How to Approximate Ontology-Mediated Queries (Extended Abstract)

Anneke Haga¹, Carsten Lutz¹, Leif Sabellek¹, and Frank Wolter²

¹ Department of Computer Science, University of Bremen, Germany ² Department of Computer Science, University of Liverpool, UK

The complexity of ontology-mediated querying in popular expressive description logics (DLs) such as \mathcal{ALC} and \mathcal{ALCT} is prohibitively high, namely CONPcomplete in data complexity [4] and EXPTIME- resp. 2EXPTIME-complete in combined complexity [3]. As a consequence, practical implementations resort to approximations of ontology mediated queries (OMQs) [6, 5, 7] that are, however, often of a rather pragmatic nature. The work reported about in this abstract is concerned with a systematic study of OMQ approximations that achieve the following desiderata [2]:

- (i) PTIME data complexity,
- (ii) fixed-parameter tractability (FPT) with the parameter being the size of the OMQ (if possible) and
- (iii) improved combined complexity (if possible),

We mainly consider approximation from below, that is, approximations that are sound, but (potentially) incomplete. Recall that an OMQ is a triple $Q = (\mathcal{O}, \Sigma, q)$ where \mathcal{O} is an ontology, q an actual query such as a conjunctive query (CQ), and Σ a signature for the databases \mathcal{D} that Q is evaluated on. Our starting point is the observation that we may attain (the only non-optional) desideratum (i) by relaxing the ontology \mathcal{O} or the database \mathcal{D} . Note that relaxing the query q is not promising towards this aim as ontology-mediated querying is coNP-hard already for atomic queries (AQs), that is, CQs of the form A(x).

For ontology relaxing approximation, we choose a DL \mathcal{L} for which ontologymediated querying is in PTIME in data complexity. We then replace \mathcal{O} with every \mathcal{L} -ontology \mathcal{O}' such that $\mathcal{O} \models \mathcal{O}'$ (which guarantees soundness) and take the union of all answers. As choices for \mathcal{L} , we consider Horn description logics such as \mathcal{ELI} and frontier-one tuple-generating dependencies (TGDs) [1] with the treewidth of the body and head bounded by a constant. For database relaxing approximation, we choose a class \mathfrak{D} of databases for which ontology-mediated querying is in PTIME in data complexity. We then replace \mathcal{D} with every database $\mathcal{D}' \in \mathfrak{D}$ such that there is a homomorphism from \mathcal{D}' to \mathcal{D} (which guarantees soundness) and then take the union of all answers. As choices for \mathfrak{D} , we consider databases of bounded treewidth and databases that are proper trees.

An OMQ language is a pair $(\mathcal{L}, \mathcal{Q})$ with \mathcal{L} an ontology language and \mathcal{Q} a query language. We study the approximation of OMQ languages $(\mathcal{L}, \mathcal{Q})$ with

Copyright © 2021 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

2 A. Haga et al.

 $\mathcal{L} \in \{\mathcal{ALC}, \mathcal{ALCI}\}\)$ and $\mathcal{Q} \in \{\text{UCQ}, \text{CQ}, \text{AQ}, \text{bELIQ}\}\)$ where UCQ denotes unions of CQs and bELIQ denotes the class of unary CQs that correspond to \mathcal{ELI} concepts (ELIQs) and of Boolean CQs $\exists x q(x)\)$ with q(x) an ELIQ. The exact problem studied is *approximate OMQ evaluation*, meaning to decide, given an OMQ Q, a database \mathcal{D} , and a tuple \bar{a} of constants from \mathcal{D} , whether \bar{a} is an approximate answer to Q on \mathcal{D} .

In this abstract, we only state explicitly two main results, the first one concerning ontology relaxing approximation.

