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Abstract. Instrumentation is one of the methods used in dynamic program analysis for assessing software performance. This
paper proposes a technology for constructing software instrumentation tools for different programming languages. The
instrumentation functions are described within this approach using several grammar-based DSLs. The obtained instrumentation
toolkit is the result of generating a new system based on formal descriptions of the instrumentation process. The tracing functions
are embedded into the original program using a TXL utility; a conversion program is also generated for this utility. The developed
prototype was tested on 4 large projects written in different programming languages: Java, Python, C++ and Object Pascal. The
tests confirmed the efficiency of the approach and the applicability of the developed prototype.
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I. Introduction

Controlling software quality is a major challenge for the
software industry. IT companies spend tremendous efforts
and resources on diverse methods and practices for software
quality assurance. The starting stage generally consists in
software quality analysis, checking whether the software is
compliant with the specifications and searching for errors.
Instrumentation is a mechanism used for software analysis.
Instrumentation is commonly understood as inserting
additional code into the source program, which allows
detecting and monitoring the parameters characterizing the
software performance, with options for debugging and
troubleshooting [1].

There are different approaches to program
instrumentation. Manual instrumentation implies that the
developers independently log snippets, relying on their
understanding of the program logic. Depending on the goals
set in automated instrumentation, the developers use some
tool for inserting the logging code into the source program
based on certain rules. Unfortunately, most of the existing
tools come with limitations restricting the options for code
instrumentation. What is more, such tools are generally
hard-coded to only work with a specific programming
language, even though instrumentation may be required for
programs in any language.

In this paper, we propose a universal approach to solving
the instrumentation problem incorporating a declarative
framework using the grammar of the target programming
language, serving to generate automated systems for
software instrumentation.

The paper is organized as follows. Section 2 describes
the technology we have developed for generating
instrumentation systems. Section 3 considers a prototype
instrumentation tool generator. Section 4 presents the results
of testing the approach on real software projects. Section 5
analyzes the existing solutions in automated
instrumentation. The paper is concluded by summarizing the
results and outlining the directions for further development.

II. Technology for generating instrumentation tools

In general, depending on the programming language and
the runtime environment, either the source code or some
intermediate representation (e.g., bytecode) can be
instrumented. For example, [2] considers source code
instrumentation in C++ for verifying potential
vulnerabilities that can threaten the system security. A
technology developed in [3] introduces an instrumentation
framework based on analysis and processing of an
intermediate representation containing some form of an
abstract syntax tree. In contrast, [4] and [5] discuss bytecode
instrumentation for a Java virtual machine.

Because our study deals with a universal instrumentation
system independent of the programming language and
runtime environment, the only way to organize this system
would have to be source-code instrumentation.

Instrumentation consists in converting the source
program into a new one, with special code added to it which
enables tracing once the program is executed. This means
that the task of instrumentation is reduced to converting
(transforming) one source code into another.

A. Methodology

Since one of the requirements to the approach developed
is the option to instrument programs written in different
languages, it should incorporate a mechanism for generating
instrumentation systems for different target languages. An
obvious solution is to use the grammar of the target
language as input for the instrumentation system. Since
standard grammars are not originally designed for
instrumentation, a grammar markup mechanism should be
developed, adding semantics to the grammar for subsequent
use in instrumentation rules. We achieve this by utilizing
grammar annotations, created once for each target
programming language. The actual instrumentation rules are
developed by the user solving a specific applied problem.

The general schematic for the approach developed is
shown in Fig. 1.
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Fig. 1. General schematic of the generator.

The module for generating the transformation rules takes
as input the grammar of the target language, the grammar
annotation for instrumentation, and the instrumentation
rules; the module then generates transformation rules based
on these data, feeding them to the input of the program
transformation module together with the original source
code. The program transformation module in turn generates
an instrumented program semantically equivalent to the
original one with the added instrumentation code.

B. Representation and processing of program source code

Source code transformation has been examined in great
detail; a wide range of tools have been developed that can
effectively solve this task using some form of a parse tree or
a concrete syntax tree (CST) for internal representation. The
nodes of this tree represent syntactic structures and
individual elements adopted in the target programming
language, so making changes to the processed code (its
transformation) can be distinguished as a separate stage of
instrumentation (see Fig. 1). Such systems require a
description of transformations at the level of individual
parse tree nodes (and/or sets of nodes) to operate. While it
can be difficult to understand this description or correlate it
with the problem solved by the user, an additional
complication is that it should strictly follow the grammar of
the language used. These drawbacks lead us to identify
another significant stage of instrumentation that is preparing
for changes (generating a description of the
transformations). The description of the changes can be
simplified by introducing some primary representation with
limited functions but at the same time universal enough to
be used for processing source code in different programming
languages. Because there are no generally accepted
standards for grammar formatting and structuring, the above
requirement means that the instructions describing the
purpose of changes (instrumentation rules) should be
separated from the instructions describing repeating
primitive operations specific to the given grammar and the
syntax elements used (grammar annotation, Fig. 1).

