
Representing and executing a Medical Guideline
using Prova

Gerhard Kober1 and Adrian Paschke2

1 Tiani ”Spirit” Gmbh, Vienna, Austria
gerhard[DT]kober[AT]tiani-spirit.com

2 Fraunhofer FOKUS and Freie Universitaet Berlin, Berlin, Germany
adrian[DT]paschke[AT]fokus.fraunhofer.de

Abstract. Patient assessment and finding their critical issues is a cru-
cial aspect of patient care, which is addressed by a medical workflow
called the ABCDE approach. However, the ABCDE guidelines are only
described in a textual way and hence are not automated. Human errors
in practical use might occur, e.g. by persons new into the domain. In this
paper, we propose a technical solution to support medical staff during
the ABCDE assessment tasks by helping to decide if a patient is crit-
ically ill or injured and prioritize particular treatments for better and
faster therapy. The solution is built upon a set of semantic rules and
automated using the rule-engine “Prova”.

Keywords: Medical guideline · Prova · Ruleengine.

1 Introduction

Medical staff in emergency rooms and paramedics in emergency scenes are usu-
ally confronted with patients they do not know. This means they are unaware of
their current medical status, what has happened to them, and where or whom to
ask about details. Emergency cases have a unique characteristic for the persons
who need to treat patients - the focus during processing is on high important
body functions while having in mind, some body functions are less important
for surviving the illness or accident [1]. For example, a person must have a free
airway - otherwise, breathing is impossible, and life is at high risk. In medical
science, a so-called ’ABCDE’ approach (Airway, Breathing, Circulation, Disabil-
ity, Exposure) has been introduced, which takes care of life-threatening causes,
evaluating and treating them step by step [18].

The ABCDE approach is a basis in many training formats (e.g., ERC (Eu-
ropean Resuscitation Council), NAEMT (National Association of Emergency
Medical Technicians), AHA (American Heart Association)) [8]. For a paramedic
in training, the entire ABCDE approach is hard to learn and needs permanent
training to incorporate knowledge for quick evaluation about the patient’s needs.
In daily routine, including all the details when evaluating the scene and the sin-

Copyright © 2021 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).



gle steps in the ABCDE approach, and take correct decisions for treatment or
calling for additional help and finally to lower lethality of patients [6].

The paper describes a technical approach to support the decision and action-
taking concerning the ABCDE approach for paramedics in training or emergency
physicians. The goal is not only to provide support for the five steps (as ABCDE
suggests), but our solution also details every step and supports the decision
whether a patient is critically ill and needs treatment within a hospital (e.g.,
a trauma-center or intensive care unit), or the patient is not critically ill and
therefore care at a physician’s office is sufficient. This technical support also
helps emergency doctors who do not complete the entire ABCDE approach and
tend to forget essential points [11].

Personal health-tracking tools and more and more available personal medical
data [15] might lead to the idea to take a decision about critical illness already
during the emergency call, so that the emergency dispatcher can decide early
to send specialists to the emergency scene and already book intensive-care-beds
in advance. However, several papers that analyse the ABCDE approach advise
paramedics and medical teams to do a best effort in the initial patient assessment
and it seems there is no technical approach yet to support this sort of workflow,
even if there are still issues in performing the five steps.

In the following section, we describe the ABCDE approach from a practi-
tioner’s viewpoint and which technical solutions might be possible to apply to
it. In section 3 we describe our approach to deliver an at most flexible solution
without the need to change software deployments. In the results-section (4) we
evaluate our solution with practical examples and then we discuss it in section
5. Finally, we conclude and mention future work in section 6.

This paper contributes by delivering a technical solution for the currently
non-technical ABCDE approach in order to support medical staff in making
faster decisions.

2 Related work

2.1 The ABCDE approach

The ABCDE approach is used in patient assessment for finding critical illnesses
or injuries and in treatment [20]. This approach was developed by experts in the
emergency field and is applicable in any emergency case to any patient group.
ABCDE is an abbreviation for Airway, Breathing, Circulation, Disability, and
Exposure.

