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Abstract. Knowledge engineers might face situations in which an un-
wanted consequence is derivable from an ontology. It is then desired
to revise the ontology such that it no longer entails the consequence.
For this purpose, we introduce a novel technique for repairing TBoxes
formulated in the description logic EL. Specifically, we first compute a
canonical model of the TBox and then transform it into a countermodel
to the unwanted consequence. As formalism for the model transformation
we employ transductions. We then obtain a TBox repair as the axioma-
tization of the logical intersection of the original TBox and the theory of
the countermodel. In fact, we construct a set of countermodels, each of
which induces a TBox repair. For the actual computation of the repairs
we use results from Formal Concept Analysis.
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1 Introduction

Description logics (DLs) are a family of logic-based knowledge representation lan-
guages, supporting terminological knowledge (a schema) as well as assertional
knowledge (the data). Common reasoning services allow for deducing implicit
consequences that logically follow from the explicitly stated knowledge. Some-
times, we encounter situations where the derivation of such a consequence must
be made impossible — either because it is invalid in the underlying domain of
interest, or since it is privacy-sensitive information that needs to be hidden.
The classical approach to repairing a knowledge base in such situations is to
remove axioms such that the remaining axioms do not entail the unwanted con-
sequence anymore, i.e., a classical repair is a subset of the given knowledge base.
As a downside, also other consequences might vanish that are actually wanted.
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Specifically, the computation of classical repairs is based on justifications, which
are minimal subsets of the ontology that entail the unwanted consequence — as
pointed out in [20], a repair can be obtained by deleting one axiom of each jus-
tification. This classical approach was first used to repair inconsistent ontologies
[21,22], which was later extended to a more expressive DL SHOIN in [16].

More fine-grained repairs — in the sense that not too many other conse-
quences are affected — can be obtained if axioms are weakened instead of re-
moved completely [3,10,14,18,23]. A repair obtained this way is not a subset of
the given knowledge base but is logically entailed by it. While the approaches in
[10,14] first apply syntactic structural transformations to replace the axioms in
an ontology with a set of weaker axioms before the modified ontology is repaired
using the classical approach, the approaches in [18, 23] directly weaken those
axioms that are responsible for the entailment of the unwanted consequence. In
[3] a general framework for constructing so-called gentle repairs based on axiom
weakening was developed, which can in principle be applied to every monotonic
logic. Furthermore, conditions on the weakening relations are formulated that
guarantee termination, and an instantiation of the framework for EL is provided.

However, weakening axioms is not the only way to obtain such a non-classical
repair. In this document, we specifically consider the problem of repairing a TBox
with respect to a given concept inclusion (the unwanted consequence), all within
the light-weight description logic EL for which most common reasoning tasks
can be solved in polynomial time [1, 2, 6, 7]. Our approach first constructs a
countermodel to the unwanted consequence, and then produces a repair as the
axiomatization of the logical intersection of the given TBox and the theory of the
countermodel. Such a countermodel is simply an interpretation that contains an
element being an instance of the premise but not of the conclusion of the concept
inclusion to be removed.

To describe the construction of suitable countermodels, we utilize the for-
malism of transductions [8]. Such a transduction specifies how an input inter-
pretation is transformed into the output interpretations, e.g., by means of logical
formulae. Specifically, we adapt the idea that underlies an approach to comput-
ing (optimal) ABox repairs [4] in order to transform a canonical model into a
countermodel. In order to actually compute a repair, we employ the results on
axiomatizing concept inclusions from closure operators [17]. In particular, an
axiomatization of the logical intersection is obtained as the canonical base of the
infimum of the closure operator induced by the TBox to be repaired and the
closure operator induced by a countermodel to the unwanted consequence.

