
Navitas Framework: A Novel Tool for Android
Applications Energy Profiling

Vladislav Myasnikov∗, Alexey Shaposhnikov† and Stanislav Sartasov‡,
Egor Gordienko§, Olga Aphonina¶ and Alan Gamaonov∥,

Saint Petersburg State University
∗ vladislav.myasnikov@bk.ru
† st069259@student.spbu.ru
‡ stanislav.sartasov@spbu.ru

§ egor.gordienko.00@gmail.com
¶ o.aphonina@gmail.com
∥ st061582@student.spbu.ru

Abstract—In a modern world smartphones became a com-
monly used electronic devices performing numerous day-to-day
tasks and much more. But they require battery power to operate.
It is well-known that computationally intensive programs as
well as those using different smartphone peripherals tend to
discharge the battery much quicker then their less intensive
counterparts, leading to a decreased operating time. To make
an application energy-aware, developers need tools to analyze its
energy consumption. In this paper we present an open-source
software framework to create such tools, Navitas Framework, as
well as its practical application — an Android Studio IDE plugin
to profile energy consumption of an application, Navitas Profiler.
We describe design and architecture of the framework, outline
plugin capabilities and demonstrate its usage.

Keywords—energy efficiency, green software engineering, mo-
bile development, energy profiling, Android, software power
metering

I. INTRODUCTION

”My phone discharged!” In a modern world this phrase is a
known source of frustration for billions of people. By the end
of 2023 it is projected for a number of smartphone users to
reach 4.3 billion with Android OS still being a leading mobile
OS [1].

As smartphone components require electrical power to
operate, a battery provides a fixed level of voltage and a vari-
able current. When battery charge level is low, voltage level
drops beyond a certain threshold, where it is not enough for
smartphone components to work properly. As smartphone pe-
ripherals tend to consume more power during high workloads
than during idle states, it can be seen why computationally
intensive or network-intensive software spend battery charge
more rapidly than its less intensive counterparts. The less time
remains for the user to work with an application, the worse
the user experience.

While advances in materials and electronics in the last years
helped to offset this problem by introducing more capacious
batteries or power-saving processors, the issue of energetically
inefficient software is still important. Green software develop-
ment views energy consumption considerations as important as
performance metrics [2], but it is still not so popular amongst

developers [3]. One of the valuable results in this field are
energy-efficient refactorings — code changes that don’t change
application behavior, but reduce its energy footprint [4].

But how bad is particular code from an energy consumption
perspective? Do we really need to apply a refactoring to it? To
answer these questions a developer needs to measure power
drain of an application, module, procedure or test, therefore
a power metering tool which is reliable and easy to use is
required. We think that such a tool should become an integral
part of development culture instead of being used only during
energy bug fixing sessions.

Some successful frameworks and tools were created previ-
ously, but we identify two essential gaps we would like to fill
with our software:

• Overall level of IDE integration is still regretfully low.
Only a handful of tools can be run inside IDE, and among
those who can, not every profiling scenario useful to
developers is supported.

• To our knowledge, no power metering software con-
siders multi-threading to be an important factor. Multi-
threaded applications, while being common under mobile
operating systems for more than a decade, introduce an
additional level of complexity to energy consumption
measurement or estimation.

With this considerations in mind we present Navitas Frame-
work and Navitas Profiler plugin for Android Studio IDE.

This paper is organized as follows. In Section 2 we lay out
the context of our work in terms of Android OS capabilities
along with the related works. In section 3 the design of Navitas
Framework is discussed. Section 4 adds more details to
specific modules of a framework and describes the capabilities
of the Navitas Profiler plugin. Experiments used to prove
framework validity are described in Section 5. In Section 6
we list current limitations of our framework and outline future
work.

Copyright © 2021 for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).



II. OVERVIEW

A. Related works

We conducted a systematic literature review (SLR) on the
power metering frameworks for Android OS [5]. The main
classification point for different approaches in software energy
consumption estimation is whether power is directly measured
or indirectly estimated.