This acronym is used to remind medical staff or paramedics about the order
of the checks. They are ordered by importance, and the purpose is to treat
first what kills first [23]. Every step has an outcome - either a “everything fine,
proceed”-result or a “stop here - apply treatment, take a decision for immediate
transport or call for specialist”. All these tasks contain more factual information:
the particular checks to be done, which treatment to apply, upper and lower
limits for vital signs. The approach allows starting from the very beginning,



once an issue is fixed. For example, if the airway is blocked, a “stop and treat”-
result will occur. Once the paramedic is able to resolve the issue, the paramedic
is forced to restart the entire ABCDE approach and find subsequent issues.

The overall result of the entire ABCDE approach is either critical or not crit-
ical. These two impact patient treatment, priority within a treating facility (e.g.,
hospital, the ambulance car), and the following urgent procedures for medical
staff.

From a more generic viewpoint, the ABCDE approach can be considered
as a medical workflow. The ABCDE approach displayed in figure 1 (without
exceptions) maps to a sequence-workflow-pattern [21]. This is because every

check Airway check Breathing check Circulation check Disability check Exposure

Fig. 1. ABCDE-workflow

step in the ABCDE approach is a single task, but the next one can only proceed
if the previous is successfully completed. The start event involves a medical
person’s involvement, and the end of the task sequence is the final result. This
sequence (workflow) pattern, when taking into account the subsequent tasks, of
the entire ABCDE approach maps technically to an ’exclusive-choice-workflow-
pattern’ [21]. The expansion is needed because if a medical check (e.g., on the
Airway) is not successful, another workflow branch proceeds. Each sub-branch
includes manual interventions, instructions, and decisions that need to be taken.

BPMN (Business Process Model and Notation) [5] is a widely used approach
to describe Clinical Guidelines defining each step and the different path to fol-
low. In [2] a BPMN model was used to transform guidelines into a formal model
called ’labeled event structures (LES)’ for finding conflicts between two guide-
lines applied at the same time. However, the LES mapping is not appropriate to
use it within a rule engine.

From a technical perspective, the decisions taken within the medical workflow
are rules [10]. The ”check-result” of any decision-point is depending on multiple
parameters. So the rules decide on the path to be followed in the sequence. For
example, the ”check Breathing”-decision-point depends on whether the patient
breathes normally and on oxygen saturation greater than 95%. Therefore the
rule decides for true (=yes) only if the two mentioned functions evaluate to true;
otherwise, the rule concludes false (=no).

The entire ABCDE approach is shown in figure 2. Since many publications
provide a textual description of the ABCDE approach, these descriptions are
still unclear, and they differ in detail, depending on the expert (-group) being
involved. However, for our solution, the detail itself is not of importance, since
it is just another parameter.



2.2 Medical Rule Engines

Research in clinical/medical decision support systems and the related workflows
has a long history. One of the main contributors in the field of clinical decision
support is the Arden Syntax [17]. Another standard is the “Guideline Interchange
Format” (GLIF3), which intention is about guideline-sharing. However, there
are many more Clinical Decision Support Systems, but these two are essential
because Arden Syntax is productively used, and GLIF3 takes care about sharing
guidelines.

The structure of Arden Syntax follows so-called Medical Logic Modules
(MLMs), which are collected out of different components. Namely they are
“Maintainance”, “Library”, “Knowledge” and “Resources”. All these compo-
nents together are needed to build an appropriate knowledge base, to provide
enough logic for taking clinical decisions [9]. From a technical perspective, a
technician always needs to implement the MLMs, since the encoding of these
modules is done for programmers and is not fully intuitive for an end-user. Fur-
thermore, the provided examples [19] in the literature show that huge workflows
contain a lot of if- else- clauses, in order to capture the entire workflow. This is
because there is a need to take care about any detail in the conceptualization
of the entire decision-path. However, the Arden syntax with the MLM structure
is an established tool that is powerful in clinical decision support but seems too
complicated for simple workflows like the ABCDE approach and needs an exact
definition of the particular workflow and possible outcomes (e.g., there is no
mechanism for “negation as a failure” as in logic programming rules).