The structure of this document is as follows. In the next Section 2 we briefly
recall important notions of the description logic EL. Section 3 describes trans-
ductions that can be utilized to construct countermodels, and Section 4 explains
how the logical intersection (of a TBox and a countermodel) can be axiomatized.
We close this document with some concluding remarks in Section 5.
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2 Preliminaries

We presume familiarity with basic notions of the description logic EL. Given a
signature Σ := ΣC∪ΣR consisting of concept names and role names, EL concept
descriptions are built from Σ using the constructors >, u, and ∃. Throughout
this document we assume that all signatures are finite. (Nested) conjunctions are
treated like sets, i.e., nestings, repetitions, and order are irrelevant. An atom is
either a concept name or an existential restriction. Every concept description C
is a conjunction of atoms, the top-level conjunction of C, and the set of all these
atoms is denoted as Conj(C). Specifically, > is the empty conjunction. Given a
concept C, we denote by Sub(C) the set of all subconcepts of C (including C
itself) and Atoms(C) is the subset containing all atoms occurring as subconcepts
in C. Likewise, Sub(T ) consists of all subconcepts occurring in T . We say that an
interpretation I satisfies a concept inclusion (CI) C v D, written I |= C v D,
if CI ⊆ DI . Given a concept inclusion C v D and a TBox T , we say that T
entails C v D and that C is subsumed by D w.r.t. T , written T |= C v D and
C vT D, respectively, if each model of T satisfies C v D.

3 Constructing Countermodels by Model Transformation

Within this section, we are going to develop a method that produces counter-
models to a concept inclusion entailed by a TBox. For this purpose, assume that
T is a TBox and further that C v D is a concept inclusion, both formulated
in the description logic EL, such that T entails C v D. We start with formally
defining the notion of a countermodel.

Definition 1. Let C v D be a concept inclusion. A countermodel to C v D is
an interpretation that does not satisfy C v D.

Note that an interpretation I is a countermodel to C v D if and only if I
contains a domain element d such that d ∈ CI and d 6∈ DI . Of course, such a
countermodel can only exist if C v D is no tautology, i.e., if it is not valid in all
interpretations — we thus assume further that C v D satisfies this condition.

3.1 The Underlying Idea of the Countermodel Construction

As a starting point for constructing suitable countermodels we use the canonical
model IC,T induced by the premise C and the TBox T , because it contains an
element dC that is already an instance of C and, since it is a model of T , this
element dC is also an instance of D. In order to obtain a countermodel we will
modify IC,T in a way such that the distinguished element dC is still an instance
of C but not an instance of D anymore.

Definition 2. [19] Let C be an EL concept and T be a TBox. The canonical
model IC,T of C w.r.t. T is defined as follows:

∆IC,T := {dC} ∪ {dC′ | ∃r.C ′ ∈ Sub(C) ∪ Sub(T )}
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AIC,T := { dD | T |= D v A }
rIC,T := { (dD, dD′) | T |= D v ∃r.D′ and ∃r.D′ ∈ Sub(T ) ∪ Conj(D) }

To appropriately modify the canonical model, we adopt a technique for re-
pairing DL ABoxes that was introduced in [4] and aims at getting rid of unwanted
information about individuals a represented as a concept assertion P (a). If the
given ABox A entails this assertion, then one can compute an ABox entailed
by A from which P (a) is no longer derivable. This computation is based on the
negation of a recursive characterization of the instance problem (see Lemma 9
of [4]): A does not entail P (a) if and only if there is an atom A or ∃r.E occur-
ring as a top-level conjunct of P such that A(a) 6∈ A or each r-successor of a is
no instance of E w.r.t. A, respectively. It follows that removing P (a) from the
consequences of A can be done by simply choosing a top-level conjunct of P and
then, if the top-level conjunct is a concept name A, removing A(a) from A or,
if the top-level conjunct is an existential restriction ∃r.E, recursively modifying
the role successors of a such that none of them is an instance of E anymore.

To minimize the amount of information lost by such a repairing process, this
technique does not only remove assertions from A, but also splits objects by
introducing copies of them, which are created based on sets of atoms occurring
in P . In particular, for each object u from the input ABox, exponentially many
copies yu,K are introduced, where each K is a subset of Atoms(P ). These copies
are then used as objects in the ABox repair, and the assertions in the repair are
computed in a way such that each yu,K is not an instance of every atom in K.

