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Abstract. Most approaches for repairing description logic (DL) ontolo-
gies aim at changing the axioms as little as possible while solving in-
consistencies, incoherences and other types of undesired behaviours. As
in Belief Change, these issues are often specified using logical formulae.
Instead, in the new setting for updating DL ontologies that we propose
here, the input for the change is given by a model which we want to
add or remove. The main goal is to minimise the loss of information,
without concerning with the syntactic structure. This new setting is mo-
tivated by scenarios where an ontology is built automatically and needs
to be refined or updated. In such situations, the syntactical form is of-
ten irrelevant and the incoming information is not necessarily given as a
formula. We define general operations and conditions on which they are
applicable, and instantiate our approach to the case of ALC-formulae.

1 Introduction

Formal specifications often have to be updated either due to modelling errors or
because they have become obsolete. When these specifications are description
logic (DL) ontologies, it is possible to use one of the many approaches to fix
missing or unwanted behaviours. Usually these methods involve the removal or
replacement of formulae responsible by the undesired aspect [2, 16, 20, 29, 30].

The problem of changing logical representations of knowledge upon the ar-
rival of new information is the subject matter of Belief Change [13]. The theory
developed in this field provides constructions suitable for various formalisms and
applications [13, 23, 25, 28]. In most approaches for Belief Change and for repair-
ing ontologies, it is assumed that a set of formulae represents the entailments to
be added or removed. However, in some situations, it might be easier to obtain
this information as a model instead. This idea relates with Model Checking [3]
whose main problem is to determine whether a model satisfies a set of con-
straints; and with the paradigm of Learning from Interpretations [4], where a
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formula needs to be created or changed so as to have certain interpretations as
part of its models and remove others from its set of models. Example 1 illustrates
the intuition behind using models as input.

Example 1. Suppose that a system, which serves a university, uses an internal
logical representation of the domain with a open world behaviour and unique
names. Let B be its current represention:

B = {Professors : {Mary}, Courses : {DL,AI},
{teaches : {(Mary,AI), (Mary,DL)}} .

Assume that a user finds mistakes in the course schedule and this is caused
by the wrong information that Mary teaches the DL course. The user may
lack knowledge to define the issue formally. An alternative would be to pro-
vide the user with an interface where one can specify, for instance, that the
following model should be accepted M = {Professors = {Mary}, Courses =
{DL,AI}, teaches = {(Mary,AI)}}, (in this model Mary does not teach the DL
course). Given this input, the system should repair itself (semi-)automatically.

We propose a new setting for Belief Change, in particular, contraction and
expansion functions which take models as input. We analyse the case of ALC-
formula using quasimodels as a mean to define belief change operations. This
logic satisfies properties which facilitate the design of these operations and it
is close to ALC, which is a well-studied DL. Additionally, we identify the pos-
tulates which determine these functions and prove that they characterise the
mathematical constructions via representation theorems. The remaining of this
work is organised as follows: in Section 2 we introduce the concepts from Belief
Change which our approach builds upon and detail the paradigm we propose
here. Section 3 presents ALC-formula, the belief operations that take models as
input and their respective representation theorems. In Section 4, we highlight
studies which share similarities with our proposal and we conclude in Section 5.
Missing proofs can be found in the long version of this paper [24].

2 Belief Change

2.1 The Classical Setting

Belief Change [1, 13] studies the problem of how an agent should modify its
knowledge in light of new information. In the original paradigm of Belief Change,
the AGM theory, an agent’s body of knowledge is represented as a set of formulae
closed under logical consequence, called a belief set, and the new information is
represented as a single formula. Belief sets, however, are not the only way for
representing an agent’s body of knowledge, and another way of representing an
agent’s knowledge is via belief bases: arbitrary sets of formulae, not necessarily
closed under logical consequence [11]. In the AGM paradigm, an agent may
modify its current belief base B in response to a new piece of information ϕ
through three kinds of operations:



Expansion: ex(B, ϕ), simply add ϕ to B;
Contraction: con(B, ϕ), reduce B so that it does not imply ϕ;
Revision: rev(B, ϕ), incorporate ϕ and keep consistency of the resulting belief

base, as long as ϕ is consistent.

