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Abstract— Algorithms based on linear algebra is widely used in
various areas. Often programs of interest have some input data
that are independent of the dataset being processed, and thus
they can be optimized with respect to this input. In the paper,
we study how partial evaluation affects the Viterbi algorithm as
a step to research an application of partial evaluation to linear
algebra-based algorithms. We evaluate the specialized multi-
thread Viterbi algorithm against existing GPU-based CUDAMPF.
The results show that the presented algorithm is slower but
comparable to CUDAMPF.

I. INTRODUCTION

Algorithms based on linear algebra is widely used in various
areas such as machine learning [1], computer vision [2],
statistics [3] analysis of logic programs [4], graph theory [5],
etc. One of the typical cases is querying huge database or
graph processing and can be executed in days or weeks making
crucial even a simple constant time optimization. One way
to optimize such data processing is to use some hardware
capabilities such as different kinds of parallelism or to invent
a more efficient algorithm or some tricky data representation.
We focus on an alternative way to program optimization based
on the following observation. Often programs of interest have
some input data that are independent of the dataset being
processed, and thus they can be optimized with respect to
this input. Partial evaluation, a.k.a. program specialization,
is a well-known program transformation technique aiming to
perform such an optimization [6].

In the paper, we study how partial evaluation affects the
Viterbi algorithm [7] as a step to research an application of
partial evaluation to linear algebra-based algorithms. First,
the Viterbi algorithm is used in bioinformatics [8], speech
recognition [9], and financial computations [10]. Second, it
can be expressed in terms of linear algebra [11]. Third,
the algorithm has two parameters: a hidden Markov model
(HMM) [12] and an observations sequence. Its goal is to count
a probability for the sequence to be emitted by the given
HMM. Next, a sequential application of the algorithm with
a fixed HMM to a big bunch of observations sequences is
usual. Finally, the main part of the Viterbi algorithm heavily
depends on the HMM. All the above make the algorithm a
good candidate to research partial evaluation application.

The rest of the paper organized as follows. Section II
describes the background. In section III the Viterbi algorithm
specialization is explained. Section IV reports benchmarks
results. Related work is reviewed in section V. And section
VII ends up the paper.

II. BACKGROUND

In this section, we review specialization, hidden Markov
models (HMM), and the Viterbi algorithm in terms of linear
algebra.

A. Specialization

Specialization [6], or partial evaluation, is a well-known
program transformation technique widely used when some of
the input data is already known in compile time. A typical
case is serial data processing when one of the input parameters
is fixed while others vary. Fixed parameters are called static
while other parameters are called dynamic. The idea behind
specialization is that optimization of a program with respect
to the static parameters together with executing the optimized
program on a set of dynamic parameters may be more efficient
than iterative execution of the initial program on both static
and dynamic parameters.

The classical specialization example is the exponentiation
function 𝑓 (𝑥, 𝑛) = 𝑥𝑛 where 𝑛 is static. A simple implemen-
tation is shown below.

1 function f(x, n)
2 if n == 0 then 1
3 elif even(x) then f (x, n/2) ^ 2
4 else x * f (x, (n-1)/2) ^ 2

All recursive calls are static, i.e. are controlled by the static
parameter only, and thus can be reduced. Given fixed 𝑛, say
5, a typical specialized version is

1 function f_spec(x) = x * (x ^ 2) ^ 2

Note, sometimes specialization is useless. For example, con-
sider the exponentiation function with fixed base 𝑥 but dy-
namic power 𝑛. Of course, one may use arithmetic tricks for
some 𝑥 but in general, there is no recipe for effective special-
ization. Moreover, since optimal specialization is obviously
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undecidable there are some heuristics to ensure specializa-
tion termination. As a result, in some cases, specialization
worsen program execution. For example, it is well-known that
sometimes specialization negatively affects program execution
caused by code expansion [6].

B. Hidden Markov model

Hidden Markov model is a deterministic probability automa-
ton [12]. It has the following parameters:

• S1..N — 𝑁 states of the automaton;
• O1..K — 𝐾 possible observations;
• B1..N — a probabilities describing each state from S1..N

to be a start one;
• T1..N,1..N — state transition matrix, Ti,j is a probability to

go from state Si to state Sj;
• E1..N,1..K — emission matrix, where Ei,j defines proba-

bility to emit observation Oj at state Si.
With a given observation sequence, it is possible to calculate
a maximum likelihood to be at a concrete state of the HMM,
i.e. to reveal hidden states, according to the sequence. HMM
makes a transition between states for each observation from
the given sequence.

