
DL-Lite Full: A Sub-language of OWL 2 Full for
Powerful Meta-modeling

Zhenzhen Gu1 and Songmao Zhang2

1 Faculty of Computer Science, Free University of Bozen-Bolzano, Bolzano, Italy
2 Academy of Mathematics and Systems Sciences, Chinese Academy of Sciences,

Beijing, China
zhgu@unibz.it, smzhang@math.ac.cn

Abstract. We address the problem of encoding meta-modeling in real-
world knowledge bases (KBs), i.e., multiple uses of names and especially
non-standard uses of rdf : type, in DL-LiteR, and propose a sub-language
of OWL 2 Full, called DL-Lite Full, for the web-scale Open Data for
powerful meta-modeling. For meta-knowledge access, meta-queries are
introduced by allowing variables to occur in the class and role positions
of conjunctive queries. For scalability, based on the techniques of DL-
LiteR, we provide a way of reducing both satisfiability checking and
conjunctive query answering in DL-Lite Full to evaluating queries over
the data layers of the KBs, and further an approach of answering meta-
queries via meta-query rewriting and partial variable materialization.
Based on these, we obtain that the considered reasoning tasks in DL-
Lite Full still have PTime KB complexity and AC0 data complexity.

Keywords: Semantic Web · DL-LiteR · OWL 2 Full · Meta-modeling.

1 Introduction

Description logics (DLs) [5], decidable sub-languages of the first-order logic, lay
the logic foundation of the famous and popular web ontology language OWL.
The latest version OWL 2 [12, 24] includes two expressive sub-languages OWL
2 DL and OWL 2 Full as well as three profiles OWL 2 QL, OWL 2 EL and
OWL 2 RL for scalability at different aspects. OWL 2 DL is formalized based
on the expressive DL SROIQ [38] and OWL 2 QL, OWL 2 EL and OWL 2
RL are underlined by the lightweight DLs DL-LiteR [6,7], EL [9] and DLP [10]
respectively. OWL 2 Full is obtained by removing the restrictions for decidability.
The distinctive feature of OWL 2 Full is meta-modeling where ordinary names
can be used in multiple ways, such as asserting Mother to be a class and at the
same time to be an individual of family roles. Besides, RDF(S)/OWL vocabulary
terms which correspond to logic constructors can also be used as ordinary names
to describe data and knowledge, such as asserting sem : type and sem :subTypeOf
to be a sub-property of rdfs : type and rdfs :subClassOf, respectively.

Copyright c© 2021 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

2 Zhenzhen Gu and Songmao Zhang

Meta-modeling plays an import role in describing complex patterns and has
been heavily used in some actual open knowledge bases (KBs) such as the com-
monsense KBs including SUMO [17] for the top-level concepts and OpenCyc [18]
for across-domain knowledge, and the life sciences KBs [19] like FMA [20]. This
can be seen from the statistics in our previous work [31]. Besides, some large
scale Open Data [1, 2, 4] also contain massive meta-modeling, like the Billion
Triple Challenge (BTC) data set [21], where among the names used as classes,
25.5% are also specified as individuals, and among the names used as roles, 8.7%
are individuals at the same time. And some terms like moive : film cut are used
as classes, roles and individuals simultaneously.

High expressivity of OWL 2 Full leads to the undecidability of reasoning [26],
making complete reasoning impossible and developing practical systems difficult.
In order to cater for the requirement of meta-modeling, OWL 2 DL provides
a technique called punning which syntactically allows names to have multiple
uses while semantically treats the multiple uses of names as different semantic
entities. As a syntactical solution, punning will not draw any extra conclusions
compared with OWL 2 DL. Besides punning, there already exist some works
[26–32, 34–36, 39–43] studying extending DLs like SROIQ and DL-LiteR with
meta-modeling by allowing names to have multiple uses. However, in all these
work, except [39] which investigates extending meta-modeling with instantiation
in SROIQ and SHOIQ, non-standard uses of RDF(S)/OWL vocabulary terms
have been ignored. Although, compared with multiple uses of ordinary names,
non-standard uses of RDF(S)/OWL vocabulary terms relatively less happen, as
declared in [45], it nonetheless can be useful, such as distinguishing different
kinds of instantiations.

In order to capture the massive meta-modeling described in Open Data,
in this paper, we discuss encoding both multiple uses of ordinary names and
non-standard use of rdf : type in DL-LiteR (the language underling OWL 2 QL
and especially designed for ontology based data access [6, 11]), and provide a
sub-language of OWL 2 Full called DL-Lite Full. Non-standard uses of other
RDF(S)/OWL vocabulary terms will be discussed in the future work. For meta-
knowledge accessing, meta-queries are introduced by allowing variables to occur
in the class and role positions of queries. We define the syntax and semantics of
DL-Lite Full and meta-queries. For data layer scalability, we provide the way of
reducing satisfiability checking and conjunctive query answering in DL-Lite Full
to evaluate queries over the data layer of KBs and further the way of answering
meta-queries through meta-query rewriting and partial variable materialization.
Based on this, we obtain that the considered reasoning tasks in DL-Lite Full still
have AC0 data complexity and PTime KB complexity.

2 The definition of DL-Lite Full and meta-queries

2.1 The syntax of DL-Lite Full and meta-queries

Different from DL-LiteR, DL-Lite Full has only one name set N for classes, roles
and individuals. This means that each name in N can be used as classes, roles

DL-Lite Full: A Sub-language of OWL 2 Full for Powerful Meta-modeling 3

and individuals simultaneously. In order to capture the non-standard uses of
rdf : type, N contains a special name type. DL-Lite Full is defined as follows.

