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Decisions made by an automated system, especially in sensitive domains
involving interaction with humans, must be explained. Such explanations should
be transparent and detailed enough to verify the work of the system. In this way,
a user does not have to trust the manufacturers and developers implicitly, but
can verify that the system indeed does what it is supposed to do. One way to
explain logical reasoning is by providing a proof for the established entailments,
composed of individual, easy to understand reasoning steps leading from the
asserted knowledge to the inferred conclusion. Since such proofs may be arbitrarily
complex, ideally we would like to pick a proof that is easiest to understand.

This theoretical paper investigates the complexity of finding proofs of a given
quality among all possible alternative proofs. The quality of a proof is determined
by a proof measure m and an upper bound q that filters out bad proofs w.r.t. the
measure. That is, we want to decide the existence of a proof P with m(P) ≤ q.
Our analysis is based on the notion of a deriver, which generates a so-called
derivation structure consisting of possible proof steps, from which all proofs of
the given consequence can be constructed. This structure can be thought of as
containing all possible instantiations of a specific set of inference rules, for some
specific KB K and entailment η to be proven. Practical inference systems often
restrict the shape of derived axioms, e.g. to be in a certain normal form or to use
only subconcepts from the input, thus giving a bound on the number of steps in
a derivation structure based on K and η. Based on this bound, we can distinguish
polynomial and exponential derivers, examples of which are consequence-based
reasoners for the DLs EL [3, 9] and ELI [4, 8]. The complexity of generating the
derivation structure is not considered part of the complexity of finding good
proofs since we do not want to be limited by the choice of the underlying logic or
the inference rule set. In many cases, a derivation structure can also be generated
in a goal-oriented way, without having to fully explore all possible rule instances.

Table 1 gives an overview of known and new results, going from general
classes of measures to specific cases. This paper extends the results of [1,2], where
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Table 1. Overview over existing and new complexity results for deciding the existence
of good proofs, w.r.t. polynomial/exponential derivers and unary/binary encoding of
the bound (known results in gray).

Measure polynomial
unary

polynomial
binary

exponential
unary

exponential
binary

Ψ-measure ≤ NP [2] ≤ NP [2]
Size NP [1] NP [1] NP [1] NExpTime [1]
Monotone recursive
Φ-measure ≤ P ≤ P ≤ ExpTime ≤ ExpTime

Local Ψ-measure ≤ P [2] ≤ P [2] ≤ ExpTime ≤ ExpTime
Tree size P [1] P NP [1] PSpace
Depth P P PSpace ExpTime
Logarithmic depth P P ExpTime ExpTime

we had established results concerning some proof measures m with respect to
polynomial/exponential derivers with both unary and binary encoding of the
upper bound q. In particular, in our first work in this direction [1], we focused our
attention on size as the measure of proof quality. We could show that the above
decision problem is NP-complete even for polynomial derivers and unary encoding
of numbers. For exponential derivers, the complexity depends on the encoding
of numbers: NP-complete (NExpTime-complete) for unary (binary) encoding.
For the related measure tree size (which assumes that the proof hypergraphs
are tree-shaped, i.e. cannot reuse already derived consequences), the complexity
turned out to be lower, due to the fact that a Dijkstra-like greedy algorithm can
be applied. In [2], we generalized the results by introducing a class of measures
called Ψ-measures, which contains both size and tree size and for which the same
complexity upper bounds as for size could be shown for polynomial derivers. We
also lifted the better upper bounds for tree size (for polynomial derivers) to local
Ψ-measures, a natural class of proof measures.

In this paper, we extend the latter line of research by providing a more
general notion of measures, monotone recursive Φ-measures, which also allow to
measure the depth and logarithmic depth of a proof. We prove that every local
Ψ-measure is a monotone recursive Φ-measure, but not vice versa. Therefore,
in this paper we improve the previous results from [2]. This generalization is
particularly important since the depth is related to how much of the proof a
(human or automated) proof checker needs to keep in memory at the same time.
We analyze these measures not only for polynomial derivers, but this time also
consider exponential derivers, thus giving insights on how our complexity results
transfer to more expressive logics. In addition to upper bounds for the general
class of monotone recursive Φ-measures, we show improved bounds for the specific
measures depth and tree size, in the latter case improving results from [1]. Overall,
we thus obtain a comprehensive picture of the complexity landscape for the
problem of finding good proofs for DL and other entailments.
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In future work, we plan to investigate more fine-grained measures of proof
quality, inspired by the weighted justification measure of [7], and their connection
to explaining proofs in practice.
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