In order to adapt the aforementioned repair technique to an approach to
constructing countermodels, we view the canonical model IC,T as the ABox A,
the right-hand side D of the concept inclusion C v D as the concept P , and the
distinguished element dC as the individual name a. In particular, each domain
element of the countermodel will be a copy of a domain element of IC,T indexed
by a set K ⊆ Atoms(D), and the interpretation function is defined in a way such
that each copy is not in the extension of each atom in K. We use the formalism of
transductions for precisely describing the transformation of the canonical model.

As preparation, we first define a transduction in its most basic setting.

Definition 3. [8] A transduction τ is a binary relation on interpretations. The
image of an interpretation I under τ is the set τ(I) := { J | (I,J ) ∈ τ }. If τ
is functional, then we instead identify τ(I) with the unique J where (I,J ) ∈ τ .

Informally, the image τ(I) consists of all interpretations obtained by transform-
ing I according to τ . There are several classes of transductions; most prominently
the monadic second-order (MSO) transductions, which are copying transductions
that can be described by a set of MSO formulae. A transduction τ is called copy-
ing if there is an index set I such that, for each interpretation I and for each
J ∈ τ(I), the domain ∆J consists of copies of elements from the domain ∆I

that are indexed with I, i.e., ∆J ⊆ { di | d ∈ ∆I and i ∈ I }.
We now introduce a functional transduction τrepair,D that resembles the trans-

formation of an ABox into compliant anonymizations as in Definition 11 of [4],
which is briefly described above.
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Definition 4. For each interpretation I, we define τrepair,D(I) as follows:

∆τrepair,D(I) := {dK | d ∈ ∆I , K ⊆ Atoms(D), d ∈ F I for each F ∈ K,
and K does not contain v∅-comparable atoms}

Aτrepair,D(I) := {dK | d ∈ AI and A 6∈ K}
rτrepair,D(I) := {(dK, eL) | (d, e) ∈ rI and for each ∃r.Q ∈ K with e ∈ QI ,

there is F ∈ L such that Q v∅ F}

In particular, τrepair,D is a copying transduction with index set P(Atoms(D)).

Example 5. Consider the TBox T = {A v A1, B v B1 u B2} and the concept
inclusion C v D := Au ∃r.B v A1 u ∃r.(B1 uB2), which is entailed by T but is
no tautology. The canonical model IC,T of C w.r.t. T is illustrated in Figure 1.

dC

A,A1

dB

B,B1, B2

r

Fig. 1. The canonical model

Applying the transduction τrepair,D to the canonical model IC,T yields a coun-
termodel to C v D that is depicted in Figure 2. The gray nodes represent the
elements that are an instance of C but not an instance of D.

dC,∅

A,A1

dC,{A1}

A

dC,{∃r.(B1uB2)}

A,A1

dC,{A1,∃r.(B1uB2)}

A

dB,∅

B,B1, B2

dB,{B1}

B,B2

dB,{B2}

B,B1

dB,{B1,B2}

B

r

Fig. 2. The countermodel obtained by applying τrepair,D to the canonical model

Proposition 6. For each EL TBox T and each non-tautological concept inclu-
sion C v D entailed by T , the interpretation τrepair,D(IC,T ) is a countermodel
to C v D.
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Proof. It is a finger exercise to adapt Lemmas 13 and 18 in [4] in order to obtain
the following important property of τrepair,D(I): for each copy dK ∈ ∆τrepair,D(I)

and for each atom F ∈ Atoms(D), we have dK ∈ F τrepair,D(I) if and only if d ∈ F I
and K does not contain an atom subsuming F . Since C v D is no tautology,
there is a top-level conjunct E of D such that C 6v∅ E. It follows that applying
τrepair,D to the canonical model IC,T yields an interpretation in which dC,{E}

1

is still an instance of C but not an instance of D anymore, i.e., τrepair,D indeed
transforms the canonical model into a countermodel to C v D. ut

3.2 Obtaining Countermodels Using MSO Transductions

As seen above, transductions can be defined using a mathematical meta-
language — it is only necessary to describe all interpretations in the image, in-
cluding their domains and their interpretation functions. A more formal ap-
proach to describing transductions is by using well-formed logical formulae. In
the following, we introduce monadic second-order (MSO) transductions as for-
malism to describe model transformations, which is generally defined in [8], and
tailored to description logic interpretations in [12]. Before introducing the formal
definitions, we will explain the idea of a transduction.