Theorem 1. Let $\mathcal{L} \in {\mathcal{ALC}, \mathcal{ALCI}}$ and $\ell, k, k' \ge 1$ with $\ell < k$. Then $\ell, k, 1, k'$ ontology relaxing evaluation is

- 1. EXPTIME-complete in combined complexity and PTIME-complete in data complexity in $(\mathcal{L}, \mathcal{Q}), \mathcal{Q} \in \{AQ, CQ, UCQ\};$
- 2. FPT in $(\mathcal{L}, \mathcal{Q}), \ \mathcal{Q} \in \{CQ_p^{tw}, UCQ_p^{tw} \mid p \ge 1\}.$

Let us clarify notation. A CQ has treewidth at most (ℓ, k) if it admits a tree decomposition in which the size of the bags is bounded by k and the overlap between the bags is bounded by ℓ . Then, $\ell, k, 1, k'$ -ontology relaxing evaluation means that we replace \mathcal{O} with every set of frontier-one TGDs \mathcal{O}' such that $\mathcal{O} \models \mathcal{O}'$ and the TGDs in \mathcal{O}' are such that the treewidth of their bodies is at most (ℓ, k) while the treewidth of their heads is at most (1, k'). With CQ_p^{tw} , we mean CQs of treewidth bounded by the constant p and UCQ_p^{tw} means disjunctions of CQs from CQ_p^{tw} . Note that ontology relaxing approximation indeed achieves desideratum (i) and that in the case of \mathcal{ALCI} , it additionally achieves desideratum (iii). Desideratum (ii) is only achieved for (U)CQs of bounded treewidth. In the full paper, we also study ontology relaxing approximation using the DL $\mathcal{ELI}_{\perp}^{\mathcal{I}}$ in place of TGDs, where we additionally attain linear time data complexity for (\mathcal{ALCI} , bELIQ).

The second main theorem concerns database relaxing approximation.

Theorem 2. Let $1 \leq \ell < k$. Then ℓ , k-database relaxing evaluation is

- 1. 2EXPTIME-complete in combined complexity and FPT (thus in PTIME in data complexity) in (ALCI, Q), $Q \in \{CQ, UCQ, CQ_p^{tw}, UCQ_p^{tw} | p \ge 1\};$
- 2. EXPTIME-complete in combined complexity and \vec{FPT} in $(\mathcal{ALC}, \mathcal{Q})$ and in $(\mathcal{ALCI}, \mathcal{Q}), \mathcal{Q} \in \{AQ, bELIQ\}.$

Here, ℓ , k-database relaxing evaluation means that we replace the input database \mathcal{D} with every database \mathcal{D}' of treewidth at most (ℓ, k) that admits a homomorphism to \mathcal{D} . Thus also database relaxing approximations achieve desideratum (i). In contrast to ontology relaxing approximations, there are no cases where desideratum (iii) is achieved. However, desideratum (ii) is achieved for a much wider class of queries.

In the full paper, we also study database relaxing approximation using proper trees in place of databases of bounded treewidth for which Point 2 of Theorem 2 can be strengthened to linear time in data complexity (which implies FPT). We also make the surprising observation that tree-database relaxing evaluation is EXPSPACE-hard in (\mathcal{ALC}, CQ) and 2EXPTIME-hard in (\mathcal{ALC}, UCQ) , thus *harder* than non-approximate evaluation which is EXPTIME-complete.

We also study approximation from above in the form of ontology strengthening approximation and database strengthening approximation. These are defined dually to ontology/database relaxing approximations and are complete, but (potentially) unsound. For \mathcal{L} -ontology strengthening approximation, we replace \mathcal{O} with every \mathcal{L} -ontology \mathcal{O}' such that $\mathcal{O}' \models \mathcal{O}$ (which guarantees completeness) and take the intersection of all answers. For \mathfrak{D} -database strengthening approximation, we replace \mathcal{D} with every database $\mathcal{D}' \in \mathfrak{D}$ such that there is a homomorphism from \mathcal{D} to \mathcal{D}' (which guarantees completeness) and then take the intersection of all answers.

It turns out that ontology strengthening approximation and database strengthening approximation are less well-behaved than their counterparts that approximate from below. We state the two main theorems that illustrate this. Recall that \mathcal{ELTU}_{\perp} is the fragment of \mathcal{ALCI} that extends \mathcal{ELI}_{\perp} with disjunction.