Definition 1 In DL-Lite Full, basic roles S, general roles R, basic classes B,
and general classes C are defined as follows:

S ::= P | P−, B ::= A | ∃S,
R ::= S | ¬S, C ::= B | ¬B

where A,P ∈ N. A DL-Lite Full axiom takes the form of S vr R or B vc C, and
a DL-Lite Full TBox T is a finite set of DL-Lite Full axioms where type does not
occur in the left-hand sides of inclusion axioms (v). A DL-Lite Full individual
assertion has the form P (a, b) or A(a), where P, a, b, A∈N and P 6= type, and a
DL-Lite Full ABox A is a finite set of individual assertions. A DL-Lite Full KB
K=(T ,A) is a tuple of DL-Lite Full TBox T and ABox A.

DL-Lite Full does not separate the names for classes, roles and individuals.
Thus, we use vr and vc to distinguish between role inclusion axioms and class
inclusion axioms. Besides, type can be used as ordinary names to describe schema
knowledge. By this way, the specifications of the RDF vocabulary term rdf : type
described in the real world KBs, such as sem : type vr type and sem :hasActor vr
sem : type, can be captured by DL-Lite Full. Here, type is forbidden to occur in
the left-hands of inclusion axioms, since reference [22] has suggested that such
kinds of axioms are generally best left to philosophers. As a matter of fact, we
did not find such use of type in the actual KBs. Moreover, we emphasize that
individual assertions with the form type(a, b) can be captured by b(a).

Let V be a set of variables such that V ∩ N = ∅. We define meta-queries.

Definition 2 A query atom has the form x(y, z) or y(z), where x, y, z ∈ N ∪ V
and x 6= type. A meta-query (MQ) Q is an expression of the form α1∧· · ·∧αn →
q(x) where αi are query atoms, x is a tuple of elements in V∪N and each variable
in x occurs in some αi. We use body(Q) to denote the body

⋃n
i=1{αi} of Q and

head(Q) the head x of Q. Q is called a Boolean query if head(Q)=().

Notice that query atoms in the form of type(x, y) can be captured by y(x). We
call the variables occurring in the ◦ positions of the atoms ◦(x, y) and ◦(x) as role
variables and class variables, respectively. Without class and role variables,
meta-queries degrade into conjunctive queries (CQs). By allowing class and role
variables in MQs, schema knowledge and data can be queried uniformly.

Example 1 “Asking for the relationships that Lucy has” can be formally rep-
resented as the MQ: ?p(Lucy, ?x)∧?c(?x)→ q(?p, ?x, ?c).

2.2 The semantics of DL-Lite Full and meta-queries

DL-Lite Full and MQs are captured by the ν-semantics defined in [26] which
is based on HiLog and takes a similar way of OWL 2 RDF-Based semantics to

4 Zhenzhen Gu and Songmao Zhang

interpret the multiple uses of names. Here, the ν-semantics is extended based on
OWL 2 RDF-Based semantics to capture the non-standard use of type.

ν-semantics. A ν-interpretation V = (∆V , ·V ,RV , CV) is a quadruple where ∆V

is a non-empty domain set, and ·V , RV and CV are functions such that ·V maps
each n ∈ N to a distinct element in ∆V , RV maps each o ∈ ∆V to a subset of
∆V ×∆V , CV maps each o ∈ ∆V to a subset of ∆V , and RV(typeV) = {(e, o)|o ∈
∆V ∧ e ∈ CV(o)} holds. The interpretation of other elements is shown in Fig.
1.(a). ν-models, ν-satisfiability and ν-entailment (|=ν) are defined as usual.

Syntax Semantics

P RV(PV)
P− {(x, y)|(y, x) ∈ RV(PV)}
¬S ∆V ×∆V −RV(SV)

A CV(AV)
∃S {x|∃y.(x, y) ∈ RV(SV)}

Syntax Semantics

¬B ∆V − CV(BV)

B vc C CV(BV) ⊆ CV(CV)
S vr R RV(SV) ⊆ RV(RV)

A(a) aV ∈ CV(AV)

P (a, b) (aV , bV) ∈ RV(PV)

(a)

α δ(α) α δ(α)

B v ¬∃type Iz(B, x) ∧ y(x)→ q() B v ¬∃type− Iz(B, x) ∧ x(y)→ q()
P v ¬type I(P, x, y)∧y(x)→ q() P v ¬type− I(P, x, y)∧x(y)→ q()

where x, y, z ∈ V, and if B ∈ N, Iz(B, x) = B(x); if B = ∃P and P ∈ N,
Iz(B, x) = P (x, z); if B = ∃P− and P ∈ N, Iz(B, x) = P (z, x);
if S ∈ N, I(S, x, y) = S(x, y); and if S = P− and P ∈ N, I(S, x, y) = P (y, x)

(b)

Fig. 1. (a) Interpretation of DL-Lite Full elements w.r.t. a ν-interpretation V, (b)
translation of disjoint axioms to MQs.

In a ν-interpretation, each name is mapped to a domain element and each
domain element has a class extension and a role extension, and the role extension
of the interpretation of type captures the class extension of all domain elements.

