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Abstract

This paper describes the first Sentence
End and Punctuation Prediction in Nat-
ural Language Generation (SEPP-NLG)
shared task1 held at the SwissText confer-
ence 2021. The goal of the shared task was
to develop solutions for the identification
of sentence boundaries and the insertion of
punctuation marks into texts produced by
NLG systems. The data and submissions2,
and the codebase3 for the shared tasks are
publicly available.

1 Introduction

Sentence End Detection, also known as Sentence
boundary disambiguation (SBD) or boundary de-
tection, is the Natural Language Processing (NLP)
task of recognizing where a sentence begins and
ends. A period is the most common end of sen-
tence indicator in written English as well as many
other Indo-European languages. However, a period
may be used in a decimal point, an abbreviation,
an email address, or other possible cases as well
which makes sentence boundary detection a chal-
lenge. Other forms of punctuation such as question
and exclamation marks, semicolons, comma, etc.
add to this challenge. Although sentence bound-
ary detection is considered an almost solved issue
for formal written language (Walker et al., 2001),
it poses a challenge in terms of meaning distor-
tion and readability in synthetic or automatically
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1https://sites.google.com/view/
sentence-segmentation/

2https://drive.switch.ch/index.php/s/
g3fMhMZU2uo32mf

3https://github.com/dtuggener/
SEPP-NLG-2021

translated or transcribed texts such as the output of
Automatic Speech Recognition (ASR) or Machine
Translation (MT) systems. The punctuation marks
in such synthetic text may be displaced for sev-
eral reasons. Detecting the end of a sentence and
placing an appropriate punctuation mark improves
the quality of such texts not only by preserving
the original meaning but also by enhancing their
readability.

The goal of the SEPP-NLG shared task is to
build models for identifying the end of a sentence
by detecting an appropriate position for putting an
appropriate punctuation mark.

2 Related Work

Similar to the system proposed by Grefenstette and
Tapanainen (1997), the earliest attempts for sen-
tence boundary detection utilize a set of rules or
regular expressions. In a different direction, Rey-
nar and Ratnaparkhi (1997), and Kiss and Strunk
(2006) proposed an information-centric approach
based on the Maximum Entropy model, and an
unsupervised method based on collocation statis-
tics respectively. Decision tree classifier (Riley,
1989), Naı̈ve Bayes (López and Pardo, 2015) and
deep learning based (Kaur and Singh, 2019) mod-
els are the most recent advances based on machine
learning that are proposed for predicting correct po-
sitions for the period in particular and other punc-
tuation marks in general. Moving forward and
combining the rule-based and machine learning-
based systems, Deepamala and Ramakanth (2012)
proposed a hybrid system with high performance.

Our task is closely related to Tilk and Alumäe
(2016) and follow-up work that uses the Europarl
and TED talk corpora for punctuation prediction.
Similar to our goal, Żelasko et al. (2018); Don-
abauer et al. (2021) investigate sentence bound-
ary detection in unpunctuated ASR outputs of spo-

https://sites.google.com/view/sentence-segmentation/
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https://github.com/dtuggener/SEPP-NLG-2021


ken dialogues based on textual features. Cho et al.
(2017) propose a method to predict sentence bound-
aries and punctuation insertion in a real-time spo-
ken language translation tool. In a similar set-
ting, Klejch et al. (2017) include acoustic features
to improve punctuation prediction in a speech trans-
lation system, and Yi and Tao (2019) combine lexi-
cal and speech features for punctuation prediction
in a traditional ASR setting. Finally, Rehbein et al.
(2020) investigate the annotation and detection of
sentence like units in spoken language transcripts.

3 Task Overview

Ultimately, the goal of SEPP-NLG is to predict sen-
tence ends and punctuation in NLG texts. However,
there are no corpora that feature NLG texts and
their manually transcribed and corrected versions.
Therefore, we approximate the setting by using a)
transcripts of spoken texts, and b) lower-casing the
texts and removing all punctuation marks. While
there are multiple corpora of transcribed spoken
language, we choose the Europarl corpus4 (Koehn,
2005) as the source for our data. The Europarl
corpus consists of transcripts of the sessions of
the European parliament and features transcripts in
multiple languages.

We offer the following subtasks:

• Subtask 1: (fully unpunctuated sentences-
full stop detection): Given the textual content
of an utterance where all punctuation marks
are removed, correctly detect the end of sen-
tences by placing a full stop in appropriate
positions.

