
VRule - A Rule Based Pixel Rewriting System
for End-User Modeling

Rick L. Vinyard, Jr.

Dept. of Computer Science, New Mexico State University, Las Cruces NM, USA
rick.vinyard@gmail.com

Abstract. Numerous approaches to pixel rewriting systems (PRSs) have
been investigated since Furnas’ Bitpict. VRule is a new rule-based pixel
rewriting framework designed to support investigation of new formalisms
for end-user modeling with PRSs, and is implemented as a Pattern Di-
rected Inference System (PDIS) with specialized classes of antecedent
and consequent Pattern Directed Modules (PDM) components. This
overview briefly examines VRule’s key elements resulting from explo-
ration of the architectural aspects of rule-based engines to include match-
ing, rule resolution, and execution in a spatial environment, as well as
numerous new PDM formalisms. Examples representing classes of model-
ing domains have been developed to include Turing machines, 1D/2D/3D
cellular automata, a game of Fox and Hounds, Langton’s Ant (turmites),
a climatological gas model originally written in C#, and a virological in-
fection model originally written in Python.

Keywords: pixel · rewriting · modeling · end-user · inference engine.

1 Diagrammatic Reasoning and Pixel Rewriting Systems

The expressiveness of diagrammatic reasoning systems have been the subject
of many approaches created to explore not only whether reasoning can be per-
formed with images and diagrams, but also what spatial relationships can be
leveraged for programming environments. Although ancient mathematicians in
China, India, and Greece [19] used diagrams to support and explain geomet-
ric theorems, later debate has focused on the role of diagrams in reasoning with
some taking the position that diagrams have no role in formal reasoning [30] and
others arguing that diagrams can be used in formal reasoning and that diagrams
have both advantages and weaknesses distinct from formal sentential methods
[3, 27, 9, 18, 29].

Early attempts to leverage diagrams in computer based reasoning systems
include Gelernter’s Geometry Machine [13, 12] which demonstrated the first use
of diagrams in computer reasoning and utilized backward chaining logic and di-
agrams to prune the tree, and also used diagrams as to accept heuristic facts as

Copyright © 2021 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).



true from the diagrammatic representation which used a coordinate representa-
tion system.

Pygmalian [28] was another early system created in 1975 to explore writing
computer programs with diagrams and images. Pygmalion was an early pro-
gramming by demonstration system that employed icons instead of variables,
data structures, and functions. A Pygmalion program was developed by spec-
ifying an initial image, and through a series of edits the operations would be
recorded for later execution. Other systems such a Tinker [24] and NetLogo [32]
rely heavily on text based languages, and augment the programming environ-
ment with spatial aspects such as mouse events or image annotations, and differ
from those systems that explicitly use diagrammatic properties as part of the
knowledge representation system.

Lindsay proposed an alternative approach to the frame problem utilizing
images as inference-making representations [25] and proposed the idea of using
images to draw inferences without explicitly listing rules of deduction following
Haugeland’s observation that “the beauty of images is that (spatial) side effects
take care of themselves[16].” Lindsay further claimed that “visual images possess
properties... not possessed by deductive propositional representation,” and that
a representation system could “make inferences without the explicit rules of
deduction but simply by virtue of the properties of the knowledge representation
system alone.”

Extending upon this idea Barwise and Etchemendy used diagrammatic and
sentential representations in the same semantic framework when they demon-
strated Hyperproofs. However, Hyperproofs separated visual and linguistic forms
into distinct rules of inference that operated on each form of representation, and
provided for rules to allow information to move between the representation forms
[2, 4].

As noted by Blackwell[5] graphical rewrite systems are “an influential family
of development environments for end-users.” Furnas’ BitPict [6, 8] was the first
diagrammatic reasoning system to demonstrate a completely graphical image
rewriting system where reasoning occurred from image to image through pixel
rewriting without any sentential representation, and demonstrated the ability
to perform image to image deduction with a key example demonstrating the
solution to a spatial problem of counting disconnected components in a tangled
forest. In this example Furnas demonstrated a set of three graphical rules ca-
pable of reducing the bifurcating trees to a set of distinct pixels representing
the disconnected components, and used an additional set of rules to represent
the number of disconnected components in Roman numerals, and as pointed
out by Furnas “the critical computation point is that the evolving state of the
blackboard is governed by picture-to-picture mapping rules, with no need for
underlying sentential representation.”