The approach using medical guidelines, with a focus on sharing, is the Guide-
line Interchange Format (GLIF3) [22]. It was based on Arden Syntax and is
meant to be used for exchanging guidelines among different systems. GLIF3
creates flowcharts of medical workflows containing an object-oriented represen-
tation for decision tasks of the guideline [3]. There is a user-frontend available
for creating the workflows and transforming them to an XML syntax. For the
formalization of the guideline expressions itself, Arden Syntax was incorporated
into GLIF, but due to incompatibilities, the GLIF3 (version 3) removed Arden
Syntax and developed their own language called GELLO (Guideline Expres-
sion Language, object-orientated). To allow standardized decision-taking and
equal treatment procedures even in different locations, sharing medical guide-
lines is an essential task. To achieve the goal of reproducible results beyond
hospital boundaries, the same workflows and rules need to be applied. To avoid
re-implementing the same guidelines several times, the approach of creating it
once and sharing seems appropriate. Encoding the guideline to an XML repre-
sentation for exchanging among systems is standard practice and widely used.
This way of exchanging information is also used in RuleML4.

4 http://wiki.ruleml.org/index.php/Mission



perform ABCDE approach

obviousCriticalBleeding
yes no

cinical task stop bleeding

alert Critical

proceedToAirwayCheck

check Airway
yes no

proceedToBreathingCheck

check Breathing
yes no

proceedToCirculationCheck

check Circulation
yes no

proceedToDisabilityCheck

check Disability
yes no

proceedToExposureCheck

checkExposure
yes no

proceedToSecondarySurvey

prepare for Transport to clinics

submit evaluated information about 
Patient to clinics

exposure not ok

set tasks on exposure

alert Critical

apply Glucose

alert "too low GlucoseLevel"

yes

GlucoseLevel < 50
no

alert "too high GlucoseLevel"

yes

GlucoseLevel > 500
no

alert "to low GCS - neurological deficites"

yes

GCS < 12
no

alert "Pupils not isocore"

no

pupilsisocore
yes

alert "StrokeSigns"

yes

strokeSigns
no

disability not ok

set clinical tasks

alert Critical

start CPR

alert Critical

no

hasPulse
yes

alert "Heart Rate too high/low"

no

pulseRate between 50 and 100
yes

alert "Systolic Blood Pressure too high/low"

no

systolicBloodPressure between >160 or <80
yes

circulation not ok

set tasks on circulation

alert Critical

start CPR

alert Critical

no

breathes
yes

apply Oxygen

alert "has cyanosis"

yes

hasCyanosis
no

alert "has no symmetric chest expansion"

no

chestExpansionSymmetric
yes

alert "Respiratory Rhythm not normal"

no

respiratoryRhythmNormal
yes

alert "Respiratory Rate too low/high"

no

respiratoryRate between 8 & 20 per Minute
yes

apply Oxygen

alert "OxygenSaturation too low"

no

oxygenSaturation > 95%
yes

breathing not ok

set clinical tasks to allow breathing

alert Critical

free airway

alert airway not free

alert Critical

Fig. 2. ABCDE approach

3 Representing the Rules

In this section, we represent the ABCDE workflow as logical rules, defining the
overall sequence and the expected outcomes of each rule. Secondly, we describe



a proof of concept implementation using Prova-rule-engine. Thirdly, we outline
a ”hard-coded”-version of the workflow.

The ABCDE workflow is rigorous in the procedure. Therefore, the workflow
does not allow any change in the order since the tasks are depending on each
other. Furthermore, is it a must for the sequence to stop if any task is evaluated
as “not normal”. From a practitioner’s perspective, these stops are crucial to
deliver treatment to the patient at the right point of time, call for additional
help, or prepare rapid transportation.

3.1 Representing the ABCDE approach in formal rules

As a first step in transforming the medical workflow from a textual representation
to a technical support solution, there is the need for a formal definition of the
applied rules. These rules can be represented as a set of horn-clauses [4]. These
clauses only hold if the entire body of the rule holds; otherwise, the rule’s head
results in false. Furthermore, this formal representation can be used for the
implementation task.

Before defining the rules in more detail, it is necessary to mention the fol-
lowing: the over-all-workflow sequence defines the ABCDE workflow by itself.
Secondly, each task of the sequence is also a rule that needs evaluation.

We define the check-results as follows (table 1):

Table 1. CheckResults

checkAirway(x) ≡ A checkBreathing(x) ≡ B

checkCirculation(x) ≡ C checkDisability(x) ≡ D

checkExposure(x) ≡ E

The following rule applies for the particular ABCDE approach.

notCritical← A ∧B ∧ C ∧D ∧ E (1)

Using this information, we conclude every check results to be true if there is no
critical issue in any of the single tasks. Therefore the entire result is not critical.
If any of the checks resolves to false, the entire formula results in false therefore
¬notCritical, which means a critical outcome.