When modifying its body of knowledge an agent should rationally modify its
beliefs conserving most of its original beliefs. This principle of minimal change
is captured in Belief Change via sets of rationality postulates. Each of the three
operations (expansion, contraction and revision) presents its own set of ratio-
nality postulates which characterize precisely different classes of belief change
constructions. The AGM paradigm was initially proposed for classical logics that
satisfy specific requirements, dubbed AGM assumptions, among them Tarskian-
icity, compactness and deduction. See [6, 25] for a complete list of the AGM
assumptions and a discussion on the topic. Recently, efforts have been applied
to extend Belief Change to logics that do not satisfy such assumptions. For
instance, logics that are not closed under classical negation of formulae (such
as is the case for most DLs) [25, 27], and temporal logics and logics without
compactness [21–23].

In what follows, we define kernel contraction [13], one of the most studied
constructions in Belief Change and which is closely related to the most common
ways to repair ontologies. Kernel operations rely on calculating the minimal
implying sets (MinImps), also known as justifications [15] or kernels [13]. A
MinImp is a minimal subset that does entail a formula ϕ. The set of all MinImps
of a belief base B w.r.t. a formula ϕ is denoted by MinImps(B, ϕ). A kernel
contraction removes from each MinImp at least one formula using an incision
function.

Definition 2. Given a set of formulae B of language L, a function f is an in-
cision function for B iff for all ϕ ∈ L: (i) f(MinImps(B, ϕ)) ⊆

⋃
MinImps(B, ϕ)

and (ii) f(MinImps(B, ϕ)) ∩X 6= ∅, for all X ∈ MinImps(B, ϕ).

Kernel contraction operators are built upon incision functions. An incision
function is responsible to pick at least one formula from each MinImp. Intuitively,
one can see an incision function as a Hitting Set on all the MinImps, as in [2, 16]

Definition 3. Let L be a language and f an incision function. The kernel con-
traction on B ⊆ L determined by f is the operation conf : 2L ×L 7→ 2L defined
as: conf (B, ϕ) = B \ f(MinImps(B, ϕ)).

A logical consequence operation on a language L is a map Cn : 2L 7→ 2L

that relates each set of formulae A to all formulae that are entailed from A.
Kernel contraction operations are characterised precisely by a set of rationality
postulates, as shown in the following representation theorem:

Theorem 4 ([14]). Let Cn be a consequence operator satisfying monotonicity
and compactness defined for a language L. Then con : 2L × L 7→ 2L is an
operation of kernel contraction on B ⊆ L iff for all sentences ϕ ∈ L:



(success) if ϕ 6∈ Cn(∅), then ϕ 6∈ Cn(con(B, ϕ)),
(inclusion) con(B, ϕ) ⊆ B,
(core-retainment) if ψ ∈ B \ con(B, ϕ), then there is some B′ ⊆ B such that

ϕ 6∈ Cn(B′) and ϕ ∈ Cn(B′ ∪ ψ),
(uniformity) if for all subsets B′ of B, ϕ ∈ Cn(B′) iff ψ ∈ Cn(B′), then

con(B, ϕ) = con(B, ψ).

2.2 Changing Finite Bases by Models

The Belief Change setting discussed in this section represents an epistemic state
by means of a finite base. While this essentially differ from the traditional ap-
proach [1, 11], it aligns with the KM paradigm established by Katsuno and
Mendelzon [17]. In Section 4 we discuss other studies in Belief Change which
also take finite representability into account.

In this work, unlike the standard representation methods in Belief Change, we
consider that an incoming piece of information is represented as a finite model.
Belief Change operations defined in this format will be called model change
operations. Recall that a model M is simply a structure used to give semantics
to an underlying logic language. The set of all possible models is given by M.
Moreover, we assume a semantic system that, for each set of formulae B of the
language L gives a set of models Mod(B) := {M ∈ M | ∀ϕ ∈ B : M |= ϕ}. Let
Pfin(L) denote the set of all finite bases in L. We also say that a set of models
M is finitely representable in L if there is a finite base B ∈ Pfin(L) such that
Mod(B) = M. Additionally, if for all ϕ ∈ L it holds that M |= ϕ iff M ′ |= ϕ
then we write M ≡L M ′. We also define [M ]L := {M ′ ∈M |M ′ ≡L M}.

When compared to traditional methods in Belief Change and Ontology Re-
pair [2, 13, 16], where the incoming information comes as a single formula, our
approach receives instead a single model as input. Although, the initial body of
knowledge is represented as a finite base, the operations we define do not aim
to preserve its syntactic structure.