C. Viterbi algorithm

Let’s fix the observation sequence as Obs, where the length
of Obs is lo. The Viterbi algorithm [11] handles sequence Obs
for a HMM. Its result is a maximum probability to reach each
state of the HMM after handling Obs.

First of all, HMM probabilities are transformed into negative
binary logarithm. We define such probabilities as transformed
probabilities t(p), where 𝑝 is a some probability from the
HMM definition.

𝑡 (𝑝) =
{
𝑝 > 0 : −1 ∗ 𝑙𝑜𝑔2 (𝑝))
𝑝 = 0 : +∞

(1)

e.g. probability 0.5 will be expressed as −1 ∗ log2 (0.5) = 1. It
is done to reduce the loss of precision.

The key idea is to use a special algebraic structure, named
semiring Min_plus. Elements of this semiring are floats. We
define the addition’s semantic as a minimum between two
floats. The multiplication symbol means addition for floats.
Neutral elements are +∞ and 0 accordingly. This is an example
of usage Min_plus semiring for matrix multiplication:(

0 1
+∞ 2

)
×
(
3
4

)
=

(
𝑚𝑖𝑛(0 + 3, 1 + 4)
𝑚𝑖𝑛(+∞ + 3, 2 + 4)

)
=

(
3
6

)
Expression ti,j denotes transformed probability to get obser-

vation 𝑗 at state 𝑖, i.e. t(Ei,j). For each observation 𝑗 we create
diagonal matrix P(j) as follows with data from E:

𝑃( 𝑗) =
©«
𝑡1, 𝑗 . . . +∞
...

. . .
...

+∞ . . . 𝑡𝑁 , 𝑗

ª®®¬
The initial step of the Viterbi algorithm is to set up data accord-
ing to the first observation from the observation sequence Obs.

Symbol × stands for matrix multiplication using Min_plus
semiring. Column B defines a probability distribution for states
to be a start one.

Probs1 = 𝑃(Obs1) × 𝐵

The next step is to handle the rest of the sequence, where 𝑡
changes from 2 up to lo.

Probs𝑡 = 𝑃(Obs𝑡 ) × 𝑇> × Probs𝑡−1

As a result, the column Probslo will contain transformed
probabilities to be in a certain state of the HMM if observation
sequence Obs is handled.

III. SPECIALIZED VITERBI ALGORITHM

Here we describe specialization of the Viterbi algorithm in
terms of linear algebra. We fix HMM as a static parameter.

To the best of our knowledge, there is no stable partial
evaluator maintaining parallel program transformation and
providing expected results. In order to achieve specialization
effect we’ve made ad-hoc generating extension, i.e. we provide
an effective procedure to perform static data transformation
and propagation together with handwritten specialized version
of the Viterbi algorithm itself.

A. Theory

The goal is to embed data from the given HMM into the
program and simplify expressions. These static data are 𝑆, 𝑂,
𝐵, 𝑇 , and 𝐸 . Given a fixed HMM, for all possible observations
𝑜 ∈ 𝑂 the following matrices and matrix multiplications can be
precalculated during the specialization phase according to the
given in the previous section the Viterbi algorithm definition:

• 𝑃(𝑜),
• 𝑃(𝑜) × 𝐵, denoted latter as PB(𝑜),
• 𝑃(𝑜) × 𝑇>, denoted latter as PT (𝑜).
We can precalculate these operations and memoize the

results for further use by the specialized algorithm. The
precalculation procedure pseudocode is shown in Listing 1,
function spec_Viterbi.

The specialized Viterbi algorithm is shown in Listing 1,
function run_Viterbi, and works as follows. The initial step
can be expressed as

Probs1 = PB(Obs1).

The rest of the sequence Obs is handled with multiplication

Probs𝑡 = PT (Obs𝑡 ) × Probs𝑡−1. (2)

Comparing the specialized version with the initial one, there
are fewer matrix multiplication operations in Min_plus semir-
ing. For the first step, it is one matrix assignment instead
of multiplication. For the remaining observations, we need to
perform only one matrix multiplication against two. Thus, the
initial Viterbi algorithm in terms of linear algebra requires to
perform 1 + 2 ∗ (lo − 1) matrix multiplications, where lo is
the Obs length, while the specialized version requires only
lo − 1 multiplications but requires additional memory to keep
the precalculated matrices.