For the more detailed checks, some facts, which are essential for analysis,
need to be defined. This definition is done on the patient’s ”should-be” status;
healthy and everything as expected. The patient’s vital signs, which are checked
during the entire process and that need to be resolved as true are represented
in table 2.

With this information available, the next step is in resolving the truth-values
for A, B, C, D, E. These more detailed probes are the trigger for finding the
critical values during the entire process.

For the checkAirway (≡ A), the validation to airwayIsFree is done by using the
following rule.

A← checkAirwayFree(x) (2)



Table 2. Patient’s should-be values

airwayIsFree(yes) → true breathes(yes) → true

cyanosis(no) → true chestExpansion(normal) → true

respiratoryRythm(normal) → true chestExpansionSymmetric(yes) → true

pulseCentral(yes) → true pulsePeripheral(yes) → true

pupilsIsocore(yes) → true strokeSigns(no) → true

hasBleeding(no) → true hasBrokenBone(no) → true

hasAllergies(no) → true hasPain(no) → true

This means if the airwayIsFree resolves to true, A resolves to true, otherwise, A
returns false, and subsequently returns a false for the notCritical.

Similar for the checkBreathing (≡ B) which concludes to true if, and only if
the patient breathes, has no cyanosis, the chest expands symmetric, a normal
respiratory rhythm, a respiratory rate is between 8 and 15 per minute, and
oxygen saturation of the blood higher than 95%. Formulating this as a rule, give
the following representation:

B ← breathes(x) ∧ ¬cyanosis(x) ∧ symmetricChestExpansion(x)

∧respiratoryRhythm(x) ∧ respiratoryRate(x, y, z)

∧oxygenSaturation(x, y)

(3)

If the check Breathing results to true the circulationCheck (≡ C) is performed.
It consists of checking if the patient has a pulse and if yes, the pulse rate and
the systolic blood pressure are interesting. When formulating this as a rule rep-
resentation, we get the following:

C ← pulseCentral(x)∧pulseRate(x, y, z)∧systolicBloodPressure(x, y, z) (4)

The next in the sequence is the checkDisability(≡ D). It takes care of the blood
glucose level, next to the GCS (Glasgow coma scale), if there is a symmetric
reaction of the eyes and any stroke signs that are of high importance to take
care of. Formulating this needs resolves to:

D ← glucoseLevel(x, y, z) ∧GCS(x) ∧ pupilsisocore(x) ∧ strokeSigns(x) (5)

The last step in the ABCDE approach is the checkExposure (≡ E). This check
results in yes/no-answers, where the ”no” is the needed one, and therefore the
true/false mechanism is flipped. For example, the hasBleeding resolves to true if
there is no bleeding, but it is false if there is bleeding. The same applies to the
other functions.

E ← hasBleeding(x)∧hasBrokenBone(x)∧hasAllergies(x)∧hasPain(x) (6)

During the entire process, the solution needs to take care of outcomes. This
means, no matter if a result is positive (notCritical, or an “Exception” is hap-
pening during the ABCDE sequence, this result needs to be communicated to



the consumer of the workflow. Thus, we included an additional predicate to send
messages by using Prova as a rule engine. These messages contain information
about the outcome(s), which is dispatched to the initial caller of the Prova ser-
vice.

3.2 Proof of concept implementation using Prova

Having a formal representation of the rules is an advantage for a proof of concept
implementation. For our implementation we are using a rule engine. A rule-
engine separates the business logic from program logic [12] in a declarative rule
representation. Considering the ABCDE approach as “business logic”, we can
easily change or extend the approach and the different checks without the need of
changing program code, which takes care of the alerting mechanism itself. Even
if different healthcare organizations need to have their individual procedures
because of different levels of expertise, the same software stack can be applied
by only changing the rule logic. Also, suppose there are new findings in medical
research targeting changes in the logic. In that case, an alignment can quickly
be done without the need to deliver new software to an organization or an
individual.