• Subtask 2: (fully unpunctuated sentences-
full punctuation marks): Given the textual
content of an utterance where all punctuation
marks are removed, correctly predict all punc-
tuation marks.

Participants were free to choose for which lan-
guages and subtasks they contributed a submission,
but were encouraged to participate in all languages.

3.1 Data

We leverage the open parallel corpus (OPUS) ver-
sion of the Europarl corpus5 (Tiedemann, 2012)
for extracting the task data as it provides sentence
boundaries and tokenization. Albeit the sentence

4http://www.statmt.org/europarl/
5https://opus.nlpl.eu/Europarl.php

boundaries in the corpus are automatically gener-
ated, they are quite reliable as the data and the
models trained to detect the boundaries contain all
the original punctuation symbols of the transcripts.

In the spirit of the “Swissness” of the SwissText
conference where SEPP-NLG 2021 is co-located,
we select 3 of the 4 official languages6 of Switzer-
land, i.e. German, French, and Italian and comple-
ment the selection by incorporating English.7

The Europarl corpus contains multiple punctua-
tion symbols. For subtask 2, we gauged which sub-
set of them represents a realistic and feasible goal
for their automatic prediction in a stream of unpunc-
tuated, lower-cased tokens. Also, we considered
which punctuation marks improve the readability
of a text the most. Hence, we consolidated the
selection of punctuation symbols for subtask 2 to
: −, ?.0 (0 indicating no punctuation) and mapped
the symbols !; to ., the period. We removed all
sentences from the data that contain other punctu-
ation symbols such as parentheses, as there is no
straightforward way to remove punctuation without
interfering with the naturalness of a sentence. This
removal affected the data for both subtasks and re-
sulted in removing less than 10% of the data per
language. We also removed HTML artifacts, and
special (non-visible) characters (zero width space,
soft hyphen) from the data. Finally, we omitted
sentences with fewer than 3 tokens and documents
with fewer than 2 sentences.

The data format is as follows: Lower-cased to-
kens per file are listed vertically, and the labels for
subtask 1 (binary classification) and 2 (multiclass
classification) are appended horizontally, separated
by tab. The labels encode whether a token emits a
sentence end (subtask 1) and a punctuation symbol
(subtask 2). Table 1 shows an example.

Per language, we randomly selected 80% of the
documents for the training and 20% for the test
set. From the the training set, we then randomly
sampled 20% of the documents as the development
set.

Table 2 shows several statistics of our data. We
see similar properties for all languages: Most sen-
tences are unique, and there are few sentences that
occur both in the train and test sets.8 German fea-

6The forth, Romansh, is not represented in Europarl.
7Incorporating further languages from the OPUS corpus

using our scripts is seamless as the data format is consistent
across languages.

8Duplicate sentences are often formulaic, administrative
ones, like ”The session is adjourned.” etc.

http://www.statmt.org/europarl/


Token Label 1 Label 2

the 0 0
next 0 0
item 0 0
is 0 0
the 0 0
commission 0 0
statement 0 0
on 0 0
the 0 0
referendum 0 0
in 0 0
venezuela 1 .
member 0 0
of 0 0
the 0 0
commission 0 .
madam 0 0
president 0 ,
the 0 0

Table 1: Example of the data format.

tures the largest vocabulary, as is expected due
to its morphological richness, and the vocabulary
overlap between train and test sets is roughly 50%
for all languages.

Concerning the labels, the data is highly skewed
towards the 0 label for both tasks, as most tokens do
not emit a sentence end or punctuation symbol after
them. For example, there are 9’618’776 tokens
with the label 0 and 420’446 with label 1 subtask
one in the English test set, which yields an average
sentence length of almost 24 tokens. Table 3 shows
a breakdown of the label counts in the English
test set for subtask 2. It shows that the period
and comma symbols have similar counts and are
the most frequent labels among the non-0 labels.
The remaining labels occur less than an order of
magnitude less frequently. These label distribution
properties are similar across all languages.

3.2 Surprise Test Data

The Europarl corpus covers domain-specific lan-
guage, i.e. political statements in the European par-
liament. To measure how well the participating
systems trained on our data generalize to out-of-
domain data, we incorporated a surprise test set
comprised of TED talk transcripts9 (Reimers and
Gurevych, 2020).