An MSO transduction maps an input interpretation to output interpreta-
tions according to a tuple of MSO formulae called definition scheme. A definition
scheme consists of formulae that define the domain, and the concept and role
extensions. The domain formula δ of a definition scheme contains one free vari-
able — and every element of the input interpretation that satisfies this formula
is then an element of the output interpretation. The concept and role extensions
of the output interpretation are defined accordingly by concept formulae θ and
role formulae η— there is one concept formula for each concept symbol and
role formula for each role symbol of the signature. For copying transductions,
a definition scheme contains families of these formulae for the elements of the
respective (finite) index set.

By MSO(Σ,W), we denote the set of MSO formulae built over a signature Σ
and a finite setW of first-order and set variables, which are free in the respective
formula. For a detailed introduction to first-order logic (FOL) and MSO, we refer
the reader to [11].

Definition 7. [12] Let Σ be a signature, let W be a finite set of first-order
or monadic second-order variables called parameters2, and let I be a finite set
called index set. A monadic second-order definition scheme is a tuple

D = (χ, (δi)i∈I, (θA,i)(A,i)∈ΣC×I, (ηr,i,j)(r,i,j)∈ΣR×I×I)

consisting of

– a precondition formula χ ∈MSO(Σ,W),

1 We write dC,K instead of (dC)K.
2 In general, MSO transductions allow for monadic second-order variables (often called

set variables). However, we will only make use of first-order variables as parameters.
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– domain formulae δi ∈MSO(Σ,W ∪ {x}) for each i ∈ I,
– concept formulae θA,i ∈MSO(Σ,W ∪ {x}) for each (A, i) ∈ ΣC × I, and
– role formulae ηr,i,j ∈MSO(Σ,W ∪ {x, y}) for each (r, i, j) ∈ ΣR × I× I.

Definition 8. [12] Consider a definition scheme D with index set I and pa-
rameter set W. Further let I be an interpretation and let λ be a W-assignment
in I. If (I, λ) |= χ, then D defines the interpretation D̂(I, λ) as follows:

∆D̂(I,λ) := {di | d ∈ ∆I , i ∈ I, and (I, λ) |= δi(d)}

AD̂(I,λ) := {di | (I, λ) |= θA,i(d)}

rD̂(I,λ) := {(di, ej) | (I, λ) |= ηr,i,j(d, e)}

(I, λ) |= δi(d) means (I, λ′) |= δi(x) where λ′ extends λ by λ′(x) := d (and
accordingly for θ and η).3 The transduction τD induced by D is defined as

τD := {(I, D̂(I, λ)) | λ is a W-assignment in I with (I, λ) |= χ}.

As already mentioned, we consider MSO transductions as means of model
transformation to ensure that our model transformations are well defined, and to
only use logical notions. Another important benefit is that MSO transductions
are always computable since MSO model checking is decidable — in fact, it is
PSpace-complete [24]. However, as a side remark, we will point out a weakness
of MSO transductions as formalism for model transformations.

In order to define an MSO transduction that is equivalent to τrepair,D, we
need to devise a definition scheme Drepair,D such that its induced transduction
τDrepair,D equals τrepair,D. We have already seen above that the index set I =
P(Atoms(D)) is used. Further recall that τrepair,D needs to check the condition
“for each ∃r.Q ∈ K with e ∈ QI , there is F ∈ L such that Q v∅ F” during
the creation of the interpretation function. In particular, it must be determined
whether a concept inclusion is a tautology, i.e., is satisfied in all interpretations.
One might be tempted to translate this condition into a conjunct of the formulae
ηr,K,L as follows, where we denote by C# the FOL-translation of a concept C.