For a tuple u, we use |u| and u[i] to denote the length and the i-th el-
ement of u, respectively. For a query Q such that |head(Q)| = |u|, we use
Q[head(Q)/u], abbreviated as Q(u), to denote the result of replacing each oc-
currence of head(Q)[i] in Q with u[i] for 1 ≤ i ≤ |u|.
Semantics of meta-queries. For a MQ Q and ν-interpretation V, a binding
π of Q over V is a function that maps each variable in Q to an element in ∆V

and each name a in Q to aV . We write V, π |=ν Q if (π(y), π(z)) ∈ RV(π(x))
for each x(y, z) ∈ body(Q) and π(y) ∈ CV(π(x)) for each x(y) ∈ body(Q). For
a DL-Lite Full KB K, a tuple u of names and with length |head(Q)|, is called
a certain answer of Q over K if for each ν-model V of K, there exists a binding
π of Q(u) over K such that V, π |=ν Q(u) holds. We use ansν(Q,K) to denote
the set of all the certain answers of Q over K. Notice that u can be an empty
tuple () in the case that Q is a Boolean query. In this situation, ansν(Q,K) just
contains empty tuple if Q is satisfied by every ν-model of K (Q is true over K).

DL-Lite Full: A Sub-language of OWL 2 Full for Powerful Meta-modeling 5

Overall Assumption. In the following, we just consider the KBs without the
axioms containing ¬∃type, ¬∃type−, ¬type and ¬type− in the right-hand sides,
since, as shown in the proposition below, reasoning with the KBs containing
such axioms can be captured by reasoning with the KBs without such axioms
via translating these axioms into MQs by function δ defined in Fig.1.(b).

Proposition 1 For DL-Lite Full KB K, let K′ be the KB obtained from K by
dropping the axioms with ¬∃type(−) or ¬type(−). Then (1) K is ν-satisfiable iff
K′ is satisfiable, and ansν(δ(α),K′) = ∅ for each axiom α in K with ¬∃type(−)
or ¬type(−); (2) if K is ν-satisfiable, ansν(Q,K) = ansν(Q,K′) for each MQ Q.

The proofs of this proposition and the results in the following sections are
shown in the Appendix (https://github.com/Lucy321456/Files/blob/master/DL21.pdf).
The motivation of making this assumption is to simplify the description of the
provided method for reasoning with DL-Lite Full by first discussing satisfia-
bility checking and CQ answering via CQ rewriting, and then based on the
results, studying MQ answering via MQ rewriting. As shown in Fig.1, axioms
with ¬∃type (¬type) actually correspond to MQs rather than CQs.

3 Satisfiability checking and conjunctive query answering

Here, we discuss satisfiability checking and CQ answering in DL-Lite Full. In DL-
LiteR, the considered reasoning tasks can be eventually reduced to evaluating
queries over the data layers of KBs. Thus the basic idea is to make use of the
techniques especially designed for DL-LiteR. Before that we need to analyze the
relationships between DL-Lite Full and DL-LiteR.

3.1 Relationships between DL-Lite Full and DL-LiteR

The work like [26, 29, 40] conclude that under unique name assumption (UNA),
meta-modeling, i.e., multiple uses of names, can be handled by OWL 2 Punning
via renaming. However, this does not hold anymore in DL-Lite Full due to the
presence of type in the TBox. Next, let’s first see the translation by renaming.

τr(P) = vr(P)
τr(P

−) = vr(P)−

τr(¬S) = ¬vr(S)
τc(A) = vc(A)
τc(∃S) = ∃τr(S)

τc(¬B) = ¬τc(B)
τ(B vc C) = τc(B) v τc(C)
τ(S vr R) = τr(S) v τr(S)
τ(A(x)) = vc(A)(x)

τ(P (x, y)) = vr(P)(x, y)

τ(T) = {τ(α)|α ∈ T }
τ(A) = {τ(α)|α ∈ A}
τ(K) = (τ(T), τ(A))
τ(Q) =

∧
τ(α)→ q(x)

Fig. 2. Definition of the translation functions, where A,P ∈ N, P 6= type, x, y ∈ N∪V.

Let C and R be the sets of names for DL-LiteR classes and roles such that
C, R and N are pairwise disjoint and have the same cardinality. For simplicity,
we use N as the set for DL-LiteR individuals. Let vc and vr be two bijective

6 Zhenzhen Gu and Songmao Zhang

functions that map each name a ∈ N to a class name in C and a role name in
R, respectively. The conversion of DL-Lite Full classes, roles, axioms, assertions,
query atoms as well as DL-Lite Full KBs K = (T ,A) and CQs Q :

∧
α → q(x)

by functions τc, τr and τ via renaming is defined in Figure 2.
In the following, for a DL-LiteR KB O and CQ q over O, we use ans(q,O)

to denote the set of all certain answers of q over O. The next lemma shows that
renaming can still guarantee the soundness of the considered reasoning tasks.

Lemma 1 For a DL-Lite Full KB K, (1) if K is ν-satisfiable then τ(K) is
satisfiable; and (2) ans(τ(Q), τ(K)) ⊆ ansν(Q,K) for each CQ Q.

However, unlike the existing work, even adopting UNA, completeness can-
not be guaranteed, since non-standard uses of type may entail extra individual
assertions which further have an impact on the considered reasoning tasks.

Example 2 Consider the following DL-Lite Full KB K = (T ,A) where T =
{P vr type, A vc ∃type−} and A = {P (a,B), A(C)}. K ν-entails B(a), and
Q : C(x) → q() is true over K, i.e., ansν(Q,K) = {()}, since C is ν-entailed to
have individuals. However, such conclusions are not implied by τ(K). Besides, if
we add Cvc¬C to K, K is no longer ν-satisfiable, while τ(K) is still satisfiable.