Visulan [33, 34] further extended the groundbreaking concept of image-to-
image deduction with the introduction of logical conjunction (extended pairs)
and disjunction (abstract/concrete images) concepts and also demonstrated Tur-
ing completeness.



Later work on BitPict [7, 10] examined the used of intermediate constructions
to facilitate problem solving in PRS environments. Employing an approach which
uses intermediate diagrams Furnas, et. al. demonstrated the ability of PRSs to
not only discover the shortest path between two points around an obstacle, but
also demonstrated a limited case of digit recognition and other forms of shape
manipulation.

SOAR+SVI [22, 23] extended the SOAR [21, 20] architecture and further
built upon the PRS framework of BitPict employing an object model and a
visual buffer, combining algebraic image processing with a pixel rewriting sys-
tem, introducing a number of new formalisms including wildcard antecedents,
sentential rule set data descriptions, and attention windows.

2 VRule Architecture and Work Completed

VRule has been designed to support investigation into pixel rewriting environ-
ments and has been informed by many of the aforementioned graphical systems.
Like many of its predecessors, the goal of VRule is to explore aspects of the inher-
ent properties of diagrammatic representation systems with a particular focus on
those properties that can facilitate end-user programming. VRule has been im-
plemented as a Pattern Directed Inference System (PDIS) where a “program is
better viewed as a loosely organized collection of pattern-directed modules”[17]
and employs a familiar match � resolve � act cycle. Building upon concepts
introduced by BitPict, VRule’s workspaces and rules are sets of PNG (Portable
Network Graphics) images, and is implemented in Java/CUDA with an object
oriented design to allow rapid development of exploratory engine components
and PDMs. Output of the intermediate computation is either raw PNG images
or scaled images with grid lines and other annotations as seen in the latter images
generated directly by VRule.

The similarity between raster based pixel rewriting systems and raster based
cellular automata (CAs) was noted by Furnas and Qu [11], but they also dis-
tinguish the two approaches as “classical CAs are, however, often considered
hard to program to achieve desired (as opposed to explore emergent) results”
and conclude “the patterns in rules of PRSs are often explicitly relevant to the
desired resulting functionality, we find them easier to program than CAs.”

VRule embraces both pixel rewriting systems and CAs and introduces new
formalisms for PRSs that enable the programming of CAs and agent based mod-
els, and improves upon the existing notational forms to demonstrate the potential
of image based computation for some forms of end-user modeling. Also examined
is the natural alignment between the parallelized architecture of General-Purpose
computing on Graphics Processing Units (GPGPU) environments such as CUDA
and OpenCL, and the execution engines of PRSs.

Adoption of the PDIS architecture has significantly influenced the design of
VRule’s extensible framework which can be broadly divided into the categories
of extending the image-to-image deductive reasoning framework of BitPict, Visu-
lan, et. al. with rule-based engine components or PDM components. To facilitate



investigation components such as PDM antecedents or consequents can be ex-
tended to create new formalisms that leverage diagrammatic properties such as
spatial relationships or color attributes, and can be used interchangeably with
other extensions. Examples of VRule’s engine innovations include a new spatial
resolver capable of using a multitude of dimensional strategies when resolving
antecedent matches.

Another VRule resolver variant provides Visulan’s extended pairs with a total
ordering not only between rules, but also between spatial matches and introduces
intra-rule matches with independent spatial priority. As observed by Furnas, et.
al. [7] “[n]ote that rules here use only local, 2D rewrites on rectilinear grids of
pixels. There is a large space of related systems as yet unexplored, including
variants with multiple layers and non-local pixel rewrites.” VRule’s Key/Value
workspace layers embody one form of exploration of this space allowing rules
to match and act against specific layers. Other areas of examination include
boundary matches and hierarchical rules for specification of intra-rule strategies.

