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Abstract

This paper describes the model and its corre-
sponding setup, proposed by the Unbabel &
INESC-ID team for the 1st Shared Task on
Sentence End and Punctuation Prediction in
NLG Text (SEPP-NLG 2021). The shared task
covers 4 languages (English, German, French
and Italian) and includes two subtasks: sub-
task 1 – detecting the end of a sentence, and
subtask 2 – predicting a range of punctuation
marks. Our team proposes a single multilin-
gual and multitask model that is able to pro-
duce suitable results for all the languages and
subtasks involved. The results show that it
is possible to achieve state-of-the-art results
using one single multilingual model for both
tasks and multiple languages. Using a sin-
gle multilingual model to solve the task for
multiple languages is of particular importance,
since training a different model for each lan-
guage is a cumbersome and time-consuming
process. Finally, the code for the shared
task is publicly available for reproducible pur-
poses at https://github.com/Unbabel/

caption/tree/shared-task.

1 Introduction

The text produced by a speech recognition system
or by an automatic machine translation system of-
ten includes misplaced punctuation and, in the case
of a speech recognition system, the output often
consists of raw single-case words, without punc-
tuation marks, and may not even include sentence
boundaries. Detecting the sentence boundaries and
the missing punctuation in such automatically gen-
erated texts improves the quality of such texts, and
is often relevant for a number of downstream tasks,
such as parsing, information extraction, dialog act
modeling, Named Entity Recognition (NER), and

summarization (Zechner, 2002; Huang and Zweig,
2002; Kim and Woodland, 2003; Ostendorf et al.,
2005; Jones et al., 2005; Makhoul et al., 2005;
Shriberg, 2005; Matusov et al., 2006; Peitz et al.,
2011; Cattoni et al., 2007; Ostendorf et al., 2008;
Liao et al., 2020).

Most of the available studies focus on full stop
and comma, which have higher corpus frequencies,
and a number of more restricted studies also con-
sider the question mark. However, several punctua-
tion marks can be considered for automatically gen-
erated texts, including: comma; period or full stop;
exclamation mark; question mark; colon; semi-
colon; and quotation marks. Nevertheless, most of
these marks rarely occur and are quite difficult to
insert or evaluate. Quotations and semicolons, for
example, are often used inconsequently and in a
highly variable way.

This paper proposes a multilingual model that
is able to detect sentence boundaries and predict
a wide range of punctuation marks, based on pre-
trained contextual embeddings. Our architecture
is composed of three main building blocks: a pre-
trained Transformer-based encoder model, an at-
tention mechanism over the encoder layers, and
the task classification heads. The proposed model
derives from the multilingual model proposed by
(Guerreiro et al., 2021), which achieves fairly com-
petitive results in a multi-language scenario, even
surpassing the existing results for some of the lan-
guages.

The reminder of the paper is organized as fol-
lows: Section 2 presents an overview of the related
work. Section 3 overviews the data used for train-
ing fine-tuning our model. Section 4 presents the
building blocks of the model architecture, and the
setup parameters. Section 5 reports the experiments
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performed and Section 6 presents the correspond-
ing results. Finally, Section 7 presents the most
relevant conclusions, and mentions possible future
directions.

2 Related work

Proper identification of sentence boundaries and
punctuation recovery are two profoundly connected
tasks that can result in great improvements for
speech processing downstream task (Harper et al.,
2005; Mrozinsk et al., 2006; Ostendorf et al., 2008).
For that reason, recovering structural information
from text produced by Automatic Speech Recog-
nition (ASR) becomes an objective of many stud-
ies. Early studies used a combination of n-grams
with prosodic classifiers through the general Hid-
den Markov Models framework (Beeferman et al.,
1998; Christensen et al., 2001; Kim and Woodland,
2001). With the development of Conditional Ran-
dom Fields (CRF) and Maximum Entropy models,
researchers were able to successfully improve these
task (Huang and Zweig, 2002; Liu et al., 2005,
2006; Batista et al., 2007, 2008, 2009; Lu and
Ng, 2010; Batista et al., 2010, 2012; Ueffing et al.,
2013).