Direct measurement means that some metering agent, either
internal or external to Android device, is directly measuring
voltage, current or even power. The simplest way is to connect
external digital multimeter to battery contacts of a smartphone
and work with an application in question or launch a unit
test. At the same time multimeter will write power readings
[6], [7], [8]. Alternatively one can use internal power sensors
of a smartphone itself [9], [10], [11]. Such a tool can get
a good power consumption reading for entire smartphone,
experimental design may narrow it down to a level of a
single application. For a more detailed report the source code
is instrumented with additional logging instructions to mark
method or code beginning and end, and two sources of data
— power readings and application execution trace [9], [4] —
are generated and aligned. Instrumentation energy overhead
should also be estimated and accounted [4].

Indirect estimation means that profiling software is ag-
gregating some code execution information and relates it to
energy consumption using some model, therefore we also call
this approach model-based.

One of the ways to build a model is to estimate bytecode
energy consumption by evaluating an energy consumed by a
number of specific instruction types using weighted sum (for
example, conditional statements, loops, float-point arithmetic
etc.) [12]. Direct measurement framework can be used to
obtain weight coefficients. This approach allows to evaluate
energy consumption of a test run without even running it. It
can be further advanced by accounting library functions [4].

Another way to make an indirect estimation framework is
to base an estimating model on time percentage that specific
hardware component was active or worked at a specific
frequency from the finite set [13]. Each value is multiplied
by regression coefficient, and the total sum is found. While it
is not difficult to track system events like peripheral switching
on and off to aggregate this data, the challenge lies in CPU
power estimation. Let’s model CPU power consumption as a
sum of idle consumption and active per core consumption.
For the sake of discussion let’s assume those values are
constant. CPU consumes more power when multiple cores
are active compared to a single-core computation. Due to
the Peukert’s law [14] the real battery capacity under higher
power consumption is smaller than under a lower one, and this
difference is considerable [13]. Thus using a single coefficient
for each instruction type is insufficient for accurate power
consumption estimation in a multi-threaded case. A model to
account this effect requires power drain value for each combi-
nation of peripherals currently turned on [13]. This information
is challenging to be obtained experimentally, requires direct

measurement framework and significantly complicates model
computation.

B. Industrial grade frameworks

Only a handful of the reviewed frameworks has a source
code or an application available for reuse, and even less
support modern versions of Android OS. However, there is
a number of tools that are used in the industry to assess
application energy consumption.

BatteryHistorian [15] is a background system events an-
alyzing utility for Android OS. It is a direct measurement
framework using internal smartphone sensors through OS API,
but energy consumption is represented as a battery charge
percentage which is prone to battery degradation and not
precise enough to estimate power drain for a short-running
test.

Android Studio Energy Profiler [16] is a plugin for Android
Studio IDE. It shows power drain in relative terms during
application execution. While the information on the model
itself is very sparse, we consider it to be indirect estimation
framework based on a component working time model. We
carefully note that this model is device-agnostic and it is
not clear how accurate does it represent real device energy
consumption.

Our conclusion is that while there were interesting research
projects, and some of the tools see practical use, only Android
Studio Energy Profiler is integrated with Android Studio IDE,
but it has its own limitations.

C. Multi-threading in Android OS and its challenges to energy
consumption measurement

Android OS fully supports multi-threading. Multi-threaded
applications are common nowadays, as it is a good way
to distribute computational load among the processor cores.
This idea became even more lucrative with the advent of
big.LITTLE2 processor architecture [17], where processor
cores are no longer homogeneous, but instead they are grouped
into clusters based on their computational capabilities and
power requirements.

Every Android application is being executed as a separate
process having its own threads. A process currently running
in foreground or able to appear on the screen has its threads
assigned to foreground control group, while other processes
have their threads assigned to background control group. It is
important to note a heavy disparity in processor time between
those groups: foreground threads get about 95% of time, while
background threads get the rest of it.

To our knowledge, none of the energy consumption frame-
works specifically target multi-threaded applications, and only
an approach from a single paper can be directly extrapolated
to multi-threaded case [13], however the corresponding source
code or an application is not available. It is a challenging
task to understand individual thread impact on overall energy
consumption. It is possible to understand when the thread
was actively executing by ftrace system calls [18] and to



homogenize peripheral energy consuption over time by con-
trolling DVFS governor. However, as noted previously, CPU
power consumption greatly varies depending on a number of
cores under active payload. It is currently an open question if
there is a correlation between this variable power consumption
and the data in CPU power profile and, more importantly, how
to adjust measurement and analysis processes to account this
variation. To our knowledge, no other papers or profiling tools
documentation answer these questions as well.