For each language, we sampled 500 TED talks,
favoring those that have the lowest vocabulary over-
lap with our Europarl test sets to maximize the
vocabulary shift. The document-based average per-
centage of the vocabulary overlap ranges from 85

9https://opus.nlpl.eu/TED2020.php

to 90, meaning there are on average 10-15% of
tokens per document in the surprise test set that are
not in the Europarl test set.

While being one order of magnitude smaller than
the Europarl test set, the surprise test set is also
highly and similarly imbalanced regarding the la-
bel distribution. In the English surprise test set,
there are 67’446 tokens with label 1 and 1’014’464
tokens with label 0. This yields an average sen-
tence length of 16 tokens, which is significantly
lower than the 24 tokens in the English Europarl
test set. The label counts for subtask 2 follow an
almost identical distribution in both test sets.

4 Submissions

ZHAW-mbert: We provided a baseline based on
the multilingual BERT model (Devlin et al., 2019),
mBERT, implemented in the simpletransformers
library10. We treat the task as a token classification
problem and segment the documents into subse-
quent, non-overlapping chunks of length 512 to
adhere to the sequence length restrictions of BERT.
We fine-tuned the model on the training data of
all languages with a randomly shuffled file order
across all languages and vanilla settings for about
one week on a single GPU.

ZHAW-adapter-mbert: To contrast the
resource-intensive fine-tuning of mBERT with a
computationally cheaper approach of task adaption,
we apply the adapter-transformers library11

(Pfeiffer et al., 2020). Instead of updating all the
weights of the base models (mBERT in our case),
the adapters approach inserts a few feed-forward
layer in between the transformer blocks and only
trains those for adapting a base model to a new
task. We again use the vanilla settings and train the
model for one day.

OnPoint: In their study of sentence segmenta-
tion, Michail et al. (2021) proposed a majority-
voting ensemble model consisting of several Trans-
former models trained in different ways. The mod-
els’ predictions are leveraged at test time using a
sliding window to obtain the final predictions. They
offered their system as language-dependent models
for all four languages of the shared task and both
sub-tasks.

10https://github.com/ThilinaRajapakse/
simpletransformers

11https://github.com/Adapter-Hub/
adapter-transformers/

https://opus.nlpl.eu/TED2020.php
https://github.com/ThilinaRajapakse/simpletransformers
https://github.com/ThilinaRajapakse/simpletransformers
https://github.com/Adapter-Hub/adapter-transformers/
https://github.com/Adapter-Hub/adapter-transformers/


Lang #sentences unique train∩test #tokens unique train∩test

EN 1’406’577 1’382’738 2’660 33’779’095 88’370 43’744
DE 1’308’508 1’276’691 2’806 28’645’112 294’035 112’000
FR 1’236’504 1’215’981 2’081 32’690’367 103’774 57’112
IT 1’132’554 1’112’742 1’746 28’167’993 131’024 67’626

Table 2: Training data statistics, showing number of (unique) sentences and tokens and the number of sentences
and tokens in both training and test set (train∩test) per language.

Label Count

0 9’050’256
, 521’594
. 417’560
- 23’600
: 13’146
? 13’066

Table 3: Label distribution for subtask 2 in the English
test set.

Unbabel-INESC-ID: Rei et al. (2021) extend
the architecture proposed by Rei et al. (2020) to
develop a multilingual model for sentence end and
punctuation prediction. Their system is designed
based on pre-trained contextual embeddings and
built on top of a pre-trained Transformer-based
encoder model. They propose their method as a
single multilingual model for all languages and
subtasks of the shared task.

UR-mSBD: Donabauer and Kruschwitz (2021)
propose a system based on a pre-trained BERT
model and fine-tuned for the first sub-task. They
use language-specific models for each of the four
languages of the shard task. They consider sub-task
1 as a binary classification problem by identifying
tokens that indicate the position of a full stop.

oneNLP: Applying multi-task Albert for En-
glish and multi-lingual Bert for other lan-
guages Mujadia et al. (2021) explored the impact
of using contextual language models for sentence
end and punctuation prediction. They modeled the
problem in both subtasks as a sequence labeling
task. They presented the results of employing a
baseline CRF, as well as the results of applying a
fine-tuning method over contextual embedding.

HULAT UC3M: Based on the Punctuator
framework (Tilk and Alumäe, 2016) which is a bidi-
rectional recurrent neural network model equipped
with an attention mechanism, Masiello-Ruiz et al.
(2021) developed an automatic punctuation sys-
tem named HULAT-UC3M. They trained HULAT-

UC3M for all languages as well as both sub-tasks
in the shared task individually.