Since matrix multiplication in semiring Min_plus is asso-
ciative one can handle two observations by

Probs𝑡 = PT (Obs𝑡 ) × Probs𝑡−1

= PT (Obs𝑡 ) × (PT (Obs𝑡−1) × Probs𝑡−2)
= (PT (Obs𝑡 ) × PT (Obs𝑡−1)) × Probs𝑡−2 (3)

Since we know all PT (o), we can precalculate these multipli-
cations, i.e. compute 𝐾 ×𝐾 matrices, and use them as needed.
This method can be extended to handle more observations at
once, e.g. for three observations:

Probs𝑡 = PT (Obs𝑡 ) × PT (Obs𝑡−1) × PT (Obs𝑡−2) × Probs𝑡−3
(4)

For three observations there are 𝐾 ×𝐾 ×𝐾 evaluated matrices
accordingly. We name equation 2 1-level specialization since
only one observation handling is precalculated. By analogy,
we name equations 3 and 4 by the second and the third
specialization levels, and so on. 𝑁-level can be computed with
PT and N − 1-level as follows: for all 𝑜 multiply PT (o) for
all matrices at the previous level.

1 HMM
2 PB[HMM.K]
3 PT[HMM.K]
4 level
5 // obs_lvl_handlers is a mapping from lists that
6 // contain level observations to a handler matrix
7 obs_lvl_handlers[HMM.K𝑙𝑒𝑣𝑒𝑙]
8

9 function spec_Viterbi()
10 for i = 1..HMM.K
11 PB[i] = P(HMM.O[i]) × HMM.B)
12 PT[i] = P(HMM.O[i]) × (HMM.T)>

13 // To handle a sequence of length level,
14 // appropriate level matrices from PT
15 // should be multiplied.
16 // Put handlers for all possible sequences of
17 // length level into obs_lvl_handlers.
18 get_combinations(obs_lvl_handlers, level, PT)
19

20 function Viterbi(Obs)
21 // First observation handling
22 Probs = PB[Obs[1]]
23

24 lo = length(Obs)
25 i = 2
26

27 // While there is more observations than level
28 while (lo - i) >= level)
29 // Find matrix to handle next level observations
30 handler = obs_lvl_handlers.find(Obs[i:i+lvl])
31 Probs = handler × Probs
32 i = i + level
33

34 // The rest of the sequence
35 for (; i < lo; i = i + 1)
36 Probs = PT[Obs[i]] × Probs
37

38 return Probs

Listing 1: The specialized with levels Viterbi algorithm

If the specialization with N-level is applied,
(lo − 1)/N + (lo − 1) mod N matrix multiplications are

required to perform the partially evaluated Viterbi algorithm.
Memory consumption rapidly increases with higher N, since
KN precalculated matrices have to be saved in memory.

B. Some implementation details

To perform matrix operations, we used SUITES-
PARSE:GRAPHBLAS [5]. It is a high-performance
implementation of the GRAPHBLAS [13] standard, which is
intended to handle graphs, e.g. hidden Markov model. Also,
it defines various linear algebra primitives, such as Min_plus
semiring. Our implementation uses custom formats to define
HMM and observation sequences simplifying data parsing.
The full source code is available online [14].

IV. EVALUATION

In this section, we compare the specialized Viterbi algorithm
against the initial one and CUDAMPF [15].

CUDAMPF is a GPU implementation of the Viterbi algo-
rithm. Since the Viterbi algorithm can be effectively paralleled,
a GPU is a suitable choice. CUDAMPF works with hidden
Markov models from bioinformatics. A model describes pro-
tein family. An observation sequence specifies a protein and
contains amino acids. If a probability to be in some special
state of the HMM is higher than a threshold, than protein
belongs to the protein family.

We took 24 HMMs from CUDAMPF repository1. All
HMMs have a different number of states but the same struc-
ture. Since these HMMs have a slightly different definition, we
implement a converter into our custom format. We evaluate our
solution on three different datasets. Two datasets are randomly
generated, each contains three sequences consisting of 3500
and 7000 observations respectively. The third dataset is real-
world 16 proteins taken from PFAM [16] database. The length
of the proteins varies from 38 to 7096 observations. The
number of possible observations, i.e. 𝐾 = 20, for all datasets.

We run experiments on Ubuntu 20.04, Intel Core i7-6700
3.40 GHz, 64 Gb RAM, NVIDIA GeForce GTX 1070. Each
implementation with concrete parameters was run 10 times,
and a median was taken as a result. We evaluate only the
first and second level specialization of the presented algorithm,
since memory used for memoization grows by an exponent.
For the third level the out-of-memory exception was thrown.