ηr,K,L(x, y) := r(x, y) ∧
∧

∃r.Q∈K

(
Q#(y)→

∨
F∈L
∀z : Q#(z)→ F#(z)

)
However, during the computation of the image of an interpretation I it will only
be checked whether this conjunct is satisfied in I (and not in all interpretations).

There are two ways to resolve this issue. Firstly, instead of defining the for-
mula ηr,K,L directly, we could provide a construction specification in which we
externalize the problematic condition, e.g., as follows.

ηr,K,L(x, y) :=


r(x, y) if, for each ∃r.Q ∈ K with y ∈ QI ,

there is an atom F ∈ L s.t. Q v∅ F

⊥ otherwise

3 We will later write δ(W, x) instead of δ(z1, . . . , zn, x) for W = {z1, . . . , zn}.
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Secondly, we could generalize the formalism of MSO transductions in that the
formulae of the definition scheme are not evaluated in the input interpretation
I but instead it is checked whether they are tautologies. If some subformulae
must be evaluated in I, we could simply precede them with “ I# → ” where I#
is the FOL-translation of I, i.e., I# :=

∧
d∈AI A(d)∧

∧
(d,e)∈rI r(d, e). With that

modification, we are then able to specify the role formulae as

ηr,K,L(x, y) := (I# → r(x, y)) ∧
∧

∃r.Q∈K

(
(I# → Q#(y))

→
∨
F∈L

(∀z : Q#(z)→ F#(z))
)
.

Going with the second solution, however, leads to the effect that MSO trans-
ductions are not necessarily computable anymore because MSO is generally not
decidable. If we were to restrict the conditions to decidable logics, then com-
putability of transductions is ensured, but becomes less expressive.

Having the interpretation τrepair,D(IC,T ) computed, there are possibly multi-
ple nodes that satisfy concept C and not concept D. Each of these nodes together
with their reachable elements are countermodels to the unwanted consequence
of the TBox. We define a transduction that cuts out reachable parts for every
node that is in C and not in D. The result is a set of countermodels.

We are making use of an auxiliary predicate for reachability of two elements
in an interpretation I, denoted by reach(x, y). An edge between two elements,
expressed by succ(x, y), is defined as

∨
r∈ΣR

r(x, y) for a given signature Σ.

reach(x, y) := ∀X : x ∈ X ∧ (∀x, y : x ∈ X ∧ succ(x, y)→ y ∈ X)→ y ∈ X

The formula reach(x, y) is true for two elements in a given interpretation
I if and only if they belong to the reflexive and transitive closure of the succ
relation in the interpretation I [8].

The transduction τreach defined below is used to extract a set of countermodels
from interpretations τrepair,D(I). For this purpose, we use first-order parameter
variables and no index set (non-copying). Recall that, for every variable assign-
ment λ such that (I, λ) |= χ, a transduction yields another output interpretation.
Thus, we obtain a set of countermodels for each χ-satisfying assignment λ.

Definition 9. Let Σ be a signature and let v be a first-order parameter in W.
The definition scheme Dreach inducing the transduction τreach consists of the for-
mulae:

χ(W) := C#(v) ∧ ¬D#(v)

δ(W, x) := reach(v, x)

θA(W, x) := A(x) for each A ∈ ΣC

ηr(W, x, y) := r(x, y) for each r ∈ ΣR.

Theorem 10. Let T be an EL TBox, let C v D be an unwanted consequence
of T , and assume that C v D is no tautology. Then, τreach(τrepair,D(IC,T )) is a
set of countermodels to C v D.
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Example 11. Coming back to Example 5, the application of first τrepair,D and
then τreach to the canonical model IC,T yields a set consisting of three coun-
termodels to A u ∃r.B v A1 u ∃r.(B1 u B2) with roots dC,{A1}, dC,{∃r.(B1uB2)},
and dC,{A1,∃r.(B1uB2)}, respectively. For instance, in addition to the root ele-
ment dC,{A1}, the first countermodel consists of the r-successors dB,∅, dB,{B1},
dB,{B2}, and dB,{B1,B2}, each of which is coloured with green in Figure 2.