HTW: Guhr et al. (2021) modeled the task as
a token-wise prediction and examined several lan-
guage models based on the transformer architecture.
They trained two separate models for the two tasks
and submitted their results for all four languages of
the shared task. They advocated transfer learning
for solving the task and showed that the multilin-
gual transformer models yielded better results than
monolingual models. By pruning the Bert layers,
they also showed that their model retains 99% of
its performance without 1/4 of the last layers.

5 Results

In section 3.1 we showed that our data is highly im-
balanced regarding the label distribution. Accuracy
or Macro F1 scores are not suitable metrics in this
setting, as majority class prediction would yield
an accuracy of 96% for subtask 1 on the English
test set, e.g. Therefore, we applied the following
metrics to evaluate the participants’ submissions:

• Subtask 1: F1 score of the label 1 (the posi-
tive class, i.e. sentence end)

• Subtask 2: Macro F1 of the selected punctu-
ation symbols

We observe that a) most systems achieve a very
high score for subtask 1 for all languages on the
Europarl data, and b) the F1 scores are almost iden-
tical (with seemingly minor differences in preci-
sion and recall) for the top-ranking systems for
both tasks. Further, the top-ranking systems are the
same ones for both tasks. This is to be expected
to some degree, as it can be argued that subtask 2
subsumes subtask 1.

While the F1 scores for subtask 2 seem low com-
pared to subtask 1, a more detailed results analysis
reveals that the lower (Macro) F1 scores mainly
stem from the labels with the lowest counts in the
data. Table 6 gives the detailed classification report



EN DE FR IT AVG
Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

TEST SET
htw+t2k fullstop multilang 0.94 0.95 0.94 0.95 0.96 0.96 0.94 0.94 0.94 0.92 0.94 0.93 0.94 0.95 0.94
OnPoint 0.93 0.95 0.94 0.95 0.96 0.96 0.92 0.94 0.93 0.90 0.95 0.92 0.93 0.95 0.94
Unbabel-INESC-ID 0.94 0.94 0.94 0.95 0.96 0.96 0.94 0.94 0.94 0.92 0.94 0.93 0.94 0.95 0.94
UR-mSBD 0.91 0.92 0.92 0.94 0.96 0.95 0.93 0.94 0.93 0.91 0.93 0.92 0.92 0.94 0.93
ZHAW-mbert 0.91 0.93 0.92 0.93 0.96 0.95 0.90 0.93 0.91 0.88 0.93 0.90 0.91 0.94 0.92
oneNLP 0.92 0.92 0.92 0.93 0.95 0.94 0.90 0.89 0.89 0.88 0.89 0.89 0.91 0.91 0.91
ZHAW-adapter-mbert 0.88 0.90 0.89 0.79 0.85 0.82 0.81 0.84 0.83 0.77 0.78 0.77 0.81 0.84 0.83
HULAT UC3M 0.86 0.80 0.83 0.23 0.90 0.36 0.86 0.79 0.83 0.84 0.78 0.81 0.70 0.82 0.71
htw+t2k fullstop german 0.95 0.96 0.95

SURPRISE TEST SET
htw+t2k fullstop multilang 0.85 0.70 0.77 0.90 0.74 0.82 0.84 0.70 0.76 0.85 0.67 0.75 0.86 0.70 0.78
OnPoint 0.84 0.75 0.80 0.89 0.77 0.82 0.82 0.72 0.77 0.83 0.71 0.77 0.85 0.74 0.79
Unbabel-INESC-ID 0.92 0.75 0.83 0.88 0.71 0.78 0.85 0.72 0.78 0.86 0.68 0.76 0.88 0.72 0.79
UR-mSBD 0.82 0.68 0.74 0.89 0.73 0.80 0.83 0.70 0.76 0.84 0.67 0.74 0.85 0.70 0.76
ZHAW-mbert 0.78 0.70 0.74 0.86 0.74 0.80 0.78 0.69 0.73 0.77 0.65 0.70 0.80 0.70 0.74
oneNLP 0.81 0.67 0.73 0.85 0.72 0.78 0.77 0.62 0.69 0.78 0.58 0.67 0.80 0.65 0.72
ZHAW-adapter-mbert 0.75 0.69 0.71 0.75 0.69 0.72 0.72 0.67 0.69 0.71 0.55 0.62 0.73 0.65 0.69
HULAT UC3M 0.68 0.41 0.51 0.41 0.61 0.49 0.74 0.41 0.53 0.73 0.30 0.43 0.64 0.43 0.49
htw+t2k fullstop german 0.90 0.75 0.80