III. Navitas Framework DESIGN

A. Conceptual approach

Direct measurement approach can easily be extended to a
multi-threaded case. If program execution trace is not used
in the framework, then application energy consumption is
an aggregate of energy consumption for all its threads, so
the measurement process would not be different from single-
threaded case. While our understanding of underlying energy
consumption would be limited, in some scenarios this is
exactly what is required — to measure total power footprint
of an application. If execution trace is used then thread ID
information can be added to each trace entry, and by splitting
execution trace by thread IDs one may obtain traces for
each thread in application. Aligning this information with
multimeter power readings will give us a timeline of energy
consumption with respect to modules, methods or functions
being executed at that time.

A key component for the metering software using a direct
measurement approach is a hardware sensor. Sensors capturing
momentary current and voltage can be used for power sensing
as well as dedicated power sensors. In general, smartphone
electronics operates at a constant voltage, and a good power
estimate could be achieved by using only an ammeter and a
manufacturer specification for peripheral working voltage as a
constant1. If such a device is integrated in a smartphone itself,
we call it an internal power sensor, otherwise it is an external
sensor.

Android OS provides a number of APIs for getting power
reads from internal sensors. With a root access to a smart-
phone a developer may directly read files from proc folder
for momentary power state [7]. Alternatively, one can use
batterystats power logging utility and download it after
test case is finished [19]. Both these options allow a high
degree of customization, i.e. they may or may not include
information of currently active peripherals like Wi-Fi or GPS
modules.

External sensors like Monsoon [20] cost money to acquire,
so their acquisition might be a limiting factor. Being an
external device to a smartphone they don’t capture information
on active peripherals at the time of metering. When aligning
application traces with external measurement data, in order
to properly synchronize time marks one should synchronize
timings between different devices [7].

1Battery voltage level drops with the discharge, but it is pretty constant for
Li-Ion and Li-Pol batteries from 90% to 20%

Both types of sensors can produce a series of time marks
and instant power readings. The main deciding factor is the fre-
quency of analog-to-digital converters. For external sensors a
typical value is 10 KHz, therefore power difference at intervals
of 100 µs can be captured. This frequency is considered in the
literature as appropriate for capturing code power consumption
on a method level [12], and in our observations the most
power-consuming methods typically run at least for a 1 ms or
in loops lasting longer than that. In the case of internal power
sensing frequencies of 1 Hz or less are not unheard of [21],
and that severely limits a number of profiling scenarios.

For the model-based approaches, time-based models are al-
ready well-suited for multi-threaded scenario, however special
calibration should be done to address simultaneous multi-core
processor and graphic card load, as their energy consumption
might change non-linearly when a number of active cores
or GPU multiprocessors increases. As for the models based
on instruction or function energy consumption estimation,
this approach is limited in multi-threaded environment. Power
coefficients for specific instructions may not reflect under-
lying peripherals usage. In real life scenarios programs are
interacting with smartphone peripherals which are at least as
consuming as CPU [22] and are independent from proces-
sor execution. While a function call to decrease the screen
brightness might be estimated in terms of power drain, the
side effect of reducing screen power footprint cannot be
reduced to processor instruction energy consumption. Second,
library functions power consumption is often dependent on its
input length (i.e. data transmission functions) and cannot be
accurately presented by linear coefficient.

The following points were the most important when we
made a decision on the conceptual approach for the Navitas
Framework:

• External sensors require money to acquire and a certain
qualification to be properly used.

• While direct measurement approach using internal sen-
sors was promising at first, we quickly found out that on
our test devices sensors’ frequency was not stable and
high enough for practical use.

• Instruction and function-level power estimation have in-
herent conceptual flaws for multi-threaded analysis.

• Time-based models often have a support from manu-
facturers in the form of power_profile.xml — an
XML file containing the values of electrical current for
various modes of operation of the devices installed in the
smartphone. This file can be obtained without root access
and can be used as an initial set of weighted coefficients
for our model.

• Execution data for time-based models can be obtained
using Android API calls and utilities.

In the end, we choose Navitas Framework to follow time-
based indirect estimation approach.