In order to capture the extra conclusions entailed by non-standard uses of
type, an intuitive way is to materialize such entailment to τ(K) by these 3 steps:

Step 1. For each vr(type)(a,A) entailed by τ(K), add vc(A)(a) to τ(K);
Step 2. For each ∃vr(type)−(A) entailed by τ(K), add vc(A)(o) to τ(K), where

o ∈ N is a fresh name not occurring in K;
Step 3. For each B(A), B v ∃S and S− v vr(type) entailed by τ(K), add S(A, o)

and vc(A)(o) to τ(A), where o is a fresh name not occurring in K and
S(A, o) denotes P (A, o) if S = P and P (o,A) if S = P−, where P ∈ R.

For distinction, we denote the KB obtained by Step 1-3 as τm(K). Step 2 and
3 respectively capture the situation that K entails A having individuals and A
and v−r (P) sharing some individuals. In the above procedure, we do not need to
execute Step 2-3 again, since the fresh names o do not occur in K, thus even if
o are entailed to have individuals, such knowledge does not affect the results of
satisfiability checking and answering the queries solely containing names in K.

Theorem 1 For a DL-Lite Full KB K = (T ,A), (1) K is ν-satisfiable iff τm(K)
is satisfiable; and (2) for a CQ Q and tuple u such that |u| = |head(Q)| and solely
contains names occurring in K, then u ∈ ansν(Q,K) iff u ∈ ans(τ(Q), τ(K)).

3.2 Reasoning via query rewriting

By Theorem 1, the intuitive way of realizing the reduction is to make use of the
techniques for DL-LiteR via encoding the inclusion axioms into the queries. The
difference is that for completeness, extra encoding needs to be done to capture

DL-Lite Full: A Sub-language of OWL 2 Full for Powerful Meta-modeling 7

the non-standard use of type. For example, for an atom A(x) in a query Q, we
not only need to use the axiom B vc A in the TBox to replace A(x) in Q with
I(B, x) to generate a new query, but also take the axiom P vr type/type− into
consideration to further replace A(x) with I(P, x,A)/I(P,A, x) to capture the
individuals of A implied by the axioms referring type, where I is a query atom
generating function defined in Fig.3. If x or A is a unbound variable (denoted
as −), i.e., the variables not occurring in head(Q) and occurring only once in Q),
B vc ∃type or B vc ∃type− also needs to be taken into consideration.

I(B, x) = B(x), if B ∈ N
I(B, x) = P (x,−), if B = ∃P, P ∈ N
I(B, x) = P (−, x), if B = ∃P−, P ∈ N
I(S, x, y) = P (x, y), if S = P, P ∈ N
I(S, x, y) = P (y, x), if S = P−, P ∈ N

U(x1(y1, z1), x2(y2, z2)) = x3(y3, z3)
U(x1(y1), x2(y2)) = x3(y3)
where for u ∈ {x, y, z}, conditions (1)-(3) hold:

(1) if u1 = − then u3 = u2;
(2) if u2 = − then u3 = u1;
(3) if u1 6= − and u2 6= − then u1 = u2 = u3 holds.

otherwise U(x1(y1, z1), x2(y2, z2)) = − and
U(x1(y1), x2(y2)) = −

Fig. 3. The algorithm PerfectRefν and Violatesν .

The concrete rewriting is shown in algorithm PerfectRefν in Fig. 3, where
the atom unification operator U is also defined in Fig. 3. Before the rewriting,
unbound variables in the query are replaced with “−’. The algorithm will also
be used to rewrite MQs. Thus PerfectRefν takes MQs as input (The x in line

8 Zhenzhen Gu and Songmao Zhang

5 and z in line 21 maybe variables. We will explain in the next section). For
satisfiability checking, the reduction is realized by rewriting the queries corre-
sponding to the axioms with ¬, and then evaluate the finally obtained queries
over the ABox of KB to check whether the KB implies knowledge that validates
the negative axioms. The concrete way is shown in Algorithm Violatesν in Fig.
3. The termination of these two algorithms hold trivially, and the correctness
can be guaranteed by the theorem below.

Theorem 2 For a DL-Lite Full KB K = (T ,A), (1) K is ν-satisfiable iff
ansν(Q, (∅,A)) = ∅ for each Q ∈ Violatesν(T); (2) if K is ν-satisfiable, then
for each CQ Q, ansν(Q,K) =

⋃
Q′∈PerfectRefν(Q,T) ansν(Q′, (∅,A)).

Example 3 Consider the KB K = (T ,A) where T = {∃P vc A, A vc ∃type−}
and A = {P (B, a)}. For the CQ Q : B(?x) → q(), by Algorithm 1, we can get
PerfectRefν(Q, T) = {q1 : B(−) → q(), q2 : A(B) → q(), q3 : P (B,−) → q()}.
Obviously, ansν(q3,A) = {()}. Then by Theorem 2, ansν(Q,K) = {()} holds.

Based on Theorem 2 and the algorithms in Fig.3, we can further obtain the
complexity of satisfiability checking and CQ answering in DL-Lite Full.

Theorem 3 For a DL-Lite Full KB K = (T ,A), ν-satisfiability checking and
CQ answering can be realized in PTime w.r.t. |T | and AC0 w.r.t. |A|.