Taking CST as their internal representation, the systems
for source code transformation process syntactic structures
by moving from higher (file, module, expression set) to
lower levels (string literals, digits). The order in which CST
nodes are visited and whether the same node can be revisited
depends solely on the specifics of a particular tool and the
required transformations. Therefore, the instrumentation
task can be solved using a method for step-by-step recursive

descent down the parse tree to be modified by inserting
additional code (the top-down one-pass method).

Let us define a workspace where instrumentation will be
done, i.e., the working context that is some subset of CST
nodes given as Y = {g ∈ G | A(g)}, where A (g) is the
condition (logical statement about the properties) that the
element g belongs to some subset Y, while G is the entire set
of nodes of a particular parse tree. At the same time, using a
CST means using a large number of intermediate nodes in
accordance with the grammar rules used constructing it.
Consequently, information should be collected during the
top-down traversal of the parse tree (a), to be subsequently
used for (b) making a decision whether a node belongs to
the instrumentation context before actually inserting the
code.

Thus, we have formulated a method for processing parse
tree nodes and a mechanism for controlling the workspace
of this process.

C. Transformation of program source code

The source code of programs written in a wide range of
programming languages can be processed either by
developing specific tool finely tailored to the individual
languages, or taking an existing tool or language (with the
appropriate runtime environment), such as, for example,
“The Meta-Environment” [6], Stratego/XT [7], Rascal [8],
TXL [9] or similar. We have chosen the TXL language to
confirm the applicability of the approach.

TXL is a domain-specific language designed to support
source analysis and processing through rule-based structural
transformation [9]. The FreeTXL compiler/interpreter
(referred to as the TXL utility from now on) is the official
runtime environment for programs in the TXL language.

The TXL language is relatively simple and pure;
furthermore, the TXL utility offers such benefits as binary
executables available for various software platforms and
easy integration (providing XML output). For these reasons,
we decided to use the TXL utility for transformation over
the source code which is in turn produced by the
instrumentation system generator. In view of this, the
generated 'instrumentation system' is understood in this
study as the description of transformations in the TXL
language together with the grammar of the target
programming language and the TXL runtime environment.

The where clause is used in TXL to constrain the
composition for transformation rules and functions [10],
while sequences of such expressions are combined by means
of conjunction. On the other hand, applying logical
disjunction to comparison operators from the start within
this syntactic structure allows introducing expressions in
conjunctive normal form (CNF), obtained from predicates
constructed by users to describe instrumentation contexts.

Due to the functional nature of the TXL language, we
decided to use the arguments/parameters of the chain of
functions to pass the nodes collected during the traversal
down the parse tree. In this case, the “chain” is a particular
solution to the instrumentation problem, accounting for the
above one-pass method for CST traversal.



D. Grammar annotation

It can be a challenge to extract the directed acyclic graph
(DAG) representing the nested syntactic hierarchy from the
grammar of an arbitrary programming language. This
obstacle can be overcome by either manual grammar
marking up or by constructing heuristics sufficient for the
purpose of defining the scope of the instrumentation on the
parse tree. For this purpose, we constructed an XML-based
format describing grammar annotations, including such
information as:

● description of the syntactic structures of the target
programming language that are the most significant
for the end user in accordance with the grammar, also
including:
○ a text template describing the type of structure;
○ instrumentation points combined with a

simplified instrumentation algorithm;
● directed acyclic graph of the hierarchy of nesting

syntactic structures;
● points of interest describing the text data to be

retrieved from the parse tree nodes;
● auxiliary user-defined functions in the TXL

language.

E. User description of the instrumentation process

The prototype uses a declarative domain-specific
language (DSL) to describe user-defined rules; it is based on
the languages of such projects as Annotation File Utilities
[11] and AspectJ [12]. Fig. 2 shows an example of the rules
described using the developed language from the system's
end user perspective, aimed at logging the first if-statement
executing in the context of the "main" method contained in
the "Main" class.

Fig. 2. End user description of the instrumentation rules.