While Anderson’s Inter-Diagrammatic Reasoning [1] evolved a macro level
approach to BitPict, VRule’s PDM approach takes a diametrical evaluation of
the rules to the micro level of the pixels involved during the match and act phases
while preserving BitPict’s image to image computation. New PDM formalisms
have been developed with the goal of supporting paradigms common to classes
of modeling domains, and to demonstrate the utility of these new antecedent
and consequent formalisms examples representative of domain classes have been
developed.

In addition to spatial aspects, VRule has also been designed to explore the
use of color, hue, saturation, and transparency in a diagrammatic representa-
tion system, and new forms of PDMs introduced by VRule include transparent
pixel PDMs that can be used to specify punctured lattices such as CA Moore
neighborhoods. Although SOAR+SVI demonstrated wildcard matching in the
antecedent, VRule extends the transparency concept to the consequent. Another
new form of PDM are VRule’s anchors that allow the programmer to specify
transforms between the antecedent match and the consequent application on
the same or even different layers.

Other new VRule PDMs include null consequents, negation antecedents, bor-
der matching, and extended affine transforms. Non-image PDMs have also been
examined to include event based antecedents, halt consequents, and snapshot
consequents. Event based antecedents provide a mechanism for user interaction
with the executing model, while snapshots allow programming specific points in
the model evolution that can be used for further numerical analysis beyond the
scope of VRule.

Moving beyond purely diagrammatic forms, new stochastic elements have
been introduced as well that preserve BitPict’s original goal of image to im-
age computation while providing stochasticism for modeling domains. Trilobite
notation, inspired by the Schrodinger notation of Spider diagrams[15], was de-
veloped to specify concepts such as “no more than n Moore neighbors,” or “at



least n Von Neumann neighbors with range less than r” used to program the
SEIR model, various CAs, and Conway’s Game of Life.

2.1 Implementing the First Turing Machine in VRule

Turing’s first a-machine described in his pioneering work [31] is shown in fig-
ure 1a, and results in computation of the sequence 010101. . . with each digit
separated by a blank. This example was selected as it demonstrates a direct
comparison to the differing approaches of Visulan and VRule, and the benefit of
VRule’s transparent pixel PDMs.

This machine can be implemented in VRule using antecedents and conse-
quents with transparent pixels. The transparent antecedent pixels equate to
Turing’s actions when no symbol is scanned, and the transparent consequent
pixels allow rules to be created that consider only the current tuple being cre-
ated. Rather than use symbols for the states, colors will represent the various
states using a relation of {(b, red), (c, green), (e, blue), (f, magenta)}. Turing’s
alphabet will be related to colors using a relation of {(blank, yellow), (0, white),
(1, black)}. The movement of the head is spatially represented in the consequent
relative to the antecedent, as is the next state. Thus, each rule contains all in-
formation of the corresponding 5-tuple. Figure 1b demonstrates the four rules
needed to program Turing’s first machine using VRule’s transparency rules for
antecedents and consequents.

This approach is significantly different from either that of Visulan or BitPict
in that the rules of those systems needed to encode not only for the current
symbol under the read/write head, but also for the symbol under the read/write
head after it moved. Using VRule’s transparent pixel consequents allows the rules
and operation to be specified directly in accordance with Turing’s original design.
Figure 1c depicts the first twelve cycles of Turing’s first a-machine executing in
VRule.

2.2 Further Examples

Figure 2 contains two examples of VRule programs in different modeling domains
created with VRule’s new formalisms, selected for their computational charac-
teristics in the domain. Depicted in figure 2a are the bubble toppling rules of
the Model of Ebullition and Gas storAge (MEGA) [26] (originally in C#) re-
implemented in VRule, and uses VRule’s new border PDMs to control the cy-
cle counter and introduction of gas bubbles to the executing model, as well as
stochastic PDMs to control random left/right toppling. Figure 2b demonstrates
a Human Immunodeficiency Virus (HIV) SEIR cellular model [14] (originally
in Python) progressing from a healthy state, to an infected state, to a delayed
immune response over seven weeks. Also depicted is a trilobite antecedent speci-
fying a Moore neighborhood that excludes the central cell and specifies a match
of at least one, but no more than two cells. The second image of the SEIR
model demonstrates a random initial population generated by VRule’s stochas-
tic PDMs. Stochastic PDMs are also employed in determining cellular death and