The first model change operation we introduce is model contraction, which
eliminates one of the models of the current base (which in Section 3 is instanti-
ated as an ontology). Model contraction is akin to a belief expansion, where a
formula is added to the belief set or base, reducing the set of accepted models.
The counterpart operation, model expansion, changes the base to include a new
model. This relates to belief contraction, in which a formula is removed, and
thus more models are seen as plausible.

We rewrite the rationality postulates that characterize kernel contraction [14],
considering an incoming piece of information represented as a model instead of
a single formula.

Definition 5 (Model Contraction). Let L be a language. A function con :
Pfin(L)×M 7→ Pfin(L) is a finitely representable model contraction function iff
for every B ∈ Pfin(L) and M ∈M it satisfies the following postulates:

(success) M 6∈ Mod(con(B,M)) = ∅,



(inclusion) Mod(con(B,M)) ⊆ Mod(B),
(retainment) if M ′ ∈ Mod(B) \Mod(con(B,M)) then M ′ ≡L M ,
(extensionality) con(B,M) = con(B,M ′), if M ≡L M ′.

We might also need to add a model to the set of models of the current base.
This addition relates to classical contractions in Belief Change, which reduces
the belief base.

Definition 6 (Model Expansion). Let L be a language. A function ex :
Pfin(L)×M 7→ Pfin(L) is a finitely representable model expansion iff for every
B ∈ Pfin(L) and M ∈M it satisfies the postulates:

(success) M ∈ Mod(ex(B,M)),
(persistence) Mod(B) ⊆ Mod(ex(B,M)),
(vacuity) Mod(ex(B,M)) = Mod(B), if M ∈ Mod(B),
(extensionality) ex(B,M) = ex(B,M ′), if M ≡L M ′.

Definition 7. Let L be a language and Cn a Tarskian consequence operator
defined over L. Also let M be a fixed set of models. We say that a triple Λ =
(L,Cn,M) is an ideal logical system if the following holds.

– For every B ⊆ L and ϕ ∈ L, B |= ϕ (i.e. ϕ ∈ Cn(B)) iff Mod(B) ⊆ Mod(ϕ).
– For each M ⊆M there is a finite set of formulae B such that Mod(B) = M.

If Λ = (L,Cn,M) is an ideal logical system, we can define a function FRΛ :
2M 7→ Pfin(L) and such that Mod(FR(M)) = M. Then, we can define model
contraction as con(B,M) = FR(Mod(B) \ [M ]L) and expansion as ex(B,M) =
FR(Mod(B) ∪ [M ]L). The first condition in Definition 7 implies that there is a
connection between the models satisfied and the logical consequences of the base
obtained and the second ensures that the result always exists. An example that
fits these requirements is to consider classical propositional logic with a finite
signature Σ, together with its usual consequence operator and models. In this
situation, we can define FRprop as follows:

FRprop(M) =
∨
M∈M

 ∧
a∈Σ|M |=a

a ∧
∧

a∈Σ|M |=¬a

¬a

 .

Next, we show that the construction proposed with FR has the properties
stated in Definitions 5 and 6.

Theorem 8. Let (L,Cn,M) be an ideal logical system as in Definition 7. Then
iCon(B,M) := FR

(
Mod(B) \ [M ]L

)
satisfies the postulates in Definition 5.

Proof. Definition 7 ensures that the result exists and that M |= ϕ, for all
ϕ ∈ Λ, giving us success. By construction we do gain models, thus we have
inclusion. If M ≡L M ′, then [M ]L = [M ′]L, thus extensionality is satisfied.
Also, if M ′ ∈ Mod(ϕ) \Mod(iCon(ϕ,M)) then M ′ ∈ [M ]L, hence the operation
satisfies retainment.



Theorem 9. Let (L,Cn,M) be an ideal logical system as in Definition 7. Then
iExp(B,M) := FR

(
Mod(B) ∪ [M ]L

)
satisfies the postulates in Definition 6.

Proof. Definition 7 ensures that the result exists and that M |= ϕ, for all ϕ ∈ Λ,
giving us success. Due to the first condition in Definition 7 we gain vacuity:
if M ∈ Mod(B), then there will be no changes in the accepted models. By
construction we do not lose models, thus we have persistance. Extensionality
also holds because whenever M ≡L M ′ we have then [M ]L = [M ′]L.