While the canonical model IC,T of a concept C w.r.t. a TBox T is com-
putable in polynomial time [7], the computation of the image of IC,T under
the transduction τrepair,D needs exponential time [4]. The computationally hard-
est task to check in transduction τreach is the reachability predicate — and this
problem is NL-complete [15], which leads to the following proposition.

Proposition 12. The set of countermodels τreach(τrepair,D(IC,T )) is computable
in exponential time.

4 Constructing Repairs by Axiomatizing the Logical
Intersection

The goal of this section is to explain how a countermodel can be used for com-
puting a repair. Specifically, we only consider the case of repairing an EL TBox T
for an unwanted EL concept inclusion C v D. It is irrelevant for our purposes
for what reason the concept inclusion is unwanted — for instance, it might be
an erroneous consequence, or it might be sensitive information that needs to be
hidden. We start with the formal definition of a repair, which is Definition 1
in [3] customized to our setting.

Definition 13. Consider a TBox T that entails a concept inclusion C v D.
A repair of T for C v D is a TBox that is entailed by T and that does not
entail C v D.

In contrast to classical repairs, we not only consider subsets of T as repair
candidates, but arbitrary TBoxes entailed by T . This leaves much more room
for fine-grained repairs.

Now assume that J is a countermodel to the unwanted consequence C v D,
e.g., one that is constructed from the canonical model IC,T according to Theo-
rem 10 or, alternatively, one that has been built by an expert in the domain that
underlies T . In order to construct a repair, the idea is to axiomatize the logical
intersection of the TBox T and the countermodel J . This logical intersection
T J consists of all concept inclusions that are both entailed by T and satis-
fied by J . It immediately follows that T entails T J and further that T J
does not entail C v D. The only reason that prevents us from directly using
T J as a repair is, in general, its infinite size. To overcome this obstacle, we
need to axiomatize it with only finitely many concept inclusions. We solve the
axiomatization task by means of the results in Section 6 in [17], which we will
only briefly describe in the following due to a lack of space.
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First of all, we introduce a common abstraction of the two notions of TBoxes
and interpretations, namely both induce so-called closure operators. Such a clo-
sure operator (clop) φ maps each concept description E to a concept description
Eφ such that Eφ v∅ E (extensive), E v∅ F implies Eφ v∅ Fφ (monotone), and
(Eφ)φ ≡∅ Eφ (idempotent). We say that a concept inclusion E v F is valid for φ
if the closure Eφ is subsumed by F , i.e., Eφ v∅ F .

As described in Section 4.3 in [17], the TBox T induces the clop φT that
maps each concept description E to its most specific consequence w.r.t.T , which
means that the closure EφT satisfies E vT EφT and EφT v∅ F for each concept
F where E vT F . Put simply, the closure EφT can be computed by saturating
the concept E with the concept inclusions in T or by unravelling the canonical
model IE,T into a concept. The important property of this clop is that a concept
inclusion is entailed by T if and only if it is valid for φT .

Example 14. Consider the concept C = A u ∃r.B and the TBox T = {A v A1,
B v B1 u B2} from Example 5. The most specific consequence of C w.r.t. T is
the concept CφT = A u A1 u ∃r.(B u B1 u B2). It is subsumed by the concept
D = A1 u ∃r.(B1 uB2) in Example 5, i.e., the concept inclusion C v D is valid
for the induced closure operator φT .

Furthermore, as shown in [9] (or in Section 4.1 in [17]), the interpretation J
induces the clop φJ . Given a concept description E, it is first mapped to the
extension EJ , and then the closure EφJ is obtained as the model-based most
specific concept of EJ w.r.t. J . Formally, the model-based most specific concept
of a subset X ⊆ ∆J is a concept F such that X ⊆ FJ and F v∅ G for each
concept G where X ⊆ GJ . It can be obtained by first constructing the |X|-fold
product of J and then unravelling the product into a concept. Now a concept
inclusion is satisfied by J if and only if it is valid for φJ .