4 Meta-query answering in DL-Lite Full

In the following, for a function f , we use dom(f) to denote the domain of f ,
Qf to denote the result of replacing each occurrence of a in Q with f(a) for
each a∈dom(f), and [Qf] to denote the query obtained by replacing each atom
type(x, y) with y(x) with the motivation of unifying the format of queries.

4.1 Meta-query answering via meta-variable materialization

For MQ answering, a direct way is to convert MQs into CQs by materializing
meta-variables [29] with names. However, again unlike the existing work, com-
pleteness cannot be guaranteed, since axioms referring type may enable the KBs
not only to entail extra class individual assertions but also to imply that a named
or anonymous individual may have anonymous classes, i.e., the classes implied
to exist, such as the element e shown in the example below.

Example 4 Consider the following DL-Lite Full KB K = (T ,A) where T =
{A vc ∃P,∃P− vc ∃S, P vr type} and A = {A(a)}, and the query Q :?x(a) ∧
S(?x, ?y)→ q(). Obviously, ansν(Q,K) = {()}, i.e., Q is true over K, since there
exist anonymous elements e and e′ such that e(a) and S(e, e′) are entailed by K.
However, no matter what name occurring in K you replace ?x with, the resultant
query always has an empty answer set over K.

DL-Lite Full: A Sub-language of OWL 2 Full for Powerful Meta-modeling 9

Fortunately, such entailment can be captured by rewriting the query atoms
?x(y) based on the axioms referring type like P vr type (Line 10-17 in Algorithm
1) rather than doing materialization of ?x. Next, we formalize this approach.

Definition 3 For a MQ Q and DL-Lite Full KB K, a MV-Binding θ = (θr, θc)
of Q over K is a function such that θr maps each role variable of Q to type or a
name occurring in K, and θc maps some class variables of [Qθr] to the names
occurring in K. We use Qθ to denote [Qθr]θc, and use MVB(Q,K) to denote the
set of all the MV-Bindings of Q over K.

In Definition 3, to capture the implied anonymous class elements, θ maps
some class variables of Q to names, and let the reminder class atoms ?x(y) to be
rewritten based on the axioms referring type. The way of reducing MQ answering
to CQ evaluation over the ABoxes of KBs is shown in the theorem below.

Theorem 4 For a v-satisfiable DL-Lite Full KB K = (T ,A), MQ Q and tuple
u of names, then u ∈ ansν(Q,K) iff there exist MV-Binding θ ∈ MVB(Q,K)
and CQ Q′ ∈ PerfectRefν(Qθ, T) such that u ∈ ansν(Q′, (∅,A)).

Note that in Theorem 4, the set
⋃
θ∈MVB(Q,K) PerfectRefν(Qθ, T) may contain

queries with class variables. However, just evaluating the CQs in the set over
the ABox is enough to obtain all the certain answers of Q over K.

Example 5 Consider the MQ Q :?c(a)∧?p(a, ?x)→ q(?c, ?p, ?x) and ν-satisfiable
DL-Lite Full KB K= ({A1vcA2}, {A1(a)} ∪

⋃n
i=1{Pi(a, bi)}), where Pi 6= type

for 1 ≤ i ≤ n. For Q, if ?p is bound to type then the resultant query has two
class variables ?c and ?x, otherwise it has only one class variable ?c. Then:

MVB(Q,K) =⋃
o∈NK−{type}{({?p→ o}, {})} ∪

⋃
o∈NK−{type}

⋃
e∈NK{({?p→ o}, {?c→ e})}∪

{({?p→ type}, {})} ∪
⋃
o∈NK{({?p→ type}, {?c→ o})}}∪⋃

o∈NK{({?p→ type}, {?x→ o})} ∪
⋃
o∈NK

⋃
e∈NK{({?p→ type}, {?c→ o, ?x→ e})}

where NK consists of all the names in K. By trying all the MV-Bindings, we can
get ansν(Q,K)=

⋃2
i=1

⋃n
j=1{(Ai, Pj , bj)} ∪

⋃2
i=1

⋃2
j=1{(Ai, type, Aj)}. ut

4.2 Meta-query answering via partial meta-variable materialization
and meta-query rewriting

For completeness, not only the names occurring in the TBox but also thus solely
occurring in the ABox need to be considered when materializing meta-variables.
This makes a large number of candidates need to be tried when answering MQs.
Besides, it will also violate the desire of the separation between TBox and ABox
reasoning when answering MQs. Next based on two observations and Theorem
5, we provide a novel way of answering MQs via partial meta-variable material-
ization and MQ rewriting, where just the names in the TBox are referred.

The first observation is that under ν-semantics, answering a MQ over a DL-
Lite Full ABox can be realized by evaluating a CQ over a database without try
any meta-variable materialization, shown in the lemma below.

10 Zhenzhen Gu and Songmao Zhang

Lemma 2 For a MQ Q and DL-Lite Full ABox A, we use DB to denote
the database {T (a, P, b)|P (a, b) ∈ A} ∪ {T (a, type, A)|A(a) ∈ A} and Q′ the
query

∧
x(y,z)∈body(Q) T (y, x, z) ∧

∧
x(y)∈body(Q) T (y, type, x)→ q(head(Q)). Then

ansv(Q, (∅,A)) = ans(Q′,DB) holds.

The second observation is that when rewriting queries by the algorithm
PerfectRefν , if the names occurring in the class/role positions of query atoms
do not occur in the right-hand sides of any inclusion axioms, then these query
atoms will not be extended to generate new queries.

