In
most cases the value of the ratio ξ when using concatenation
is not less than when matching the descriptors of keypoints
calculated for the probabilistic representation of occupancy
maps.

The dependence of the ratio ξ on the number of initially
extracted features (at a fixed value of the Lowe coefficient)
can be seen in fig. 3a. Based on this graph, statistically
significant differences were seen with a confidence level of
0.95 when extracting 100, 1000 and 2500 keypoints. In the
implementation of the algorithm, the default value is set to
1000. The dependence of the ratio ξ on the value of the
Lowe coefficient (with a fixed number of initially extracted
keypoints) can be seen in fig. 3b. Based on this graph,
statistically significant differences with a confidence level of
0.95 were seen with a coefficient value of 0.7 or 0.8. In the
implementation of the algorithm, the default value is 0.7.

C. Accuracy of the transformation

Viny SLAM [19] allows building occupancy grid maps
based on TBM. Compared to analogs such as FastSLAM [20]
or Credibilist SLAM [9], Viny SLAM is verified on the MIT
Stata Center dataset. Using the specified SLAM algorithm,
various maps of the 2nd floor of the MIT Stata Center were
obtained. After that, the algorithm proposed in this work was
applied to pairs of maps. During the operation of the algorithm,
the keypoints of the maps were extracted and matched. Then
the calculated transformation was applied to one of the sets of
keypoints. For pairs of matched points, the distances between
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Figure 4. The result of the algorithm. (a) - first merge map, (b) - second merge map, (c) - result of merge

Table III
DISTANCES BETWEEN MATCHED KEYPOINTS OF MAPS AFTER

TRANSFORMATION

Maps pair min, m max, m gmean, m

1 0.031 16.043 0.158
2 0.000 0.000 0.000
3 0.028 0.707 0.138
4 0.012 18.058 0.330
5 0.029 30.904 0.256
6 0.017 0.854 0.098
7 0.006 26.217 0.121
8 0.011 22.701 0.104
9 0.004 33.530 0.305

these points were calculated. The table III shows the minimum,
maximum and geometric mean distances in meters between
the matched feature points after applying the transformation.
Repeated experiments gave the same values. Based on the
values of the geometric mean in the table, it can be concluded
that the matching error does not exceed 0.35 meters. This error
is due to the fact that not all keypoints are matched correctly.

Fig. 4 shows the maps to be merged and the result of
the algorithm. Maps are shown in probabilistic representation.
Map cell size is 0.1× 0.1m2. One pixel on the image of the
map used to construct descriptors corresponds to one cell, thus
one pixel corresponds to 0.01m2.

Table IV
ALGORITHM RUNNING TIME

Maps pair area, m2 mean, s std, s

1 8700 971.5 98.142
2 12100 1395.9 117.230
3 13200 1501.4 146.242
4 4125 446.4 24.707
5 4900 598.5 48.028
6 5625 692.3 70.477
7 12100 1420.9 96.175
8 12075 1370.3 101.308
9 12100 1365.5 115.612

Table IV lists the areas of the maps resulting from this
experiment, as well as the average fusion time and standard
deviation for 10 experiments for each pair of maps. The
processing time was calculated on an Intel Core i5-8300H
2.3 GHz processor. This operating time is much longer than
that required for real-time operation, but the algorithm was
not originally intended for such use. Within the framework
of the considered analogs, the proposed algorithm shows a
faster operating time. One of the possible applications can
be the construction of models of buildings in which people
are dangerous. This can be used to evaluate the structure for
subsequent deconstruction.



VI. CONCLUSION

In this paper, a TBM cell representation of an occupancy
grid map has been described. This cell allows you to store
more information about the space than a probabilistic represen-
tation. It also was compared different detectors of keypoints on
the map image in order to choose the one that would be used
in the algorithm. As a result, ORB was chosen. The reason is
that the ratio of correctly matched pairs to the total number of
matched pairs of features was higher or close to the highest.
After that, various possible modifications of descriptors were
considered to improve the accuracy of matching of keypoints.
As a result, it was concluded that concatenation gives better
results than any other modification, and also in most cases
no worse than the original descriptor. Both disjunctive and
conjunctive rules in TBM could be used to merge maps.
However, preference was given to the disjunctive rule, since
the maps may contain various errors, and this rule allows you
to cut off inconsistent areas. At the end, the results of the
algorithm were presented, as well as an assessment of the
accuracy of the transformation search.

As a further development of this work, the clustering of key-
points and the verification of the existence of a transformation
between clusters of two maps is considered. If a transformation
is found, then it is possible to apply the transformation to an
area of the map containing a cluster of special points. After
applying a transformation to a part of the map, it is possible to
merge using one of the merge rules in the Transferable Belief
Model.
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