A revision operation incorporates new formulae, and removes potential con-
flicts in behalf of consistency. In our setting, incorporating information coincides
with model contraction which could lead to an inconsistent belief state. In this
case, model revision could be interpreted as a conditional model contraction: in
some cases the removal might be rejected to preserve consistency. We leave the
study on revision as a future work.

3 The case of ALC-formula

The logic ALC-formula corresponds to the DL ALC enriched with boolean op-
erators over ALC axioms. As discussed in Section 2.2, in finite representable
logics, such as the classical propositional logics, we can easily add and remove
models while keeping the representation finite. For ALC-formula, however, it is
not possible to uniquely add or remove a new model M since, for instance, the
language does not distinguish quantities (e.g., a model M and another model
that has two duplicates of M).

Even if quantities are disregarded and our input is a class of models in-
distinguishable by ALC-formulae, there are sets of formulae in this language
that are not finitely representable. As for instance in the following infinite set:
{C v ∃rn.> | n ∈ N>0}, where ∃rn+1.> is a shorthand for ∃r.(∃rn.>) and
∃r1.> := ∃r.C. As a workaround for the ALC-formula case, we propose a new
strategy based on the translation of ALC-formulae into DNF.

3.1 ALC-formulae and Quasimodels

Let NC, NR and NI be countably infinite and pairwise disjoint sets of concept
names, role names, and individual names, respectively. ALC concepts are built
according to the rule: C ::= A | ¬C | (C uC) | ∃r.C, where A ∈ NC and r ∈ NR.
ALC-formulae are defined as expressions φ of the form

φ ::= α | ¬(φ) | (φ ∧ φ) α ::= C(a) | r(a, b) | (C = >),

where C is an ALC concept, a, b ∈ NI, and r ∈ NR
3. Denote by ind(ϕ) the set of

all individual names occurring in an ALC-formula ϕ.

3 We may omit parentheses if there is no risk of confusion. The usual concept inclusions
C v D can be expressed with > v ¬CtD and ¬CtD v >, which is (¬CtD = >).



The semantics ofALC-formulae and the definitions related to quasimodels are
standard [8, page 70]. In what follows, we reproduce the essential definitions and
results for this work. Let ϕ be an ALC-formula. Let f(ϕ) and c(ϕ) be the set of
all subformulae and subconcepts of ϕ closed under single negation, respectively.

Definition 10. A concept type for ϕ is a subset c ⊆ c(ϕ) such that:

1. D ∈ c iff ¬D 6∈ c, for all D ∈ c(ϕ);
2. D u E ∈ c iff {D,E} ⊆ c, for all D u E ∈ c(ϕ).

Definition 11. A formula type for ϕ is a subset f ⊆ f(ϕ) such that:

1. φ ∈ f iff ¬φ 6∈ f , for all φ ∈ f(ϕ);
2. φ ∧ ψ ∈ f iff {φ, ψ} ⊆ f , for all φ ∧ ψ ∈ f(ϕ).

We may omit ‘for ϕ’ if this is clear from the context. A model candidate
for ϕ is a triple (T, o, f) such that T is a set of concept types, o is a function
from ind(ϕ) to T , f a formula type, and (T, o, f) satisfies the conditions: ϕ ∈ f ;
C(a) ∈ f implies C ∈ o(a); r(a, b) ∈ f implies {¬C | ¬∃r.C ∈ o(a)} ⊆ o(b).

Definition 12 (Quasimodel). A model candidate (T, o, f) for ϕ is a quasi-
model for ϕ if the following holds

– for every concept type c ∈ T and every ∃r.D ∈ c, there is c′ ∈ T such that
{D} ∪ {¬E | ¬∃r.E ∈ c} ⊆ c′;

– for every concept type c ∈ T and every concept C, if ¬C ∈ c then this implies
(C = >) 6∈ f ;

– for every concept C, if ¬(C = >) ∈ f then there is c ∈ T such that C 6∈ c;
– T is not empty.

Theorem 13 motivates the decision of using quasimodels to implement our
operations for finite bases described in ALC-formulae.

Theorem 13 (Theorem 2.27 [8]). An ALC-formula ϕ is satisfiable iff there
is a quasimodel for ϕ.