The procedure in our solution: The rule-engine (in our particular case) Prova5

[16], receives the message values, processes them and returns the outcome of the
rule evaluation.

The Prova-syntax is prolog-style, and allows, on the one hand, to define facts,
and on the other hand, the rules and goals. For our use case, we need to take
care of all of the three elements. In more detail: From a user perspective, there
is a user interface where the user can put all the information about a patient.
If the user then hits the ”submit”-button, the entered values are sent (in the
form of JSON-RESTful-queries) to a Java servlet. The Java servlet receives the
submission and then calls the rule-engine, with the configured logic, and the ”to
be evaluated goal” (in here the notCritical).

Prova evaluates all the configured rules from section 3.1 and delivers the
result back to the servlet. The resulting message from Prova back to the servlet
is send using the sendMsg-function of Prova.

The sendMsg-function is a build-in-function of Prova that stops the workflow
at the right point of procedure, with a correct error message. For example: if the
airway is evaluated as “not free”, the workflow stops and returns that an error in
the procedure occurred and needs re-evaluation or treatment of this particular
issue.

We define the following sendMsg-functions within the rules. In general, in
order to get a result returned, if no error occurred during processing, we send a
completed message so that the user knows that the check is completed.

sendMsg(XID, osgi, ”FHIR”, inform, ”ABCDECheck”− > completed).
(7)

5 https://github.com/prova/prova



For any errors there are also messages to be sent back, to provide the user
with information about the issue, and what to treat. For example:

sendMsg(XID, osgi, ”FHIR”, inform, ”AirwayNotFree”− > AW ). (8)

The Prova rulebase is configured to take care of the correct sequence of
the ABCDE approach and stops if one is not successful. It also takes care of
subsequent tasks for alerting. If everything is completed without any occurrences,
the result is ”completed” - no alerting, and a success message is send.

By implementing the workflow with Prova, i.e. a declarative rule representa-
tion, an advantage of our approach is the ease of extension. Any other workflow
can be used by simply adding a new Prova-file containing the needed decisions.
The generation of Prova files can be done by translating from the RuleML syn-
tax. Due to the RuleML standard, this workflow is applicable to any other rule
engine that supports RuleML or can convert from it, as well6 [13].

3.3 Proof of concept implementation using Java

As an alternative to using a rule engine, the entire workflow can be coded in a
Java program with imperative if-then rules following a predefined control flow.
This is an approach that seems very obvious and has its legitimacy since, for
a developer, it is an easy task to implement a method that covers the rules.
However, this approach gets quickly confusing because of many decision points
within the code.

In our proof of concept implementation for the hard-coded task, we used a
small Java program containing a method, which receives the values from a JSON
object and then runs the sequence. We had to take care of the different types
that might be included in a JSON request and had to transform them to compare
them. Concerning the Prova implementation, we did not face this problem, since
Prova already handles types and comparison mechanisms. Furthermore, this
approach is not flexible for an organization to operate and maintain, and it is
pretty expensive since every change needs to be re-implemented. If deploying
the software in different organizations, every customer is forced to use another
version. This hard-coded solution becomes cumbersome even if a limit change
or an additional parameter needs to be checked.

The code about the implementation can be found on Github7. There is the
Java implementation as well as the Prova implementation and the rules.

4 Evaluation and Results

For the evaluation, we checked for the correct behavior of both implementation
solutions. Since the evaluation focused on the correctness of the rule’s results,
we required the values submitted to be of the correct type or contained allowed

6 https://github.com/RuleML/rule-translation-service
7 https://github.com/gkober/MedicalRule



values. For example, a number-field contained a number, but not a text, and
also the ”yes/no”-questions had to contain yes or no. We sent 50 JSON queries
containing different allowed values to both solutions and received the same re-
sults. A manual check of the target result was done, and the results from the
manual checks matched the results from the implementation.

During implementation, we found a significant advantage of the Prova-rule-
based version was the ease of extension of the ruleset. Adding the appropriate
rules, saving the file, and re-running the development tests was comfortable in
relation to implementing the comparison mechanisms in the Java-code-base.