Theorem 3. Let $Q \in \{AQ, CQ, UCQ\}$. \mathcal{ELI}_{\perp} -ontology strengthening evaluation in $(\mathcal{ELIU}_{\perp}, Q)$ is 2EXPTIME-complete in combined complexity and FPT.

So \mathcal{ELI}_{\perp} -ontology strengthening evaluation satisfies desiderata (i) and (ii), but not (iii). In fact, we consider the lower bound for $(\mathcal{ELIU}_{\perp}, AQ)$ surprising as non-approximate evaluation is only EXPTIME-complete [3]. Thus, approximate evaluation from above is significantly harder. The lower bound depends only on disjunction on the *left* hand side of concept inclusions, which are syntactic sugar, but not on the seemingly much more 'dangerous' disjunctions on the right hand side. It is in fact a byproduct of our proofs that, without disjunctions on the left, \mathcal{ELI}_{\perp} -ontology strengthening evaluation in $(\mathcal{ELIU}_{\perp}, UCQ)$ is EXPTIMEcomplete. \mathcal{ALCI} -ontologies can be rewritten in polynomial time into a 'nestingfree' normal form that is often used by reasoners and that has sometimes been presupposed for approximation [7]. The rewriting is not equivalence preserving, but only yields a conservative extension. ALCI-ontologies in this form can in turn be rewritten into an equivalent \mathcal{ELIU}_{\perp} -ontology without disjunction on the left and thus enjoy \mathcal{ELI}_{\perp} -ontology strengthening evaluation in EXPTIME. Ontology strengthening evaluation in $(\mathcal{ELIU}, \mathcal{Q})$ remains a non-trivial open problem.

For the second theorem, we use \mathfrak{D}_1 to denote the class of databases that are disjoint unions of trees, multi-edge and self-loops admitted.

Theorem 4. \mathfrak{D}_1 -database strengthening approximation is CONP-complete in data complexity in (ALCI, UCQ). The lower bound already holds when the ontology is empty. It also holds in (\mathcal{EL}, CQ).

Thus, \mathfrak{D}_1 -database strengthening approximation does not satisfy our crucial desideratum (i). For (\mathcal{EL} , CQ), the data complexity even *increases* from PTIME to CONP-complete when transitioning from non-approximate evaluation to the approximate version.

Acknowledgement. Anneke Haga and Carsten Lutz were supported by DFG CRC 1320 Ease. Frank Wolter was supported by EPSRC grant EP/S032207/1.

4 A. Haga et al.

References

- 1. Baget, J., Leclère, M., Mugnier, M., Salvat, E.: Extending decidable cases for rules with existential variables. In: Proc. of IJCAI. pp. 677–682 (2009)
- 2. Haga, A., Lutz, C., Sabellek, L., Wolter, F.: How to approximate ontology-mediated queries. In: Proc. of KR (2021)
- Lutz, C.: The complexity of conjunctive query answering in expressive description logics. In: Proc. of IJCAR. LNCS, vol. 5195, pp. 179–193. Springer (2008)
- 4. Schaerf, A.: On the complexity of the instance checking problem in concept languages with existential quantification. J. of Intel. Inf. Systems 2, 265–278 (1993)
- Thomas, E., Pan, J.Z., Ren, Y.: TrOWL: Tractable OWL 2 reasoning infrastructure. In: Proc. of ESWC. LNCS, vol. 6089, pp. 431–435. Springer (2010)
- Tserendorj, T., Rudolph, S., Krötzsch, M., Hitzler, P.: Approximate OWL-reasoning with Screech. In: Proc. of RR. LNCS, vol. 5341, pp. 165–180. Springer (2008)
- Zhou, Y., Cuenca Grau, B., Nenov, Y., Kaminski, M., Horrocks, I.: PAGOdA: Payas-you-go ontology query answering using a datalog reasoner. J. Artif. Intell. Res. 54, 309–367 (2015)