B. Reporting units

From our SLR we knew that there is no uniformity in re-
porting units that other frameworks use [5]. Some frameworks



used absolute values like Joules, Watts or Amperes, other used
battery discharge percentage or relative non-dimensional units
[16]. As raw data from power_profile.xml contained
values measured in milliamperes (mA), voltage can be found
in device specification, and execution time is obtained from
test or application execution trace, Joules and battery charge
percentage were two main reporting units candidates.

Each recharge cycle for Li-ion batteries inevitably shortens
their discharge time under the same drain, therefore estimating
battery time change can only be done with a context of how
old a battery is and how many recharge cycles it was run
through [14]. As controlled experiments tremendously differ
from real-time smartphone usage where screen brightness is
high and multiple peripherals may be active at the same time,
high battery drain might be observed. Because of Peukert’s law
resulting battery time from such a drain can be estimated, but it
will be lower than in experimental environment. We conclude
that reporting in Joules results in a simpler estimation model.

C. Instrumentation and its overhead

Source code instrumentation is not necessary if a it can
be manually updated with all necessary logging information,
however automated approach is preferred, for instance by
applying source code transformation using javassist li-
brary [23] or BCEL [24]. We concur with the literature that
method start and end should both be instrumented to provide
a proper call hierarchy [9]. Instrumentation trace from a code
execution should also be profiled for energy consumption
in order to deduct it from total power spending for better
metering accuracy [4]. For multi-threaded case instrumentation
code should be adjusted to include a thread ID for each log
entry. We decided to calculate contribution of each device at
the measurements results analysis phase.

D. Tests vs. application runs

There are two ways of deploying an instrumented applica-
tion for power profiling ([25], [7], [6]). Tests are designed for
conducting repeatable executions of the same scenario under
the same conditions, and they are more suitable for controlled
experiments. Different test runners like MonkeyRunner,
JUnit or Espresso can be used for Android applications
([7], [12]). Application run means launching the entire in-
strumented application on a test device and conducting some
manual interaction with it. In general it can’t be as repeatable
as a test due to human involvement, but it helps to make an
overview of general application power drain. A the same time
tests may be checking application in an uncharacteristic way
compared to a real usage.

Overall, in our opinion the choice between application runs
and tests lies in a particular profiling scenario, because the
boundary between the use cases for both approaches is blurry.
While Navitas Framework is agnostic to the level of workload
execution, we choose test runs due to simplicity of integration.

Fig. 1. Navitas Framework workflow. Grey background is for Android Studio
tasks, black background is for the framework tasks

IV. Navitas Framework AND Navitas Profiler
IMPLEMENTATION

A. High-level overview

Android Studio is currently one of the most popular IDEs
among Android developers [26], and while at the time of
writing it is a natural choice to develop a profiling tool for it, a
more general approach would be to develop a framework based
on the current compiling tools and practices and a specific
extension or plugin for Android Studio.

Internally, Android Studio runs a set of Gradle tasks to
compile and run Android applications. Those tasks are IDE-
agnostic and can be reused in other IDEs. We extend this set
of tasks with Navitas profiling tasks, and the overall workflow
can be seen in Fig. 1.

Our first custom task instruments the application code
at the compilation stage with additional instructions to log
execution trace and thread information. After the compilation
is completed, we additionally initialize target device logging
facilities to trace component activity information. Then after
the test run is finished we download these logs along with
execution traces to a computer and format component usage
statistics report.

Various test runners can be supported independently from
power profiling Gradle tasks. Currently we use JUnit as a
default test runner, and its capabilities are fully supported.
Both single tests and test sets can be profiled, and the profiling
results are shown for each test (see Fig. 3). Proof of concepts
were also made for Espresso and MonkeyRunner frame-
works.

Navitas Profiler plugin for Android Studio is an orchestra-
tor. It manages what code to instrument, what tests to run and
what device to use for it. It also handles the energy coefficients
for target devices and it also runs the model against obtained
component usage statistics and displays energy consumption
report to the user.

B. Framework instrumentation

The instrumentation of application code occurs during com-
piling and packaging. We used Transform API library
which allows third-party plugins to manipulate compiled files
before they are turned into dex files.