Example 15. Consider the interpretation J the domain of which consists of the
four elements in Figure 2 with a double outline. We are going to compute the
closure of the concept C from Example 5. Firstly, we determine the extension CJ ,
which consists only of dC,{∃r.(B1uB2)}. Secondly, we construct the model-based

most specific concept of CJ , which yields the closure CφJ = A u A1 u ∃r.(B u
B2)u∃r.(B uB1)u∃r.B. This concept is not subsumed by the concept D from
Example 5, i.e., the CI C v D is not valid for the induced closure operator φJ .

The set of all closure operators is a lattice [13], i.e., each two closure operators
have an infimum and a supremum. Specifically, the infimum φT φJ maps each
concept E to the least common subsumer of the closures EφT and EφJ . Recall
that the least common subsumer of two concepts E and F is a concept G such
that E v∅ G, F v∅ G, and G v∅ H for each concept H where E v∅ H and
F v∅ H. According to [5], least common subsumers in EL can be computed by
means of graph products.

As shown in [17], a concept inclusion is valid for φT φJ if and only if it is
valid both for φT and for φJ , i.e., this infimum describes the logical intersection
T J . Summing up, the benefit of switching to these abstract representations is
that the logical intersection can be characterized by means of a closure operator.
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Example 16. Reconsider the closures CφT and CφJ from Example 14 and Ex-
ample 15, respectively. The least common subsumer of these two concepts is
the closure of C w.r.t. the infimum φT φJ and evaluates to CφT φJ =
A u A1 u ∃r.(B u B2) u ∃r.(B u B1) u ∃r.B. It follows that the concept in-
clusion C v D from Example 5 is not valid for the infimum φT φJ , i.e., the
logical intersection T J does not entail C v D.

Finally, we utilize the technique in Section 6.6 in [17] in order to construct
the canonical base of concept inclusions for the infimum φT φJ , which is a
TBox B such that a concept inclusion is valid for φT φJ if and only if it
is entailed by B. That way, we obtain a finite axiomatization of the logical
intersection, which almost qualifies as a repair of the given TBox T for the
unwanted consequence C v D. Applying the axiomatization method to the
unrestricted clop φT φJ produces a TBox formulated in an extension of EL
with greatest fixed points. The concepts in such an extension need not be tree-
shaped anymore but can contain cycles. Since the given TBox T is assumed to be
expressed in plain EL, we also want the repair to be a usual EL TBox. This can
be achieved by simply restricting φT φJ to a maximal role depth n, yielding
the restricted clop (φT φJ )�n — the closure of a concept C w.r.t. (φT φJ )�n
is the unraveling of the (possibly cyclic) closure CφT φJ into a tree-shaped EL
concept with depth not exceeding n. Specifically, this means that we axiomatize
the logical intersection T J only up to role depth n. Suitable choices for n
are, e.g., the maximal role depth of a concept occurring in T or its doubled
value — the concrete choice of n depends on the use case.

Another reason why a role-depth bound needs to be employed is to guarantee
finiteness of the canonical base. As shown in Section 6.3 in [17], not every logical
intersection is finitely axiomatizable. For instance, the logical intersection of the
TBoxes {A v B1} and {A v B2} cannot be described by a finite EL TBox, as it
entails the concept inclusion ∃rn.(AuB1)u∃rn.(AuB2) v ∃rn.(AuB1 uB2)
for each number n. There might also be a TBox and an interpretation for which
their logical intersection is not finitely axiomatizable by an EL TBox, but this
is only a claim for now.

In summary, we obtain the following result.

Theorem 17. For each countermodel J to C v D and for each role-depth
bound n ∈ N, the canonical base Can((φT φJ )�n) is a repair of T for C v D.

The actual computation of the above canonical base utilizes methods from
Formal Concept Analysis (FCA). We will not go into detail here and rather refer
interested readers to Section 6 in [17].