CUDAMPF Initial 1-level 2-level

3 x 3500 4854 10765 8062 215329
3 x 7000 9209 21062 16152 387464

Real-world 8796 15864 12036 298269

TABLE I: Result run time (both specialization and the Viterbi
algorithm), ms

The results (see Figures 1a, 1b, 1c and Table I) show that
the first level specialized version of the Viterbi algorithm,
as expected, is faster, than the initial one. Unexpectedly, the
second level implementation is significantly slower comparing
to the initial and the first level implementations, and it is

1https://github.com/Super-Hippo/CUDAMPF (date: 2021-12-02)
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Fig. 1: Evaluation results

not shown in some figures. One of the reasons for such a
slowdown is the increased memory consumption. Neverthe-
less, even on a workstation with 8 CPU threads, CPU-based
first level specialization outperforms GPU-based CUDAMPF
on the small HMMs used in CUDAMPF benchmarks2. After
all, these results are comparable with ones from CUDAMPF.
It is also worth noting, that the parallel Viterbi algorithm,
expressed in terms of linear algebra, is easier to implement
than the CUDAMPF dynamic programming version, since
the abstraction level is higher. All the above proves the spe-
cialization of the Viterbi algorithm is applicable in practice.

V. RELATED WORK

There are a lot of works, where specialization was success-
fully applied.

2For evaluation we used the exact set of HMMs from CUDAMPF bench-
marks.

In [17] it was shown that the result of specialization of
the naïve pattern match algorithm to some fixed pattern can
be behavioural equivalent to the Knuth, Morris and Pratt
algorithm. This result is often used as a strength test for
partial evaluators to be “good enough”. Since we consider
the concrete algorithm specialziation only, the test is not
applicable in our case.

A partial evaluation was used in ray tracing [18] by P. H.
Andersen. The author optimizes a ray tracer, gaining speedups
from 1.8 to 3.0 depending on the meta-parameters and com-
piler. The main performance improvement was reached with
constant propagation and unrolling loops. It can be done by
an optimizing compiler, but this partial evaluator is aggressive.
That means sometimes a specialized algorithm can have an
enormous code size and lead to performance regression. The
static data was directly written inside source code, while our
solution can run without any files’ modifications.



A. Tyurin, D. Berezun and S. Grigorev have applied spe-
cialization to the naïve pattern match string search algorithm,
implemented as a GPU program [19]. They got performance
improvement up 8 times in some cases. GPU has a lot of
simple algebraic logic units. All of them need to take data
to work with. It means a data cache of GPU is a bottleneck.
Using specialization, static data was moved to a code cache.
Such transformation makes data cache miss less possible. One
may call it a "hardware specialization".

C. Sakama et al. used linear algebra as a logic programs
representation [4]. The authors introduce partial evaluation as
a part of the algorithm to find a logic model of a program. If
specialization is used, run time is decreased by 10 times.

VI. DISCUSSION

There are some possible research directions and future work.
The Viterbi algorithm specialization is the first step to find out
if partial evaluation can be effectively applied to the linear
algebra algorithms.

First of all, the next step is to run benchmarks at a
GPU. SUITESPARSE:GRAPBLAS [5] is the reference CPU
implementation of the GRAPHBLAS [13] standard. There are
some GPU implementations, such as GRAPHBLAST [20] and
GBTL [21], but to our knowledge, they are unstable.

One can try to apply partial evaluation to the other algo-
rithms in terms of linear algebra. These experiments will reveal
the limits of the specialization to such algorithms. There is a
high chance that such experiments can be successfully used in
production.

Since partial evaluation can lead to a performance increase,
it can be useful to implement a linear algebra library with
specialization primitives. It will let to develop more effective
applications with linear algebra algorithms in less time.

Another approach is to do hardware partial evaluation, e.g.
to make FPGA, where specialization program with static data
will be embedded as a scheme.

VII. CONCLUSION

In the paper, we study an application of partial evaluation
to the linear algebra-based algorithms on a particular example
— the Viterbi algorithm with an HMM being fixed, i.e. static
parameter. The specialized version of the Viterbi algorithm
is presented. Our experiments show that on real benchmarks
the presented algorithm can be comparable to the existing
GPU-based Viterbi algorithm implementation CUDAMPF.
Thus, the proposed approach is applicable in practice and
further partial evaluation application to the linear algebra-
based algorithms is a promising research direction.
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