The following main components comprise the user
description of the set of rules are (the number of the list item
corresponds to the circled number in the figure):

1) listing the source code fragments used in this set of
rules and their relative file paths;

2) listing the instrumentation contexts of interest to
the user (both simple, i.e., a set of statements about the
properties of a syntactic structure, and composite, i.e.,
several contexts joined by first-order logical operators);

3) grouping the instrumentation steps as named rules;

4) refining the instrumentation context using
programming language keywords, modifiers (enclosed in
square brackets) and text patterns, if any are required for the
task to be solved by the user;

5) setting specific instrumentation points by their
identifiers;

6) creating user-defined variables from text elements
and constant values;

7) a namelist of fragments to be inserted
simultaneously into the same place, specifying the
parameters, if any are required according to the text of the
snippet used.

The main benefits of the DSL developed is that it
provides two methods for describing instrumentation
contexts (item 2) and an option for successively refining the
context specified (items 4, 5). This way, the user can
considerably limit the workspace for transformations while
the implementation details remain concealed. Nevertheless,
the transformation descriptions output by the generator can
be used as the initial step for more complex instrumentation
routines.

F. Tool generation procedure

The input artifacts for the “generator and transformation
tool” system are the following:

● source code of the program to be instrumented;

● grammar description of the target language that the
source code is written in;

● grammar annotation;

● description of user-defined instrumentation rules;

● source code snippets (i.e. “fragments”) in the target
programming language to be inserted;

● additional startup and runtime environment
parameters.

As an intermediate output, the generator provides the
instructions for the transformations to be performed with a
specific input file with the source code in accordance with
the grammar given for the target programming language.

The output artifact is the source code in the target
programming language, which has been subjected to the
required transformations.

The developed prototype automatically generates the
transformation instructions as a set of interconnected TXL
functions in the following order:

1) load, parse and check the dependences of the
source code fragments used in accordance with the rules
described by the end user;

2) calculate the maximum distances from the root
node for each node of the DAG representing the key
structures of the target language in accordance with the
grammar annotation provided;

3) build wrappers over standard comparison
operators;



4) build functions for implementing the tasks assigned
to the points of interest;

5) build functions checking whether CST nodes
belong to contexts;

6) build function chains in accordance with
instrumentation rules allowing for the user's requirements;

7) build auxiliary TXL functions;

8) build user-defined functions;

9) build the main TXL function and apply policies for
additional user-defined functions;

10) update the states of functions that are chain
elements;

11) generate TXL instructions for the required
transformations and call the TXL utility.

The general structure of a typical chain of calls to
programmer-defined domain-specific functions:

1) C-functions (collect) are rule-type TXL functions,
designed to accumulate information from the parse tree
nodes. This information is later used to assess whether the
node belongs to the chosen instrumentation context. Such
functions operate by calling the next function from the chain
and passing it all the values of the arguments that were
received by the current function, together with the node
considered.

2) F-function (filter) is a function designed to filter
CST nodes relative to contexts described by the end user by
calling the auxiliary function for assessing whether the node
belongs to the context and passing it the collected nodes.

3) R-functions (refine) are functions designed to refine
the context to a limited subset of some required syntactic
structures of the target programming language in accordance
with one of the implemented modifiers:

a) "first" searches and processes only the first
encountered node from the current subtree in accordance
with the type specified in the grammar annotation;

b) "all" searches and processes all nodes in
accordance with the type specified in the annotation;

c) "level" searches and processes the nodes located at
the same (first) nesting level. A schematic example
illustrating how this modifier works is given in Fig. 3:
different nesting levels of syntactic structures are shown
from the bottom-up, a sequence of structures from the
standpoint of source code is shown from left to right; the
colors correspond to different types of CST nodes (nodes of
the required type are colored in red; nodes to be processed
are colored in dark red); the numbers indicate the order in
which the pass is performed in the TXL environment.

4) I-function (instrument) are functions designed
directly for instrumentation in accordance with the patterns
(search and replace) specified in the annotation and the
operation algorithm.

Fig. 3. Operation of level modifier visualized.

Function chains should be generated for each individual
expression containing a context refinement and the keyword
"add" (see Fig. 2) together with a list of code fragments, as a
separate rule (group of refinements) in accordance with the
description order.

III. Prototype implementation

To test the efficiency of the above approach, we
constructed a prototype instrumentation tools generator
combining the generator application built based on the
TinyXML2 [13] and Boost [14] libraries in C++ for the
purpose of parsing grammar annotations along with user
descriptions and interaction with the TXL utility,
respectively, and the application itself. Fig. 4 shows the
general schematic for the prototype together with the
artifacts necessary to solve the problem posed: in
accordance with the initial model (Fig. 1), the generator
utility is a module producing an intermediate (optionally
cached) description of instrumentation instructions in a
format that can be used by the second part of the two, i.e.,
the transformation system. The generator utility acts as a
module producing the transformation rules in this case,
while the TXL utility performs the function of the program
transformation module. The colors of the arrows in the
figure correspond to different frequencies of analysis and
processing of artifacts by the generator and the TXL utility
(orange is more frequent, purple is less frequent), the colors
of the input artifacts characterize the degree to which it is
difficult for the user to create them (red is very difficult,
blue is moderately difficult, green is easy).