Enlightened by these, next, we provide the way of answering MQs via partial
meta-variable materialization and MQ rewriting. For a DL-Lite Full TBox T ,
we use Nrc

T (resp. Nrr
T) to denote the set of all the names used as classes (resp.

roles) in the right-hand sides of the inclusion axioms in T . The way of partially
materializing meta-variables of MQs is shown below.

Definition 4 For a MQ Q and DL-Lite Full TBox T , a partial MV-Binding
ϑ = (ϑr, ϑc) of Q over T is a function such that ϑr maps some role variables of
Q to the names in NrrT ∪ {type} and ϑc maps some class variables of [Qϑr] to
the names in NrcT . And ({}, {}), i.e., without binding any role and class variable
of Q, is also a partial MV-Binding of Q over T . We use PMVB(Q, T) to denote
the set of all the partial MV-bindings of Q over T .

Partial MV-Bindings materialize both class variables and role variables par-
tially. The resultant MQs will be rewritten by the algorithm PerfectRefν directly.
In the rewriting procedure, role variables ?y in the atoms ?y(x, y) will be treated
as names not occurring in the TBox, thus these atoms will not be extended to
generate new queries (Line 31-52 of PerfectRefν). And class variables ?x in the
atoms ?x(y) are also treated as names not occurring in the TBox, and these
atoms will just be rewritten based on the axioms referring type, like P vr type
(Line 5-30 of PerfectRefν).

Next, before giving the concrete way of answering MQs via partial meta-
variable materialization and MQ rewriting, we first analyze the relationships
between these two ways of materializing the meta-variables of MQs.

Definition 5 For MQ Q, KB K=(T ,A) and partial MV-Binding ϑ∈PMVB(Q, T),
a MV-Binding θ ∈MVB(Q,K) is called an extension of ϑ over K if for each
role variable x of Q, if x∈dom(ϑ) then θ(x)=ϑ(x) otherwise θ(x) /∈Nrr

T ; and for
each class variable x of Q, if x∈dom(ϑ) then θ(x) =ϑ(x) otherwise θ(x) /∈Nrc

T .
We use ePMVB(ϑ,Q,K) to denote the set of the extensions of ϑ of Q over K.

Actually, extensions of partial MV-Binding ϑ are the MV-Bindings obtained
by mapping the remainder meta-variables, i.e., meta-variables of Qϑ, to the
names not occurring in the right-hand sides of the inclusion axioms in T .

Example 6 (Example 5 con’t) ϑ=({}, {?c→A2}) is a partial MV-Binding of Q
over K’s TBox, and ePMVB(ϑ,Q,K) = ∪o∈NK−Nrr

T −{type}{({?p→o}, {?c→A2})}
is the set consisting of the MV-Bindings obtained by binding the remainder role
variable ?p to the names in NK − Nrr

T − {type}.

DL-Lite Full: A Sub-language of OWL 2 Full for Powerful Meta-modeling 11

By Definition 5, the lemma below indicates that (a) extensions of all the
partial MV-Bindings can cover all the MV-Bindings; and (b) the certain answers
obtained by trying all the extensions of a partial MV-Binding via MQ rewriting
can be captured by answering a MQ through rewriting.

Lemma 3 For a MQ Q and DL-Lite Full KB K = (T ,A), we can get that
MVB(Q,K) =

⋃
ϑ∈PMVB(Q,T) ePMVB(ϑ,Q,K), and for each ϑ ∈ PMVB(Q, T):⋃

θ∈ePMVB(ϑ,Q,K)
⋃
Q′∈PerfectRefν(Qθ,T) ansν(Q′, (∅,A)) ⊆⋃

Q′∈PerfectRefν(Qϑ,T)ansν(Q′, (∅,A)) ⊆ ansν(Q,K)

Combing Lemma 3 and Theorem 4, we can finally obtain the way of answering
MQs via partial meta-variable materialization and meta-query rewriting.

Theorem 5 For a MQ Q and ν-satisfiable DL-Lite Full KB K = (T ,A), then
for a tuple u of names, u ∈ ansν(Q,K) iff there exists ϑ ∈ PMVB(Q, T) and
Q′ ∈ PerfectRefν(Qϑ, T) such that u ∈ ansν(Q′, (∅,A)) holds.

Example 7 (Example 5 cont’d) Nrr
T =∅ and Nrc

T ={A2}. By Definition 4, Q
has totally the following 6 partial MV-Bindings over T :

ϑ1 = ({}, {})
ϑ2 = ({}, {?c→ A2})
ϑ3 = ({?p→ type}, {})

ϑ4 = ({?p→ type}, {?c→ A2})
ϑ5 = ({?p→ type}, {?x→ A2})
ϑ6 = ({?p→ type}, {?c→ A2, ?x→ A2})

Then by Theorem 5, all the certain answers of Q over K can be obtained by
evaluating over A the rewritten of the queries Qϑ1–Qϑ6 over T . Thus, through
partial meta-variable materialization, we just need 6 times of query rewriting
rather than 2× (2n+ 3) + 2× (2n+ 3)2 times (n is shown in Example 5).

KB Num C Num rC Num rC /Num C Num R Num rR Num rR/Num R

BTC2012 531,637 92,495 17% 74,932 3,936 5%
DBpedia 225,416 19,269 8% 41,762 468 1%

Fig. 4. Statistics of the names used as classes/roles in BTC 2012 dataset and DBpedia,
where Num C (Num R) denotes the number of names used as classes (roles), and Num rC
(Num rR) number of names used as classes (roles) in the right-hand sides of axioms.