To transform the code one needs to create a class and
implement Transform interface to register the code trans-
formation. The main instrumentation logic is implemented



in the overridden transform method. For each of the
instrumented files, the necessary imports are added to the
beginning. Furthermore, for all methods of each class, methods
of the Javassist library are applied — insertBefore
and insertAfter. A string containing Java code is passed
as a parameter. Even though Kotlin is now the primary
development language for Android, many applications are still
written in Java, so adding Java code allows us to ensure the
correct operation of the original programs in both languages,
as full interoperability is maintained between Kotlin and Java.
Our experience shows that code instrumentation at compilation
phase is faster than APK disassembling and instrumenting
mentioned in earlier works.
Logcat is a command line tool that prints a log of system

messages, including a stack trace, when the device generates
an error, and other messages may be written by a custom
application using the Log class. Logcat is convenient to use
because in addition to the message itself it adds information
about the current time (up to milliseconds), process ID and the
thread ID. The code we instrument into methods adds method
name to execution trace logs and accesses system API to trace
component activity. Activity data is then passed to Logcat.

C. Framework component activity data acquisition and model
formulas

Among the components of a smartphone which affect en-
ergy consumption the most important is the processor. Android
OS has special time-in-state files in the /sys directory
that contain information about the time each processor core
spent at a specific frequency. The data in these files is stored
in pairs like <frequency><time>”. There are exactly
as many of these pairs as there are different frequencies a
particular processor core supports. Time is measured in 10
milliseconds units, and it is counted from the moment the
corresponding driver was installed to measure processor data.

Our model for the processor energy consumption is there-
fore straightforward: for each core and for each frequency
it operated, one needs to take the time difference between
method ending and beginning at the end of the method and
at its beginning. Thus we obtain the time method worked at
each of the frequencies. Then by multiplying those timings
to corresponding weight coefficients in a model and summing
the result we obtain the total energy spent by the processor
to execute the measured method. Currently, the model weight
coefficients are based on the data in power_profile.xml.
To get the coefficients we multiply the values stored there in
milliamperes (mA) to the nominal CPU voltage. In the end the
final formula for the CPU power consumption is the following:

ECPU =
∑

i∈cores

∑
j∈freqsi

(endT imeij − startT imeij) ∗ Cij

(1)
where startT imeij and endT imeij — the time the i-th kernel
stays at the j-th frequency at the time of entering and exiting
the method, respectively, Cij — coefficient from our model.

Similarly to CPU, screen power consumption can be cal-
culated by multiplying the time screen was turned on at

different brightness levels to model weight coefficients and
summing the results. These coefficients are obtained by inter-
polating power values from the power_profile.xml file
for minimum and maximum brightness. Timing information
is obtained from batterystats log, which contains screen
brightness change events. Each event includes time since last
batterystats reset in milliseconds and one of the five
brightness levels: dark, dim, medium, light, bright.

D. Framework execution trace and component usage statistics
acquisition

After all the tests are completed, execution logs and compo-
nent status are downloaded from the test device. As logcat
logs contain a lot of additional information, but each entry type
structure is regular, pattern matching using regular expressions
is used to extract actual data. Then thread execution traces
are separated from one another, and the obtained data is
aggregated into a JSON files. These files are then processed
by high-level tools based on Navitas Framework, but we also
keep the file format open if a user wants to process the data
with some custom tool.

E. Navitas Profiler implementation

Navitas Profiler is a plugin for Android Studio based
on Navitas Framework tasks and developed to provide a
practitioner a high-level tool to profile energy consumption
of Android applications during the development process and
visualize power consumption based on profiling results while
being integrated with the IDE itself.

Fig. 2. Navitas Profiler architecture

The plugin adheres to a three-layer architecture (Fig. 2):
• domain — business logic, energy modelling utilities and

energy profile management tools;
• data — an abstraction layer for Navitas Framework data

acquisition;
• presentation — user interface classes.
To integrate Navitas Profiler to Android Studio project, its

build.gradle file should be modified accordingly.
A common use case for Navitas Profiler is the following.

User selects an Android module and its tests to run for
profiling, as well as device energy profile — our weight
coefficients for a particular test device. Then profiling is
initiated on a real hardware device, and upon its completion



analyzer module receives report file in JSON format. The
energy data is calculated for each method of each thread in
the execution trace using the formulas discussed in Section
4.C. Note that Android API calls and third-party libraries are
not profiled as no instrumentation is done for them. Then in a
profiler window user can select the desired test and get detailed
information about the energy consumption of all methods of
the test (Fig.3).