3.2 ALC-formulae in Disjunctive Normal Form

Next, we propose a translation method which converts an ALC-formula into a
disjunction of conjunctions of (possibly negated) atomic formulae. Let S(ϕ) be
the set of all quasimodels for ϕ. We We define ϕ† as∨

(T,o,f)∈S(ϕ)

(
∧
α∈f

α ∧
∧
¬α∈f

¬α).

where α is of the form (C = >), C(a), r(a, b).
Theorem 14 confirms the equivalence between a formula and its translation

into DNF. As downside, the translation can be potentially exponentially larger
than the original formula.



Theorem 14. For every ALC-formula ϕ, we have that ϕ ≡ ϕ†.

In the next subsections, we present finite base model change operations for
ALC-formulae, i.e., functions from L ×M 7→ L. We can represent the body of
knowledge as a single formula because every finite belief base of ALC-formulae
can be represented by the conjunction of its elements. We use our translation
to add models in a “minimal” way by adding disjuncts, while removing a model
amounts to removing disjuncts. We also need to obtain a model candidate relative
to our translated formula, as show in Definition 15.

Definition 15 ([8]). Let I be an interpretation and ϕ an ALC-formula for-
mula. The quasimodel of I w.r.t. ϕ, symbols qm(ϕ, I) = (T, o, f), is

– T := {c(x) | x ∈ ∆I}, where c(x) = {C ∈ c(ϕ) | x ∈ CI},
– o(a) := c(aI), for all a ∈ ind(ϕ),
– f := {ψ ∈ f(ϕ) | I |= ψ}.

3.3 Model Contraction for ALC-formulae

We define model contraction for ALC-formulae using the notion of quasimodels
discussed previously and a correspondence between models and quasimodels.

We use the following operator, denoted µ, to define model contraction in
Definition 16. Let ϕ be an ALC-formula and let M be a model. Then,

µ(ϕ,M) = ftypes(ϕ) \ {f}, where qm(ϕ,M) = (T, o, f)

and ftypes(ϕ) is the set of all formula types in all quasimodels for ϕ, that is:

ftypes(ϕ) = {f | (T, o, f) ∈ S(ϕ)}.

Let lit(f) := {` ∈ f | ` is a literal } be the set of all literals in a formula type f .

Definition 16. A finite base model contraction function is a function con :
L ×M 7→ L such that

con(ϕ,M)=


∨

f∈µ(ϕ,M)

∧
lit(f), if M |= ϕ and µ(ϕ,M) 6= ∅

⊥ if M |= ϕ and µ(ϕ,M) = ∅
ϕ otherwise.

As we see later in this section, there are models M,M ′ such that M 6≡LM ′
but our operations based on quasimodels cannot distinguish them. Given ALC-
formulae ϕ,ψ, we say that ψ is in the language of the literals of ϕ, written
ψ ∈ Llit(ϕ), if ψ is a boolean combination of the atoms in ϕ. Our operations
partition the models according to this restricted language. We write M ≡ϕ M ′
instead of M ≡Llit(ϕ) M ′, and [M ]ϕ instead of [M ]Llit(ϕ) for conciseness.

Theorem 17. Let M be a model and ϕ an ALC-formula. A finite base model
function con∗(ϕ,M) is equivalent to con(ϕ,M) iff con∗ satisfies:



(success) M 6|= con∗(ϕ,M),

(inclusion) Mod(con∗(ϕ,M)) ⊆ Mod(ϕ),

(atomic retainment): For all M′ ⊆M, if Mod(con∗(B,M)) ⊂M′ ⊆ Mod(B)\
[M ]ϕ then M′ is not finitely representable in ALC-formula.

(atomic extensionality) if M ′ ≡ϕ M then

Mod(con∗(ϕ,M)) = Mod(con∗(ϕ,M ′)).

The postulate of success guarantees that M will be indeed relinquished, while
inclusion imposes that no model will be gained during a contraction operation.
Recall that in order to guarantee finite representability, it might be necessary to
remove M jointly with other models. The postulate atomic retainmentcaptures
a notion of minimal change, dictating which models are allowed to be removed
together with M .

On the other hand, atomic extensionality imposes that if two models M and
M ′ satisfy the same formulae within the literals of the current knowledge base
ϕ, then they should present the same result.