Just considering the names occurring in the right-hand sides of the inclusion
axioms can significantly reduce the number of candidates needed to be tried
for the meta-variables of MQs Q, and further the number of queries eventually
needed to be considered over the ABoxes of the KBs. This can be seen from the
statistics of two actual KBs shown in Fig. 4.

Finally, based on Lemma 2 and Theorem 5, we can further obtain the com-
plexity of MQ answering in DL-Lite Full.

Theorem 6 For DL-Lite Full KB K = (T ,A) and MQ Q, ansν(Q,K) can be
obtained in PTime w.r.t. |K| and AC0 w.r.t. |A|.

12 Zhenzhen Gu and Songmao Zhang

5 Related work

The work [26–32,34–36] focused on extending multiple uses of names in expres-
sive DLs, such as SHOIN [37] and SROIQ [38]. Compared with these work,
we concentrate on a light-weight DL, i.e., DL-LiteR, and study not only multiple
uses of names but also non-standard uses of rdf : type.

For light-weight DLs, [40–44] discuss extending DL-LiteR with multiple uses
of names and MQ answering. The main difference between their work and ours
embodies in the following aspects. We study non-standard uses of rdf : type in ad-
dition. As shown in Example 2 and 4, non-standard uses of rdf : type will enable
a KB to entail a class having extra named individuals or anonymous individu-
als and individuals having anonymous classes, i.e., the classes entailed to exist.
This makes punning and full materialization of the meta-variables of MQs, i.e.,
translating MQs into CQs via replacing all meta-variables with names, cannot
guarantee the completeness of satisfiability checking and MQ answering any-
more. Thus, we further provide the method for the considered reasoning tasks
via partial meta-variable materialization and MQ rewriting. Here, meta-variables
of MQs are partially materialized using the names occurring in the right-hand
sides of axioms. This can not only guarantee the completeness of the considered
reasoning tasks but also significantly reduce the number of queries needed to
be evaluated over the data layers of KBs. There just exists one work, i.e., [39],
discussing meta-modeling with instantiation in SROIQ and SHOIQ, where
non-standard use of rdf : type can be captured. The authors provide methods of
reducing satisfiability checking in the extended languages to satisfiability check-
ing in the DL languages. However, this technique cannot be applied to DL-LiteR,
since DL-LiteR does not support the constructors, like enumeration, used when
translating the KBs in the extended languages to DL KBs.

6 Conclusion and future work

We studied encoding multiple uses of names and non-standard uses of rdf : type,
in DL-LiteR, and proposed a sub-language of OWL 2 Full called DL-Lite Full.
This paper focuses on developing the theoretical aspects of DL-Lite Full for
the considered reasoning tasks. Future work will mainly focus on the following
aspects. Even with partial meta-variable materialization, answering a MQ over
a KB may still need to answer many MQs via MQ rewriting. Heuristics like the
ones in our previous work [28,30] need to be developed to optimize the procedure
of MQ answering. Besides, DL-Lite Full just captures the non-standard uses of
rdfs : type. Extending DL-Lite Full to capture the non-standard uses of other
RDF(S)/OWL vocabulary terms as well as studying the rewriting ability and
complexity of such extensions is also worth studying.

Acknowledgments

We thank the reviewers and program committee for their valuable comments
and suggestions which will help us a lot to improve the whole work.

DL-Lite Full: A Sub-language of OWL 2 Full for Powerful Meta-modeling 13

References

1. O’Riain, S., Curry, E., and Harth, A.: XBRL and open data for global financial
ecosystems: A linked data approach. The International Journal of Accounting In-
formation Systems 13(2): 141–162 (2012).

2. Polleres, A., and Steyskal, S.: Semantic Web Standards for Publishing and Inte-
grating Open Data. In: Standards and Standardization: Concepts, Methodologies,
Tools, and Applications (2015).

3. Bizer, C., Heath, T., and Berners-Lee, T.: Linked data-the story so far. J. on Se-
mantic Web and Information Systems 5(3) 1–22 (2009).

4. Gu, Z., Zhang, S., and Cao, C.: Reasoning and querying web-scale open data based
on DL-LiteA in a divide-and-conquer way. J. Web Semant 55: 122–144 (2019).

5. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and Patel-Schneider, P.,
eds.: The Description Logic Handbook: Theory, Implementation, and Applications.
Cambrige University Press, second edition (2007).

6. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., and Rosati, R.:
Linking data to ontologies. Journal on Data Semantics 10(2008): 133–173 (2008).

7. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., and Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
Journal of automated reasoning 39(3): 385–429 (2009).

8. Artale, A., Calvanese. D., Kontchakov, R., and Zakharyaschev, M.: DL-Lite without
UNA. In Proceedings of DL’09 (2009).

9. Baader, F., Brandt, S., and Lutz, C.: Pushing the EL envelope. In Proceedings of
IJCAI’05 (2005).

10. Grosof, B. N., Horrocks, I., Volz, R., and Decker, S.: Description logic programs:
Combining logic programs with description logic. In Proceedings of the 12th inter-
national conference on World Wide Web (2003).

11. Xiao, G., Calvanese, D., Kontchakov, R., Lembo, D., Poggi, A., Rosati, R., and
Zakharyaschev, M.: Ontology-Based Data Access: A Survey. In Proceedings of IJ-
CAI’18 (2018).

12. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P. F., and Rudolph, S.: OWL
2 Web Ontology Language Primer (Second Edition). W3C Recommendation (2012).