A user can get energy consumption data for a specific
method of a specific thread by selecting it in the tree view
under the chart. The power readings during this method
execution will be shown. Note that nested invocations will
also be shown as a tree (Fig.4). Filtering execution trace by a
specific thread ID is also available.

V. EXPERIMENTS

We first confirmed that Navitas Framework is working
as intended by accident. While studying energy impact of
Android compiler optimizations under parallel line of work,
we have found that the same code running in a separate thread
using a separate class inherited from Runnable interface
consumes a different amount of energy compared to the case
where an anonymous class was used (see listings 1 and 2).

1 class TaskClass : Runnable {
2

3 @Override
4 public void run() {...}
5 }
6 ...
7 new Thread(new TaskClass()).start();
8 ...

Listing 1. Runnable as a separate class

1 ...
2 new Thread(new Runnable() {
3

4 public void run() {...}
5

6 }).start();
7 ...

Listing 2. Runnable as an anonymous class

A test was created which ran some constant payload either
under Runnable as a separate class, or as an anonymous
class for 100 000 times. Test device was prepared according
to guidelines we outlined in SLR [5]. In particular, Wi-Fi,
Bluetooth and GPS were turned off, all unnecessary applica-
tions were removed or stopped, smartphone was put steady
on a table and was not moved until all the test runs were
over, there was a pause of 1 minute for a CPU to cool down,
and CPU DVFS governor was set to performance for a
constant maximum frequency. Thread affinity was not set for
application threads. Navitas Profiler was utilized to measure
energy consumption in both cases, and the result is shown
in table I. On average, anonymous class case consumes less
energy, however due to OS interference and thread scheduling
it is possible some particular test runs for the first payload
are lighter than for the second one. It was confirmed by
disassemblying the APK that in the first case additional

TABLE I
RUNNABLE WITH SEPARATE AND ANONYMOUS CLASS ENERGY

CONSUMPTION

Test run Separate class Anonymous class
energy (J) energy (J)

1 15.93 11.56
2 12.55 13.11
3 12.27 11.56
4 12.27 13.25
5 11.99 12.27
6 13.68 11.99
7 12.13 11.84
8 11.84 11.42
9 11.56 11.7
10 12.83 11.7
11 12.13 11.99
12 11.84 12.13
13 11.84 11.84
14 11.84 11.7
15 12.55 12.55

Average 12.48 12.04

TABLE II
DIFFERENCE IN ENERGY CONSUMPTION BETWEEN SORTING AND

NON-SRTING PAYLOAD

Test run Sorting payloadg Non-sorting payload
energy (J) energy (J)

1 17.56 13.20
2 14.61 13.41
3 21.48 13.52
4 13.74 10.80
5 13.30 13.41
6 15.16 12.21
7 17.78 15.92
8 14.50 12.10
9 13.20 14.50
10 15.81 14.83

Average 15.71 13.39

instructions were generated. We conclude that multiple test
runs and results averaging should be incorporated into every
experimental methodology concerning energy consumption.

In a second experiment Runnable creation was uniform,
but the payload was different. In one case pseudo-random
number generator was used with the constant seed to generate
an array of 106 integer numbers which was then saved to
internal storage. In another case array sorting was done before
it was saved. Therefore second payload would consume more
energy than the first one. While the experimental design
deiberately favours the first payload energy-wise, such energy
issues may happen in real applications when the data is sorted
when it’s not required do so. Table II, Fig.5 and Fig.6 show
that Navitas Profiler is able to detect these discrepancies in
both in total and individual thread energy consumption.

VI. CONCLUSIONS AND FUTURE WORK

Both Navitas Profiler and Navitas Framework source
codes are available at https://github.com/
Stanislav-Sartasov/Navitas-Framework. We
would like to address the following issues in our future work:



Fig. 3. Navitas Profiler tests energy consumption

• Currently the list of supported peripherals is very short,
and we’re working on expanding it with Wi-Fi, Bluetooth
and GPS being the main priority.

• While currently every method of user code is instru-
mented, sometimes such level of instrumentation is ex-
cessive. Sometimes only the energy consumed by the
entire test is required, so instrumentation might be more
lightweight. An adjustment model should also be intro-
duced for instrumented instructions to offset their own
energy consumption.

• Running the same test multiple times automatically and
averaging the results is a natural extension to the current
testing process.