Fig. 4. General schematic of the prototype.



IV. Prototype testing

The applicability of the developed instrumentation
method and the functionality of the implemented prototype
were verified using several industrial open source projects.
The projects and the source code samples were chosen based
on the capabilities of the TXL grammars available at the
time of this study [15]; notably, some elements of the
grammars were slightly modified to better suit the described
instrumentation approach (increased separation of syntactic
structures). As a result, four projects were chosen for the
experiments, written in four different programming
languages:

● AspectJ [12] is a system and DSL designed to
implement aspect-oriented programming principles
within the Java language. Version 1.9.5 was chosen
for the experiment.

● Keras library [16] is an add-on library for high-level
processing and construction of deep learning neural
network models for the Python language. Version
2.3.1 was chosen for the experiment.

● Boost library [14] is a multifunctional modular
library for building software products using the C++
language. Version 1.72.0 was chosen for the
experiment.

● Lazarus IDE [17] is a graphical cross-platform
environment for rapid application development in the
Object Pascal language and its dialects. Version 2.0.8
was chosen for the experiment.

Different syntactic structures of the languages were
instrumented in the experiments, such as import sections,
class bodies, methods, branch operators, and loops, in
particular using such means as different nesting levels of
programming language structures. The source codes of the
performed experiments are available in [18].

The approach was found to be efficient the most for
instrumenting an AspectJ project written in Java. As for
other projects, we found both minor limitations associated
with multivariate forms of some syntactic structures (for
example, the import statement in Python), and major
difficulties when the descriptive capabilities of the
grammars of languages provided by the TXL developers
and/or the community were found to be insufficient. In
particular, the Object Pascal grammar covered about 80% of
the code base of the Lazarus IDE project at the time of the
study, while the C++ grammar (specifically designed for the
older version of the C++ standard) covered only 21% of the
Boost library base. Simplified language grammars should be
further refined for the developed prototype to be used
industrially, providing full support for the standards of these
languages.

We can conclude from our findings that the proposed
approach and the developed prototype generator are largely
applicable for the tasks described. There are certain
limitations because existing grammars of the programming
languages are imperfect; moreover, the prototype
constructed has some drawbacks yet to be eliminated.

V. Comparison with counterparts

There is a wide range of different software systems
offering options for automating the instrumentation process
to some degree. Examples of such systems include tools for
test coverage analysis (GCC Gcov [19], Froglogic Squish
Coco Coverage Scanner [20]), code analysis (Testwell
CTC++ Preprocessor [21], Bullseye Coverage [22]), tracing
and statistics calculations (Google Web Tracing Framework
[23]), vulnerability assessment (see [2] and [4]).

Each of these projects only works with a very small
subset of programming languages, and they need to be
further developed and adapted to work with new languages.
For open source projects, this can be done by forking the
main code base but this takes a lot of time and resources.
Commercial tools (Testwell CTC++, Bullseye Coverage and
Froglogic Squish Coco) can only be expanded by the
developers.

Compared to such instrumentation methods as, for
example, bytecode processing [5], application of the
aspect-oriented programming paradigm [24], or reduction to
a single intermediate representation with subsequent
reconstruction [3], the main difference of the approach
proposed our study is that the user can flexibly control the
instrumentation process and adapt the instrumentation for
other programming languages by specifying instrumentation
rules in terms of the target programming language, also
independently creating and annotating grammars in terms of
parsing texts in formal languages.

VI. Conclusion

The study presents an approach to software
instrumentation, with a prototype developed for a generator
for automated instrumentation tools, for which the DSL of
instrumentation rules and the format for writing annotations
for formal grammars were described. We tested the
prototype on several industrial open-source projects,
confirming that it was functioning properly and that the
approach could be applied successfully.

If a program is represented as a text in some formal
language with a developed grammar describing the
structures of this language, this approach can be considered
sufficiently universal for solving the instrumentation
problem. This, however, implies that the capabilities of such
a generator mainly depend on the capabilities of the
transformation system applied and the grammar of the target
language, which was confirmed experimentally. High
performance is the most crucial factor for program
execution: it can be achieved by making the program as
close as possible to a machine-generated semi-structured
format, removing most of the information that does not
improve this indicator (i.e., information about the original
structure of the program). All of this limits the potential
applications of the approach to an environment with access
to structural information about the program.

The technique can be further developed by expanding
the DSLs constructed, which can allow overcoming the
existing context constraints, and conducting more focused
experimental studies for a wider range of programming
languages.
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