Current
State

Scanned
Symbol

Print
Symbol

Move
Head

Next
State

b None 0 R c

c None R e

e None 1 R f

f None R b

(a) Turing’s first a-machine with color mappings

(b) Four rules implementing Turing’s first machine in VRule

1 4 7 10

2 5 8 11

3 6 9 12

(c) Execution of Turing’s first machine in VRule - First 12 cycles

Fig. 1: Turing’s First a-Machine

dead cell replacement in accordance with the original Python model. This SEIR
example employs many of VRule’s new formalisms such as trilobite notation to
specify a Moore neighborhood for candidate cellular infections, layers to control
weekly cellular aging, and boundary PDMs to control the model cycle.

(a) MEGA bubble toppling
rules and Wolfram CA 82

(b) HIV SEIR model

Fig. 2: Examples of programs executing in VRule

3 Future Work

Initial work has been done upon tessellations of hexagons to support macro-
scopic Navier-Stokes fluid flows. Another current area of investigation includes



antecedent color component thresholds and consequent color-based operators
such as dodge, burn, etc. It is anticipated that these forms may prove useful on
workspaces derived from photographic images to perform tasks such as annealing
hot pixels or edge detection. Implementation of the matching antecedents and
consequent actions as OpenCL kernels has also been investigated with promising
early results warranting further examination to quantify the performance bene-
fits related to executing the match and action phases in a parallelized graphical
environment.

While VRule has been demonstrated to be Turing complete, and is capable of
supporting many modeling domains including cellular automata, climate change,
and epidemiology there remains a multitude of possibilities to extend VRule with
additional formalisms supporting new and emerging modeling approaches.

References

1. Anderson, M., Furnas, G.: Relating two image-based diagrammatic reasoning ar-
chitectures. In: International Conference on Theory and Application of Diagrams.
pp. 128–143. Springer (2010)

2. Barwise, J., Etchemendy, J.: Information, infons, and inference. In: Cooper, R.,
Mukai, K., Perry, J. (eds.) Situation Theory and its Applications. vol. I, pp. 33–
78. University of Chicago Press (1990)

3. Barwise, J., Etchemendy, J.: Visual information and valid reasoning. In: Visual-
ization in teaching and learning mathematics. pp. 9–24. Mathematical Association
of America (1991)

4. Barwise, J., Etchemendy, J.: Hyperproof: Logical reasoning with diagrams. Tech.
rep., AAAI Spring Symposium Technical Report SS-92-02 (1992)

5. Blackwell, A.F.: Psychological issues in end-user programming. In: End user de-
velopment, pp. 9–30. Springer (2006)

6. Furnas, G.: Formal models for imaginal deduction. In: Erlbaum, L. (ed.) Pro-
ceedings of the Twelfth Annual Conference of the Cognitive Science Society. pp.
622–669 (Jul 1990)

7. Furnas, G., Qu, Y., Shrivastava, S., Peters, G.: The use of intermediate graphical
constructions in problem solving with dynamic, pixel-level diagrams. In: Interna-
tional Conference on Theory and Application of Diagrams. pp. 314–329. Springer
(2000)

8. Furnas, G.W.: New graphical reasoning models for understanding graphical inter-
faces. In: CHI ’91: Proceedings of the SIGCHI conference on Human factors in
computing systems. pp. 71–78. ACM Press, New York, NY, USA (1991)

9. Furnas, G.W.: Reasoning with diagrams only. In: AAAI Spring Symposium Series,
Symposium: Reasoning with Diagrammatic Representations. pp. 118–123 (1992)

10. Furnas, G.W., Qu, Y.: Shape manipulation using pixel rewrites. Proc. Visual Com-
puting 2002 pp. 630–639 (2002)

11. Furnas, G.W., Qu, Y.: Using pixel rewrites for shape-rich interaction. In: CHI ’03:
Proceedings of the SIGCHI conference on Human factors in computing systems.
pp. 369–376. ACM Press, New York, NY, USA (2003)