• Execution trace needs to properly support exception han-
dling as method beginning might not have a correspond-
ing method ending in a logcat output.

• Multi-threading energy consumption analysis is currently
done at a pretty basic level. As we have outlined, un-
derstanding what is the energy consumption of a specific
thread in an interleaved execution is a non-trivial task
(see Section II.C), so adding ftrace execution data to
our model as well as accounting for varying CPU power
consumption under varying payload is a challenging
research project.

• We use the data in power_profile.xml as a basis
for our model, but actual device might be inconsistent
with it [6]. Currently our model is as precise as those
values, so implementing a model calibration algorithm
is an important next step. Testing the quality of our
model against direct measurements is another mandatory
direction.

However even in its current state our tool estimates pe-
ripheral energy consumption instead of battery drain and uses
Joules instead of relative units, therefre we consider it to
provide a valuable and concrete information on energy con-
sumption compared to analogues. We admit that current design
supports test runs and doesn’t provide real-time consumption
graph like Android Studio Energy Profiler, but in our view
these are just two different and equally valuable ways to work
with profiling applications.

Both Navitas Profiler and Navitas Framework are used
in a number of research projects of Software Engineering
department of Saint Petersburg State University. As they
provide a practitioner a complete set of profiling tools, we
consider them to be a valuable contribution to energy profiling
tools on Android platform.

REFERENCES

[1] Statista Inc., “Number of smartphone users worldwide from
2014 to 2023 (in billions),” https://www.statista.com/statistics/330695/
number-of-smartphone-users-worldwide/, 2020, [Online; accessed 5-
April-2021].

[2] C. Sahin, F. Cayci, I. Manotas, J. Clause, F. Kiamilev, L. Pollock,
and K. Winbladh, “Initial explorations on design pattern energy usage,”
2012 1st International Workshop on Green and Sustainable Software,
GREENS 2012 - Proceedings, 06 2012.

[3] L. Ardito, G. Procaccianti, M. Torchiano, and A. Vetro, “Understanding
green software development: A conceptual framework,” IT PROFES-
SIONAL, vol. 17, pp. 44–50, 01 2015.

[4] X. Li and J. P. Gallagher, “Fine-grained energy modeling for
the source code of a mobile application,” in Proceedings of
the 13th International Conference on Mobile and Ubiquitous Systems:
Computing, Networking and Services, ser. MOBIQUITOUS 2016.
New York, NY, USA: ACM, 2016, pp. 180–189. [Online]. Available:
http://doi.acm.org/10.1145/2994374.2994394



Fig. 4. Navitas Profiler detailed energy consumption of methods

Fig. 5. Navitas Profiler total results for second experiment

Fig. 6. Navitas Profiler details results for second experiment

[5] V. Myasnikov, S. Sartasov, I. Slesarev, and P. Gessen,
“Energy consumption measurement frameworks for android os: A
systematic literature review,” in Proceedings of the Fifth Conference on
Software Engineering and Information Management 2020 (SEIM 2020),
ser. CEUR Workshop Proceedings, 2020. [Online]. Available:
http://ceur-ws.org/Vol-2691/paper10.pdf

[6] A. Hindle, A. Wilson, K. Rasmussen, E. J. Barlow, J. C.
Campbell, and S. Romansky, “Greenminer: A hardware based
mining software repositories software energy consumption framework,”
in Proceedings of the 11th Working Conference on Mining Software
Repositories, ser. MSR 2014. New York, NY, USA: Association
for Computing Machinery, 2014, p. 1221. [Online]. Available:
https://doi.org/10.1145/2597073.2597097

[7] C. Wilke, S. Götz, and S. Richly, “Jouleunit: A generic framework

for software energy profiling and testing,” in Proceedings of the 2013
Workshop on Green in/by Software Engineering, ser. GIBSE ’13. New
York, NY, USA: Association for Computing Machinery, 2013, p. 914.
[Online]. Available: https://doi.org/10.1145/2451605.2451610

[8] Y. Chung, C. Lin, and C. King, “Aneprof: Energy profiling for android
java virtual machine and applications,” in 2011 IEEE 17th International
Conference on Parallel and Distributed Systems, Dec 2011, pp. 372–379.