Table 4: Results for subtask 1

EN DE FR IT AVG
Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

TEST SET
htw+t2k fullstop multilang 0.82 0.74 0.77 0.84 0.79 0.81 0.83 0.75 0.78 0.82 0.72 0.76 0.83 0.75 0.78
OnPoint 0.81 0.75 0.77 0.82 0.80 0.81 0.78 0.77 0.77 0.77 0.74 0.75 0.80 0.77 0.78
Unbabel-INESC-ID 0.83 0.72 0.76 0.84 0.77 0.80 0.83 0.74 0.77 0.82 0.70 0.74 0.83 0.73 0.77
ZHAW-mbert 0.80 0.71 0.74 0.82 0.75 0.78 0.81 0.71 0.75 0.79 0.66 0.71 0.81 0.71 0.75
oneNLP 0.79 0.69 0.72 0.80 0.74 0.77 0.79 0.65 0.68 0.78 0.62 0.66 0.79 0.68 0.71
HULAT UC3M 0.76 0.60 0.63 0.79 0.65 0.69 0.75 0.59 0.64 0.71 0.52 0.57 0.75 0.59 0.63
ZHAW-adapter-mbert 0.78 0.64 0.68 0.59 0.48 0.49 0.70 0.55 0.59 0.64 0.46 0.49 0.68 0.53 0.56

SURPRISE TEST SET
htw+t2k fullstop multilang 0.65 0.57 0.60 0.68 0.64 0.66 0.66 0.60 0.62 0.61 0.53 0.56 0.65 0.59 0.61
OnPoint 0.65 0.59 0.62 0.66 0.65 0.65 0.63 0.60 0.61 0.57 0.55 0.56 0.63 0.60 0.61
Unbabel-INESC-ID 0.68 0.57 0.61 0.71 0.63 0.65 0.69 0.59 0.63 0.63 0.53 0.56 0.68 0.58 0.61
ZHAW-mbert 0.62 0.51 0.55 0.66 0.58 0.60 0.64 0.54 0.57 0.51 0.45 0.47 0.61 0.52 0.55
oneNLP 0.62 0.52 0.56 0.61 0.57 0.58 0.61 0.48 0.51 0.54 0.43 0.46 0.60 0.50 0.53
HULAT UC3M 0.50 0.40 0.43 0.59 0.47 0.51 0.56 0.38 0.41 0.45 0.33 0.36 0.53 0.40 0.43
ZHAW-adapter-mbert 0.60 0.48 0.51 0.54 0.41 0.44 0.60 0.44 0.48 0.51 0.35 0.38 0.56 0.42 0.45

Table 5: Results for subtask 2

for the top three ranking system for the English test
set. It shows that the systems are able to predict
periods, commas, and question marks reliably, but
that they struggle with hyphens and colons, which
lowers the Macro F1 scores.

Label htw+t2k OnPoint Unbabel

0 0.99 0.99 0.99
, 0.82 0.82 0.80
. 0.95 0.95 0.94
- 0.42 0.41 0.37
: 0.57 0.57 0.56
? 0.88 0.91 0.89

Table 6: F1 scores per label for the top-performing sys-
tems on the English test set for subtask 2.

All systems perform significantly worse on the
surprise test sets for both tasks. To gauge the dif-
ficulty of the task on the TED dataset compared

to the Europarl dataset, we train the ZHAW-mbert
approach on the remaining TED talks that were not
selected for the surprise test set and then test the
system on the surprise test set. Table 7 shows that
the average F1 score does improve by 11 percent-
age points when training the ZHAW-mbert system
on domain data. Still, the 0.66 F1 score is 9 per-
centage points behind the average F1 score on the
Europarl data. Hence, the drop in performance of
Europarl-trained ZHAW-mbert on the surprise test
set can both be accounted for by the domain shift
and by the increased difficulty of the target domain
(TED talks). We expect that this applies for the
performance drop of all systems.

Prec. Rec. F1

ZHAW-mbert 0.76 0.63 0.66

Table 7: Results of training ZHAW-mbert on TED talks
for subtask 2 (averaged over all languages).



We expected some submissions to use linguistic
features such as part-of-speech tags or partial syn-
tax parse trees and hypothesized that such systems
would fare better on out-of-domain data. However,
all participating systems applied neural encodings
of the surface tokens and did not encode linguistic
features explicitly. Still, the ranking of the systems
remains intact on the surprise test sets.