The pure Java implementation hits some limits: so we need to use the correct
values for the specific types. For instance, ”airwayFree” can not be yes or no
- since Java can not handle it out of the box as boolean values. So we needed
to convert to make sure the values are true or false. For a potential customer,
who does not have a technical background, and only wants to implement the
support tool for his organization, this hard to understand and eventually too
technical. Furthermore, if the implementation takes care of this, we need to
cover all possible ”positive” results and convert them.

Additionally, failure processing gets quite complex, due to the many combi-
nations, if there are multiple ”wrong” results for the alerting mechanism.

Another problematic limit is the exchange of the rules. Suppose several lo-
cations (organizations) run the processing engine, and all need to ensure the
same behavior as the local medical experts need it. In that case, it might get
problematic to exchange the rules to all participants simultaneously. Having a
standard like RuleML, which allows the interoperability of rules, helps to have a
stable code base from a deployment perspective and an easy exchangeable part
in the rules.

5 Discussion

The objective of this paper was to find a technical solution to support medical
staff during patient evaluation and finding the critically ill/injured people using
the ABCDE approach, and deliver the appropriate therapy. This is highly rele-
vant since physicians and paramedics in the field tend to forget essential checks,
and patients are missing proper treatment [14][7].

We created a formal description of the rules applied during the ACBDE
approach, also taking into account, there are exit rules that ensure stopping
the algorithm at the correct point. A proof of concept implementation supports
the general rule approach and compares different attempts of implementation.
One implementation was done using the Prova-rule engine, while another imple-
mentation was done using only Java. Both methods were evaluated in terms of
correctness. From our perspective, the more flexible solution is the declarative
rule-based version since the exchange or extension of rules is more manageable
and not depending on a developer changing the behavior. The idea of using such
a tool in the daily routine of paramedics or physicians needs to be evaluated,
and a study of acceptance and results needs to be done.



This unique workflow is minimal and very strict in yes/no, and has very
well described criteria when a patient is assessed as critical or not-critical. It is
possible to apply the idea of representing and executing medical workflows in
a rule engine for decision support. Using RuleML as rule interchange standard
supports a broad field of use, and is not focused too strict on the medical domain
such as Arden syntax, or GLIF3, which e.g. might help in finding external reasons
for illnesses.

6 Conclusion & Future work

In this work, we used a simple medical workflow called the ABCDE approach,
which is well known amongst paramedics and medical staff, to represent it techni-
cally for supporting the medical personal during patient evaluation. Therefore, a
formal representation of the workflow was done, including ”second-level”-checks,
to evaluate a workflow to critical or not-critical. This formal representation was
then transformed into a proof of concept implementation to check for correct-
ness. By now, the rule engine is relying on parameters that are provided. In the
future, it is foreseen to include data queries (e.g., SPARQL-queries) to the rules
and not to have the data in the incoming stream. This helps reduce the amount
of transferred data if data is not necessary for evaluation.

References

1. The ABCDE Approach,
https://www.resus.org.uk/library/abcde-approach, accessed: 2021-07-19

2. Bowles, J., Caminati, M., Cha, S., Mendoza, J.: A framework for automated conflict
detection and resolution in medical guidelines. Science of Computer Programming
182, 42–63 (2019). https://doi.org/https://doi.org/10.1016/j.scico.2019.07.002

3. Boxwala, A., Peleg, M., Tu, S., Ogunyemi, O., Zeng-Treitler, Q., Wang, D., Pa-
tel, V., Greenes, R., Shortliffe, E.: Glif3: A representation format for sharable
computer-interpretable clinical practice. Journal of Biomedical Informatics - JBI
(01 2004)

4. Chandra, A.K., Harel, D.: Horn clause queries and generalizations. The Journal of
Logic Programming 2(1), 1–15 (1985)

5. Chinosi, M., Trombetta, A.: Bpmn: An introduction to the standard. Computer
Standards & Interfaces 34(1), 124–134 (2012)

6. Culemann, U., et al.: Logistische materialvorhaltung der polytraumaversorgung
im schockraum aus unfallchirurgischer sicht unter berücksichtigung des status
der klinik: Überregionales traumazentrum akh celle (schwerpunktversorger). OP-
JOURNAL 36(01), 41–48 (2020)

7. Fernández-Méndez, F., Otero-Agra, M., Abelairas-Gómez, C., Sáez-Gallego, N.M.,
Rodŕıguez-Núñez, A., Barcala-Furelos, R.: ABCDE approach to victims by life-
guards: How do they manage a critical patient? A cross sectional simulation study.
PLoS ONE 14(4), 1–12 (2019). https://doi.org/10.1371/journal.pone.0212080