Regarding machine translation, it is a well-
known fact that punctuation and capitalization er-
rors are a predominant problem for Statistical Ma-
chine Translation (SMT). Several studies tried to
enrich the SMT output by inserting proper capital-
ization and punctuation in the returned translation
(Cattoni et al., 2007; Peitz et al., 2011). Even with
Neural Machine Translation (NMT), the punctua-
tion errors are still the most predominant type of
errors. Indeed, these represent around 20% of the
errors produced by the high performing systems
from WMT20 News Translation shared task (Fre-
itag et al., 2021).

Most of the recent approaches for punctuation
restoration are based on neural networks such as
Recurrent Neural Networks (RNN) and Transform-
ers. With that said, most works treat the problem
either as a sequence-to-sequence or as a sequence
labelling task (Tilk and Alumäe, 2015, 2016; Che
et al., 2016; Klejch et al., 2017; Yi and Tao, 2019;
Kim, 2019). Following the recent trends in Natural
Language Processing (NLP) some of these works
take advantage of pre-trained models such as BERT
Cai and Wang (2019); Makhija et al. (2019); Guer-
reiro et al. (2021). Our shared task participation
is mostly based on the work by (Guerreiro et al.,

2021) that showed that having one single multilin-
gual model is competitive with having one model
trained for each language.

3 Corpora

10000

100000

1000000

10000000

100000000

words comma full-stop dash colon qmark

EN DE FR IT

Figure 1: Frequency of each punctuation mark

52.9%

60.1%

54.6%

53.9%

42.0%

35.2%

40.3%

40.8%

0% 20% 40% 60% 80% 100%

EN

DE

FR

IT

comma full-stop dash colon qmark

Figure 2: Frequency of each punctuation mark

The SEPP-NLG challenge adopted the Europarl
corpus, covering English, German, French, and Ital-
ian. The corpus was previously processed in order
to remove punctuation marks and case information,
as a way to simulate Natural Language Generated
text. The challenge considers 5 different punctua-
tion marks: comma (,), full-stop (.), dash (-), colon
(:) and question marks (?). Figures 1 and 2 show
the frequency of the words and punctuation marks
for each one of the languages, considering the train-
ing and development sets. As expected, from all
the punctuation marks being considered, comma is
the most frequent, occurring between 52.9% (EN)
and 60.1% (DE) of the times, followed by full-stop,
occurring between 42% (EN) and 35.2% (DE) of
the times. All the other punctuation marks into
consideration, occur less than 0.24% of the times
for all the considered languages. About 95% of
the sentences contain between 3 and 50 words, but
the maximum sentence length is 303 words for EN,
450 for DE and IT, and 423 for FR. 99% of the sen-
tences contain 1 to 7 punctuation marks, including
the corresponding sentence boundary. However,



Figure 3: Model architecture used to compete on the SEPP-NLG 2021 shared task. This model follows the
architecture proposed by Guerreiro et al. (2021), but with a classification head that simultaneously predicts sentence
ends (binary classification) and punctuation marks (multinomial classification).

some of the sentences, mostly consisting of lists of
numbers, may contain up to about 200 commas.

4 System Description

As it was previously mentioned, our system archi-
tecture extends the architecture proposed by (Guer-
reiro et al., 2021) which has shown promising, re-
sults in multilingual punctuation prediction and
capitalization (Rei et al., 2020). This architecture
is composed of 3 modules: an Encoder Model, a
Layer-wise Attention Mechanism, and a Classi-
fication Head. In our experiments to the shared
task we replaced the XLM-R base with XLM-R
large (Conneau et al., 2020) and also added a new
binary classification head for subtask 1 (full-stop
prediction).

With that said, when our system receives a doc-
ument, that document is tokenized using XLM-
R tokenizer and divided into several input se-
quences xi =

�
xi0, x

i
1, . . . , x

i
511

�
with 512 sub-

words. Then for each input sequence, the encoder
will produce an embedding e

(�)

xi
j

for each sub-word

xij and each layer � ∈ {0, 1, ..., 24}. To encapsu-
late information from all transformer layers into

a single embedding, exi
j
, the following layer-wise

attention mechanism is used:
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where γ is a trainable scaling factor, Exi
j

=
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j
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xi
j
, . . . e
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xi
j
] corresponds to the vector of

layer embeddings for sub-word xij , and Λ =

softmax([λ(1),λ(2), . . . ,λ(24)]) is a vector consti-
tuted by the layer scalar trainable parameters which
are shared for every sub-word. Finally, we concate-
nate the embeddings of consecutive words1 in the
input sequence xi and use those as features for our
punctuation (ML – multi-label) and full-stop (B –
binary) classification heads. Figure 3 illustrates the
described architecture.