[9] M. Couto, J. Cunha, J. Fernandes, R. Pereira, and J. Saraiva, “Green-
droid: A tool for analysing power consumption in the android ecosys-
tem,” 11 2015, pp. 73–78.

[10] D. Di Nucci, F. Palomba, A. Prota, A. Panichella, A. Zaidman, and
A. De Lucia, “Petra: A software-based tool for estimating the energy
profile of android applications,” in 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C), May 2017,



pp. 3–6.
[11] S. Tsao, C. Kao, I. Suat, Y. Kuo, Y. Chang, and C. Yu, “Powermemo:

A power profiling tool for mobile devices in an emulated wireless
environment,” in 2012 International Symposium on System on Chip
(SoC), Oct 2012, pp. 1–5.

[12] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan, “Estimating android
applications’ cpu energy usage via bytecode profiling,” in 2012 First
International Workshop on Green and Sustainable Software (GREENS),
June 2012, pp. 1–7.

[13] Donghwa Shin, Kitae Kim, Naehyuck Chang, Woojoo Lee, Yanzhi
Wang, Qing Xie, and M. Pedram, “Online estimation of the remaining
energy capacity in mobile systems considering system-wide power
consumption and battery characteristics,” in 2013 18th Asia and South
Pacific Design Automation Conference (ASP-DAC), Jan 2013, pp. 59–64.

[14] T. Reddy, Linden’s Handbook of Batteries, 4th Edition. McGraw-Hill
Education, 2010. [Online]. Available: https://books.google.ru/books?id=
MXzwCfmoihYC

[15] Google Inc. (2018) Profile battery usage with batterystats and battery
historian. [Online]. Available: ”https://developer.android.com/studio/
profile/battery-historian”

[16] “Inspect energy use with Energy Profiler,” https://developer.android.com/
studio/profile/energy-profiler, 2019, [Online; accessed 3-April-2021].

[17] Arm Holdings, “big.little,” https://developer.arm.com/technologies/
big-little, 2019, [Online; accessed 3-April-2021].

[18] “ftrace - Function Tracer,” https://www.kernel.org/doc/Documentation/
trace/ftrace.txt, 2008, [Online; accessed 3-April-2021].

[19] Google, Inc., “Profile battery usage with batterystats and battery
historian,” https://developer.android.com/studio/profile/battery-historian,
2019, [Online; accessed 3-April-2021].

[20] Monsoon Solutions, Inc., “High voltage power monitor,” https://www.
msoon.com/online-store, 2019, [Online; accessed 3-April-2021].

[21] “[app][5.0+] ampere the charging meter,” https://forum.xda-developers.
com/android/apps-games/app-ampere-charging-meter-t3012890, 2019,
[Online; accessed 3-April-2021].

[22] A. Carroll and G. Heiser, “An analysis of power consumption
in a smartphone,” in Proceedings of the 2010 USENIX Conference on
USENIX Annual Technical Conference, ser. USENIXATC’10. Berkeley,
CA, USA: USENIX Association, 2010, pp. 21–21. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855840.1855861

[23] Shigeru Chiba, “javassist by jboss-javassist,” https://www.javassist.org/,
2019, [Online; accessed 3-April-2021].

[24] The Apache Software Foundation, “Byte-code engineering library,”
https://commons.apache.org/proper/commons-bcel/, 2019, [Online; ac-
cessed 5-April-2021].

[25] R. Mittal, A. Kansal, and R. Chandra, “Empowering developers to
estimate app energy consumption,” Proceedings of the Annual Interna-
tional Conference on Mobile Computing and Networking, MOBICOM,
08 2012.

[26] Google, Inc., “Android studio,” https://developer.android.com/studio,
2019, [Online; accessed 3-April-2021].

[27] ——, “Processes and threads overview,” https://developer.android.com/
guide/components/processes-and-threads, 2019, [Online; accessed 5-
April-2021].

[28] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and
S. Linkman, “Systematic literature reviews in software engineering
a systematic literature review,” Information and Software Technology,
vol. 51, no. 1, pp. 7 – 15, 2009, special Section - Most Cited
Articles in 2002 and Regular Research Papers. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0950584908001390

[29] “Energy consumption on Android Studio Pro-
filer,” https://stackoverflow.com/questions/52647045/
energy-consumption-on-android-studio-profiler, 2018, [Online;
accessed 3-April-2021].