Example 18. Reconsider the TBox T as well as the concept inclusion C v D
from Example 5 and one of the countermodels from Example 11, namely the
one with root dC,{∃r.(B1uB2)}, which consists of the domain elements depicted
in Figure 2 by the four nodes with a double outline. Denote this countermodel
by J . Of the canonical base of φT φJ restricted to role depth 1, we computed
the part consisting of all CIs where each conjunction has at most three conjuncts:
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– A v A1,
– B u E v B1 u B2 where E is a concept name different from B,B1, B2, or
E is an existential restriction ∃s.> for a role name s,

– ∃r.B v ∃r.(B uB1) u ∃r.(B uB2),
– ∃s.B v ∃s.(B uB1 uB2) where s is a role name different from r,
– ∃r.(B u B1) u ∃r.(B u B2) u E v ∃r.(B u B1 u B2) where E is a concept

name different from A,A1, B, or E is an existential restriction ∃r.F for a
concept name F different from A,B,B1, B2, or E is the existential restriction
∃r.(B1 uB2), or E is an existential restriction ∃s.> for a role name s 6= r

We observe that one of the r-successors of the root dC,{∃r.(B1uB2)} would
suffice to constitute a countermodel to C v D. Specifically, for the countermodel
consisting only of the root and the single r-successor dB,{B1}, the CI B v B2 is
contained in T J and thus entailed by the repair.

The above example shows that a repair in form of a canonical base (CB-
repair) might get considerably larger than the input TBox. Alternatively, a
countermodel J could be used to only weaken the axioms in the TBox T in
order to get a repair: for each CI E v F in T , replace its right side F with
the least common subsumer of F and EφJ . The resulting TBox is entailed by
T and has J as a model, which implies that it does not entail the unwanted
consequence C v D. It follows that each such repair qualifies as a gentle re-
pair in the sense of [3]. As benefits, such repairs are cheaper to compute than
CB-repairs and they never contain more CIs than the input TBox. However, the
corresponding CB-repair usually retains more other consequences.

5 Concluding Remarks

This article discusses an approach to repairing EL TBoxes such that they do not
entail unwanted consequences in the form of CIs. In particular, this approach is
realized by first transforming the canonical model of the left-hand side of the CI
w.r.t. the given TBox into a countermodel to the CI. We adapt a technique for
computing ABox repairs and we use transductions as formalism for the model
transformation. Instead of only constructing one countermodel, our approach is
also equipped with a technique that yields a set of countermodels to the CI. A
TBox repair is finally obtained as the axiomatization of the logical intersection
of the original TBox and a constructed countermodel.

As seen in Example 18, we could further refine the second transduction τreach
such that not all reachable elements are included, but only enough to obtain a
countermodel. To complete our complexity results, a further study on the com-
plexity of computing a TBox repair from a given countermodel will be necessary
as a next step. In [3], the notion of optimal repairs is defined by requiring that
only a minimal amount of other consequences is lost, and it was further shown
there that optimal repairs need not exist in general — specifically, if the ontology
consists of both an ABox and a TBox. Characterizing the existence of optimal
TBox repairs and then extending our approach such that it yields such repairs,
if they exist, are also interesting future work.
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Pérez, A., Euzenat, J. (eds.) The Semantic Web: Research and Applications, Sec-
ond European Semantic Web Conference, ESWC 2005, Heraklion, Crete, Greece,
May 29 - June 1, 2005, Proceedings. Lecture Notes in Computer Science, vol. 3532,
pp. 226–240. Springer (2005)

22. Schlobach, S.: Diagnosing terminologies. In: Veloso, M.M., Kambhampati, S. (eds.)
Proceedings, The Twentieth National Conference on Artificial Intelligence and the
Seventeenth Innovative Applications of Artificial Intelligence Conference, July 9-
13, 2005, Pittsburgh, Pennsylvania, USA. pp. 670–675. AAAI Press / The MIT
Press (2005)

23. Troquard, N., Confalonieri, R., Galliani, P., Peñaloza, R., Porello, D., Kutz, O.:
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