The top three systems in both tasks all use
transformers-based approaches and tackle the tasks
in a similar manner. We hypothesize that this is
the main reason for near identical performance of
the systems in terms of F1 scores. Based on the
task results, these three systems seem to produce
near-identical output. To better gauge their similar-
ities and differences, we evaluate their outputs for
subtask 2 in a pair-wise manner on the English test
set. We apply the evaluation metric such that one
system output takes the role of the ground truth and
the other the one of the system prediction, which
yields the F1 scores per class that we leverage as
an indicator of the similarity or agreement of the
per-token predictions. Table 8 shows the results.
While the macro F1 scores and even the per-class
F1 scores in Table 6 are highly similar, there are
significant differences in this analysis. For exam-
ple, for the hyphen class, the systems have different
predictions in over 30% of the cases, and for colon
in roughly 20%. For the majority classes of the
non-0 classes, the systems disagree in about 10%
of the cases for comma, but their predictions are
highly similar for period (96% agreement).

Label htw+t2k vs
Unbabel

OnPoint vs
Unbabel

OnPoint vs
htw+t2k

0 0.99 0.99 1.00
, 0.90 0.90 0.92
. 0.96 0.96 0.96
- 0.67 0.66 0.68
: 0.79 0.81 0.81
? 0.89 0.92 0.91

Table 8: System prediction similarity between the three
top-performing systems on the English test set for sub-
task 2.

Following Tuggener (2017), we can take the
comparison a step further and analyse the type of
differences per label. For example, the OnPoint
submission’s F1 score for hyphen is 4 percentage
points higher than the one of Unbabel, and their pre-
diction agreement for hyphen is 68%. This does not
indicate, however, whether OnPoint’s predictions
are always better. The aforementioned comparison

takes a ground truth label G, the predicted label A
of one system, and the predicted label B of another
system and defines three types of differences for
the cases where A 6= B:

• correction: G = B

• new error: G = A

• changed error: G 6= A 6= B

Table 9 shows the results. We see that the pre-
dictions of commas makes up a large portion of
the differences. When OnPoint’s prediction dif-
fers from Unbabel’s for comma, OnPoint is correct
and Unbabel incorrect in nearly 70% of the cases,
which explains the 2 percentage point higher per-
formance of OnPoint in Table 6. Still, Unbabel is
correct in almost 30% of the cases where the two
predictions differ.

#Diff. corr. new err. changed
err.

0 45’552 34.22% 62.59% 3.19%
, 50’496 69.01% 28.30% 2.69%
. 16’190 49.28% 44.69% 6.03%
- 4’422 51.15% 33.04% 15.81%
: 2’014 41.46% 31.43% 27.11%
? 1’158 63.90% 29.53% 6.56%

Table 9: Detailed comparison of the differences in Un-
babel’s predictions versus OnPoint’s predictions for En-
glish in subtask 2. #Diff. signifies the number of tokens
that have the respective label as the ground truth and
for which OnPoint’s and Unbabel’s predictions differ.
The remaining columns represent the percentage of this
number in each difference class.

In conclusion, we observer that while the top
three systems perform similarly in terms of Macro
F1 scores for subtask 2, there are nuances to each
system that distinguishes them from the others.

5.1 Winners

While we showed that there are differences in the
outputs of the top three systems that are not re-
flected in the averaged F1 scores, the declared crite-
ria for winning the task are the averaged F1 scores
in Tables 4 and 5. Since the top three systems in
these tables are practically indistinguishable based
on these F+ scores, we declare OnPoint, htw+t2k,
and Unbabel as the joint winners of the SEPP-NLG
2021 shared task. Congratulations!



6 Conclusions

We presented the setting and results of the first Sen-
tence End and Punctuation Prediction in NLG text
(SEPP-NLG 2021) shared task. We found that all
participants explored neural networks-based mod-
els (particularly transformers) to tackle the task.
The results for the in-domain Europarl data were
high for the most common punctuation symbols,
but the performance decreased significantly when
the models were faced with out-of-domain data.

The discussion of the task results during the ses-
sion at the SwissText conference yielded the fol-
lowing desiderata for future iterations of the shared
task:

• More heterogeneous data (more domains)

• Add truecasing as an additional task

• Add other language families

• Take inference time / computational costs as
an additional evaluation criteria, or create a
separate track that puts emphasis on a low-
resource/low-latency setting
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