8. Häske, D., Gliwitzky, B., Münzberg, M.: Notfallmedizin–standardisierte kursfor-
mate. Lege artis-Das Magazin zur ärztlichen Weiterbildung 5(02), 110–116 (2015)



9. Health Level Seven Arden Syntax: The Arden Syntax for Medical Logic Systems
Version 2.9 (2013)

10. Lienhard, H., Künzi, U.M.: Workflow and business rules: a common approach.
Workflow handbook pp. 129–140 (2005)

11. Olgers, T.J., Dijkstra, R.S., Drost-de Klerck, A.M., ter Maaten, J.C.: The ABCDE
primary assessment in the emergency department in medically ill patients: An
observational pilot study. Netherlands Journal of Medicine 75(3), 106–111 (2017)

12. Paschke, A., Dietrich, J., Kuhla, K.: A logic based sla management framework. In:
Iswc’05: Proceedings of the semantic web and policy workshop. pp. 68–83. Citeseer
(2005)

13. Paschke, A., Könnecke, S.: Ruleml-dmn translator. In: RuleML (Supplement)
(2016)

14. Peran, D., Kodet, J., Pekara, J., Mala, L., Truhlar, A., Cmorej, P.C., Lauridsen,
K.G., Sari, F., Sykora, R.: ABCDE cognitive aid tool in patient assessment – de-
velopment and validation in a multicenter pilot simulation study. BMC Emergency
Medicine 20(1), 1–8 (2020). https://doi.org/10.1186/s12873-020-00390-3

15. Piwek, L., Ellis, D.A., Andrews, S., Joinson, A.: The rise of con-
sumer health wearables: Promises and barriers. PLOS Medicine
13(2), 1–9 (02 2016). https://doi.org/10.1371/journal.pmed.1001953,
https://doi.org/10.1371/journal.pmed.1001953

16. Prova rule language,
https://github.com/prova/prova, accessed: 2021-07-19

17. Samwald, M., Fehre, K., de Bruin, J., Adlassnig, K.P.: The Arden Syntax stan-
dard for clinical decision support: Experiences and directions. Journal of Biomed-
ical Informatics 45(4), 711–718 (2012). https://doi.org/10.1016/j.jbi.2012.02.001,
http://dx.doi.org/10.1016/j.jbi.2012.02.001

18. Schoeber, N., Linders, M., Binkhorst, M., Draaisma, J., Fuijkschot, J., Morsink,
M., Nusmeier, A., Van Riessen, C., Scheffer, G.J., Turner, N., et al.: Healthcare
professionals’ knowledge of the systematic abcde approach. Resuscitation 155, S29
(2020)

19. Seitinger, A., Rappelsberger, A., Leitich, H., Binder, M., Adlassnig, K.P.: Exe-
cutable medical guidelines with arden syntax—applications in dermatology and
obstetrics. Artificial Intelligence in Medicine 92, 71–81 (2018)

20. Thim, T., Krarup, N.H.V., Grove, E.L., Rohde, C.V., Lofgren, B.: Initial assess-
ment and treatment with the Airway, Breathing, Circulation, Disability, Exposure
(ABCDE) approach. International Journal of General Medicine 5, 117–121 (2012).
https://doi.org/10.2147/IJGM.S28478

21. Van der Aalst, W.M., Ter Hofstede, A.H., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distributed and Parallel Databases 14(1), 5–51 (2003).
https://doi.org/10.1023/A:1022883727209

22. Wang, D., Peleg, M., Tu, S.W., Boxwala, A.A., Ogunyemi, O., Zeng, Q., Greenes,
R.A., Patel, V.L., Shortliffe, E.H.: Design and implementation of the GLIF3 guide-
line execution engine. Journal of Biomedical Informatics 37(5), 305–318 (2004).
https://doi.org/10.1016/j.jbi.2004.06.002

23. World Health Organization: The ABCDE and SAMPLE His-
tory Approach. World Health Organization p. 70 (2018),
https://www.who.int/emergencycare/publications/
BEC ABCDE Approach 2018a.pdf