A simpler way of implementing model contraction, also using the notion of
a quasimodel,

Definition 18. Let ϕ be an ALC-formula and M a model. Also, let (T, o, f) =
qm(ϕ,M). The function cons(ϕ,M) is defined follows:

cons(ϕ,M) =

{
ϕ ∧ ¬(

∧
lit(f)) if M |= ϕ

ϕ otherwise.

Example 19 illustrates how cons works.

Example 19. Consider the following ALC-formula and interpretation M :

ϕ :=P (Mary) ∧ C(DL) ∧ C(AI) ∧ ((teaches(Mary,DL) ∧
¬teaches(Mary,AI)) ∨ (¬teaches(Mary,DL) ∧ teaches(Mary,AI)))

and M = (∆I , ·I), where ∆I = {m, d, a}, CI = {d, a}, P I = {m}, teachesI =
{(m, d)}, MaryI = m, AII = a, and DLI = d. Assume we want to remove M
from Mod(ϕ). Let qm(ϕ,M) = (T, o, f). Thus,

lit(f) = {¬teaches(m, a), teaches(m, d), C(d), C(a), P (m)}

cons(ϕ,M) = ϕ ∧ ¬
∧
lit(f)

= ϕ ∧ ¬ (¬teaches(m, a) ∧ teaches(m, d) ∧ C(d) ∧ C(a) ∧ P (m)) .

Both model contraction operations con and cons are equivalent.

Theorem 20. For every ALC-formula ϕ and model M , con(ϕ,M)≡ cons(ϕ,M).



3.4 Model Expansion in ALC-formulae

In this section, we investigate model expansion for ALC-formulae. Recall that
we assume that a knowledge base is represented as a single ALC-formula ϕ.
Expansion consists in adding an input model M to the current knowledge base
ϕ with the requirement that the new epistemic state can be represented also as
a finite formula.

Definition 21. Given a quasimodel (T, o, f), we write
∧

(T, o, f) as a short-cut
for

∧
lit(f). A finite base model expansion is a function ex : L ×M→ L s.t.:

ex(ϕ,M) =

{
ϕ if M |= ϕ

ϕ ∨
∧
qm(¬ϕ,M) otherwise.

Example 22 illustrates how ex works.

Example 22. Consider the interpretation M from Example 19 and

ϕ := P (Mary) ∧ C(DL) ∧ C(AI) ∧ teaches(Mary,AI) ∧ ¬teaches(Mary,DL).

Assume we want to add M to Mod(ϕ) and qm(¬ϕ,M) = (T, o, f). Thus,

lit(f) = {¬teaches(m, a), teaches(m, d), C(d), C(a), P (m)}

ex(ϕ,M) = ϕ ∨
∧
lit(f)

= ϕ ∨ (¬teaches(m, a) ∧ teaches(m, d) ∧ C(d) ∧ C(a) ∧ P (m)) .

The operation ‘ex’ maps a current knowledge base represented as a single
formula ϕ and maps it to a new knowledge base that is satisfied by the input
model M . The intuition is that ‘ex’ modifies the current knowledge base only if
M does not satisfy ϕ. This modification is carried out by making a disjunct of ϕ
with a formula ψ that is satisfied by M . This guarantees that M is present in the
new epistemic state and that models of ϕ are not discarded. The trick is to find
such an appropriate formula ψ which is obtained by taking the conjunction of
all the literals within the quasimodel qm(¬ϕ,M). Here, the quasimodel needs to
be centred on ¬ϕ because M 6|= ϕ, and therefore it is not possible to construct a
quasimodel based on M centred on ϕ. As discussed in the prelude of this section,
this strategy not only adds M to the new knowledge base but also the whole
equivalence class modulo the literals of ϕ.

Lemma 23. For every ALC-formula ϕ and model M :

Mod(ex(ϕ,M)) = Mod(ϕ) ∪ [M ]ϕ.

Actually, any operation that adds precisely the equivalence class ofM modulo
the literals is equivalent to ‘ex’. In the following, we write ex∗(ϕ,M) to refer to
an arbitrary finite base expansion function of the form ex∗ : L ×M 7→ L.

Theorem 24. For every ex∗, if Mod(ex∗(ϕ,M)) = Mod(ϕ) ∪ [M ]ϕ then



(i) ex∗(ϕ,M) ≡ ϕ, if M |= ϕ; and
(ii) ex∗(ϕ,M) ≡ ϕ ∨

∧
qm(¬ϕ,M), if M 6|= ϕ.