13. Hayes, P. J., and Patel-Schneider, P. F.: RDF 1.1 Semantics. W3C Recommenda-
tion (2014).

14. Bishop, B., Kiryakov, A., Ognyanov, D., Peikov, I., Tashev, Z., and Velkov, R.:
FactForge: A fast track to the web of Data. Semantic Web Journal 2(2): 157–166
(2011).

15. Umbrich, J., Hogan, A., Polleres, A., and Decker, S.: Link Traversal Querying for
a diverse Web of Data. Semantic Web Journal 6(6): 585–624 (2012).

16. OWL 2 Punning, https://www.w3.org/TR/owl2-new-features/#F12:_Punning.
Last accessed 21 Jun 2021.

17. SUMO ontology, http://www.adampease.org/OP/. Last accessed 21 Jun 2021.

18. OpenCyc Ontology, http://sw.opencyc.org/. Last accessed 21 Jun 2021.

19. Life Science Ontologies, https://bioportal.bioontology.org/ontologies. Last
accessed 21 Jun 2021.

20. FMA ontology, https://www.bioontology.org/wiki/index.php/FMAInOwl. Last
accessed 21 Jun 2021.

21. BTC data set, https://km.aifb.kit.edu/projects/btc-2012/. Last accessed 21
Jun 2021

14 Zhenzhen Gu and Songmao Zhang

22. Hogan, A.: Exploiting RDFS and OWL for Integrating Heterogeneous, Large-Scale,
Linked Data Corpora. Ph.D. thesis, National University of Ireland, Galway, 2011.

23. Schneider, M.: OWL 2 Web Ontology Language RDF-Based Semantics (Second
Edition). W3C Recommendation (2012).

24. Golbreich, C., and Wallace, E. K.: OWL 2 Web Ontology Language New Features
and Rationale (Second Edition). W3C Recommendation (2012).

25. Chen, W., Kifer, M., and Warren, D. S.: HILOG: a foundation for higher-order
logic programming. Journal of Logic Programming 15(3): 187–230 (1993).

26. Motik, B.: On the Properties of Metamodeling in OWL. Journal of Logic and
Computation 17(4): 617–637 (2007).

27. De Giacomo, G., Lenzerini, M., and Rosati, R.: Higher-Order Description Logics
for Domain Metamodeling. In Proceedings of AAAI’11 (2011).

28. Gu, Z., and Zhang, S.: Querying Large and Expressive Biomedical Ontologies. In
Proceedings of HPCC’15 (2015).

29. Gu, Z.: Meta-modeling extension of Horn-SROIQ and Query Answering. In Pro-
ceedings of DL’16 (2016).

30. Gu, Z., and Zhang, S.: The more irresistible Hi(SRIQ) for meta-modeling and
meta-query answering. Frontiers of Computer Science 12(5): 1029–1031 (2018).

31. Gu, Z., Cao, C., and Zhang, S.: An Expressive Sub-language of OWL 2 Full for
Domain Meta-modeling. In Proceedings of DL’19 (2019).

32. Pan, J. Z., and Horrocks, I.: OWL FA: A Metamodeling Extension of OWL DL.
In Proceedings of WWW’06 (2006).

33. Homola, M., Kl’uka, J., Svátek, V., and Vacura, M.: Typed higher-order variant
of SROIQ - why not?. In Proceedings of DL’14 (2014).

34. Motz, R., Rohrer, E., Severi, P.: Reasoning for ALCQ extended with a flexible
meta-modeling hierarchy. In: 4th Joint International Semantic Technology Confer-
ence (2014).

35. Motz, R., Rohrer, E., and Severi, P.: The description logic SHIQ with a flexible
meta-modeling hierarchy. Journal of Web Semantics 35(2015): 214–234 (2015).

36. Glimm, B., Rudolph, S., and Völker, J.: Integrated metamodeling and diagnosis
in OWL 2. In Proceedings of ISWC’10 (2010).

37. Horrocks, I., Sattler, U.: A tableau decision procedure for SHOIQ. Journal of
automated reasoning, 39(3), 249-276, 2007.

38. Horrocks, I., Kutz, O., Sattler, U.: The Even More Irresistible SROIQ. In: 10th
International Conference on Principles of Knowledge Representation and Reasoning,
2006.

39. Kubincová, P., Kl’uka, J., and Homola, M.: Towards Expressive Metamodelling
with Instantiation. In Proceedings of DL’15 (2015).

40. De Giacomo, G.; Lenzerini, M.; and Rosati, R. 2011. Higher-Order Description
Logics for Domain Metamodeling. In Proceedings of AAAI’11.

41. Lenzerini, M., Lepore, L., and Poggi, A.: Practical higher-order query answering
over Hi(DL-LiteR) knowledge bases. In Proceedings of DL’14 (2014).

42. Lenzerini, M., Lepore, L., and Poggi, A.: Answering meta-queries over
Hi(OWL2QL) ontologies. In Proceedings of IJCAI’16 (2016).

43. Lenzerini, M., Lepore, L., and Poggi, A.: Metaquerying made practical for OWL 2
QL ontologies. Information Systems 88(2020) 101294 (2020).

44. Lenzerini, M., Lepore, L., and Poggi, A.: Metamodeling and metaquerying in OWL
2 QL. Artificial Intelligence 292 (2021).

45. Patel-Schneider, P. F.: Reasoning in RDFS is inherently serial, at least in the worst
case. In Proceedings of the 11th International Semantic Web Conference, Posters &
Demonstrations Track. (2012).