12. Gelernter, H., Hansen, J.R., Loveland, D.W.: Empirical explorations of the geom-
etry theorem machine. In: Papers Presented at the May 3-5, 1960, Western Joint
IRE-AIEE-ACM Computer Conference. pp. 143–149. IRE-AIEE-ACM ’60 (West-
ern), ACM, New York, NY, USA (1960). https://doi.org/10.1145/1460361.1460381



13. Gelernter, H.L.: Realization of a geometry theorem proving machine. In: IFIP
congress. pp. 273–281 (1959)

14. Giabbanelli, P.J., Freeman, C., Devita, J.A., Rosso, N., Brumme, Z.L.: Mechanisms
for cell-to-cell and cell-free spread of hiv-1 in cellular automata models. In: Pro-
ceedings of the 2019 ACM SIGSIM Conference on Principles of Advanced Discrete
Simulation. pp. 103–114. ACM (2019)

15. Gil, J., Howse, J., Kent, S.: Formalizing spider diagrams. In: Proceedings 1999
IEEE Symposium on Visual Languages. pp. 130–137. IEEE (1999)

16. Haugeland, J.: Artificial Intelligence: The Very Idea. Massachusetts Institute of
Technology, USA (1985)

17. Hayes-Roth, F., Waterman, D., Lenat, D.B.: Principles of pattern-directed infer-
ence systems. In: Pattern-directed inference systems, pp. 577–601. Elsevier (1978)

18. Jamnik, M.: Mathematical reasoning with diagrams. University of Chicago Press
(2001)

19. Kulpa, Z.: Diagrammatic representation and reasoning. In: Machine GRAPHICS
& VISION. vol. 3, pp. 411–418. Polish Academy of Sciences (1994)

20. Laird, J.E.: The Soar cognitive architecture. MIT press (2012)
21. Laird, J.E., Newell, A., Rosenbloom, P.S.: Soar: An architecture for general intel-

ligence. Artificial intelligence 33(1), 1–64 (1987)
22. Lathrop, S.D.: Extending cognitive architectures with spatial and visual imagery

mechanisms. Computer science and engineering, The University of Michigan, Ann
Arbor (2008)

23. Lathrop, S.D., Laird, J.E.: Extending cognitive architectures with mental imagery.
In: Proceedings of the 2nd Conference on Artificial General Intelligence (2009).
Atlantis Press (2009)

24. Lieberman, H.: Tinker: A programming by demonstration system for beginning
programmers. Watch what I do: programming by demonstration 1, 49–64 (1993)

25. Lindsay, R.K.: Images and inference. Cognition 29(3), 229–250 (1988)
26. Ramirez, J.A., Baird, A.J., Coulthard, T.J., Waddington, J.M.: Testing a simple

model of gas bubble dynamics in porous media. Water Resources Research 51(2),
1036–1049 (2015)

27. Shin, S.J.: The logical status of diagrams. Cambridge University Press (1994)
28. Smith, D.C.: Pygmalion: An executable electronic blackboard. In: Watch what I

do. pp. 19–48. MIT Press (1993)
29. Stapleton, G., Jamnik, M., Shimojima, A.: What makes an effective representation

of information: A formal account of observational advantages. Journal of Logic,
Language and Information 26(2), 143–177 (2017)

30. Tennant, N.: The withering away of formal semantics? Mind & language 1(4),
302–318 (1986)

31. Turing, A.M.: On computable numbers, with an application to the entschei-
dungsproblem. Proceedings of the London mathematical society 2(1), 230–265
(1937)

32. Wilensky, U.: Netlogo (1999), http://ccl.northwestern.edu/netlogo/, Center for
Connected Learning and Computer-Based Modeling, Northwestern University,
Evanston, IL.

33. Yamamoto, K.: Visulan: A visual programming language for self-changing bitmap.
In: Proceedings of International Conference on Visual Information Systems. pp.
88–96. Springer (1996)

34. Yamamoto, K.: A module system for bitmap-based languages [translated from
japanese]. Transactions of the Information Processing Society of Japan 38(12),
2544–2551 (1997)