Our next step is to investigate the rationality of ‘ex∗’. As expected adding
the whole equivalence class of M with respect to Llit(ϕ) does not come freely,
and some rationality postulates are captured, while others are lost:

Theorem 25. Let M be a model and ϕ an ALC-formula. A finite base model
function ex∗(ϕ,M) is equivalent to ex(ϕ,M) iff ex∗ satisfies:

(success) M ∈ Mod(ex∗(ϕ,M)).
(persistence): Mod(ϕ) ⊆ Mod(ex∗(ϕ,M)).
(atomic temperance): For all M′ ⊆M, if Mod(ϕ)∪[M ]ϕ ⊆M′ ⊂ Mod(ex∗(ϕ,M))∪
{M} then M′ is not finitely representable in ALC-formula.

(atomic extensionality) if M ′ ≡ϕ M then

Mod(ex∗(ϕ,M)) = Mod(ex∗(ϕ,M ′)).

The postulates success and persistence come from requiring that M will be
absorbed, and that models will not be lost during an expansion. The atomic
extensionality postulate states that if two models satisfy exactly the same lit-
erals within ϕ, then they should present the same results. Atomic temperance
captures a principle of minimality and guarantees that when adding M , the
loss of information should be minimised. Precisely, the only formulae allowed to
be given up are those that are incompatible with M modulo the literals of ϕ.
Lemma 23 and Theorem 25 prove that the ‘ex’ operation is characterized by the
postulates: success, persistence, atomic temperance and atomic extensionality.

4 Related Work

In the foundational paradigm of Belief Change, the AGM theory, bases have been
used in the literature with two main purposes: as a finite representation of the
knowledge of an agent [5, 19], and as a way of distinguishing agents knowledge
explicitly [11]. Even though the AGM theory cannot be directly applied to DLs
because most of these logics do not satisfy the prerequisites known as the AGM-
assumptions [7], it has been studied and adapted to DLs [6, 26].

The syntactic connectivity in a knowledge base has a strong consequence of
how an agent should modify its knowledge [13]. This sensitivity to syntax is
also present in Ontology Repair and Evolution. Classical approaches preserve
the syntactic form of the ontology as much as possible [16, 29]. However, these
approaches may lead to drastic loss of information, as noticed by Hansson [10].
This problem has been studied in Belief Change for pseudo-contraction [28]. In
the same direction, Troquard et al. [30] proposed the repair of DL ontologies by
weakening axioms using refinement operators. Building on this study, Baader
et al. [2] devised the theory of gentle repairs, which also aims at keeping most
of the information within the ontology upon repair. In fact, gentle repairs are
closely related to pseudo-contractions [18].



Other remarkable works in Belief Change in which the body of knowledge is
represented in a finite way include the formalisation of revision due to Katsuno
and Mendelzon [17] and the base-generated operations by Hansson [12]. In the
former, Katsuno and Mendelzon [17] formalise traditional belief revision oper-
ations using a single formula to represent the whole belief set. This is possible
because they only consider finitary propositional languages. Hansson provides a
characterisation of belief change operations over finite bases but restricted for
logics which satisfy all the AGM-assumptions (such as propositional classical
logic). Guerra and Wassermann [9] develop operations for rational change where
an agent’s knowledge or behaviour is given by a Kripke model. They also provide
two characterisations with AGM-style postulates.

5 Conclusion and Future Work

In this work, we have introduced a new kind of belief change operation: belief
change via models. In our approach, an agent is confronted with a new piece of
information in the format of a finite model, and it is compelled to modify its cur-
rent epistemic state, represented as a single finite formula, either incorporating
the new model, called model expansion; or removing it, called model contraction.
The price for such finite representation is that the single input model cannot be
removed or added alone, and some other models must be added or removed as
well. As future work, we will investigate model change operations in other DLs,
still taking into account finite representability. We will also explore the effects
of relaxing some constraints on Belief Base operations, allowing us to rewrite
axioms with different levels of preservation in the spirit of Pseudo-Contractions,
Gentle Repairs, and Axiom Weakening.
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[18] Vińıcius Bitencourt Matos, Ricardo Guimarães, Yuri David Santos, and
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