5 Experiments

We started our experiments with the exact same
hyper-parameters used by Guerreiro et al. (2021).
To achieve better performance we also ran an hyper-
parameter search using OPTUNA (Akiba et al.,
1 When a word is divided into several sub-words we use

the embedding of the first sub-word to represent the
entire word.



Figure 4: Best trial hyper-parameters highlighted in the OPTUNA search space.

2019). In this section we will describe the train-
ing setup and the evaluation metrics used for these
experiments.

5.1 Evaluation Setup

The official shared task metric for full-stop predic-
tion is the F1 score of the positive class (sentence
end). For the punctuation prediction sub-task the
official metric is Macro-F1. Since our developed
model performs both tasks at the same time, we
also combine those two metrics by multiplying
them. Following Guerreiro et al. (2021), we addi-
tionally measure the punctuation Slot Error Rate
(SER) (Makhoul et al., 2005), a commonly used
metric for the task at hand. Also, we discard the
“O” (no punctuation) label for calculation of our
Macro-F1 scores.

5.2 Training Setup

Our model uses a discriminative fine-tuning strat-
egy with gradual unfreezing by splitting the model
parameters into two groups: the XLM-R param-
eters and the classification heads on top. The en-
coder parameters are frozen for 0.1% steps of the
first epoch. This allows the parameters of the classi-
fication heads to adjust to the task objective before
changing the pre-trained ones. Then, the entire
model parameters are fine-tuned, except the em-
bedding layer that is kept frozen. Keeping the em-
bedding layer frozen allows us to save some GPU
memory and fit the entire model into a single 12GB

memory GPU.
Evaluation is performed after each epoch using

only 50% of the entire development data. The train-
ing is interrupted after 2 epochs without improve-
ments on the punctuation task Macro-F1.

5.3 Hyper-parameter Search

We used OPTUNA (Akiba et al., 2019) to search for
the optimal hyper-parameters for our model. Our
search space was defined as follows:

• Accumulate gradients for 1 to 32 batches (this
simulates bigger batches while avoiding mem-
ory issues);

• Classification heads dropout between 0.1 and
0.5 with sampling from a uniform distribution;

• Layer-wise learning rate decay between 0.75
and 1.0 with sampling from a uniform distri-
bution;

• Encoder model learning rate between 1e-05
and 1e-04 with sampling from a log-uniform
distribution;

• Classification heads learning rate between
1e-05 and 3e-04 with sampling from a log-
uniform distribution;

• Full-stop prediction loss with two possible
values: 1 and 2;
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Figure 5: Confusion Matrix for punctuation prediction.

• Punctuation prediction loss with three possi-
ble values: 1, 2 and 3.

To speed up the hyper-parameter search we used
only 50% of the available training data while keep-
ing the 50% development data described above.

Table 2 reports the results of our baseline against
the large models with default hyper-parameters and
the best trial results from OPTUNA. As expected,
from our table, we can observe that the biggest
improvement comes from using XLM-R large in
replacement of the base model. We can also ob-
serve that further hyper-parameter tuning helps es-
pecially in terms of the SER.

Figure 4 shows that the best results were
achieved by keeping the encoder learning rate low
with a high layerwise decay (above 0.9). The learn-
ing rate for the classification heads is almost 10×
higher than the encoder learning rate. Finally, the
weight of the punctuation prediction loss is set to
2× the weight of the binary prediction loss. Table 1
describes the hyper-parameters used in our baseline
along with our final submission.

Hyper-parameter Baseline Final submission

Encoder Model XLM-R (base) XLM-R (large)
Optimizer AdamW AdamW
nº frozen epochs 0.1 0.1
Learning rate 5e-05 2.37e-04
Encoder Learning Rate 3e-05 2.57e-05
Layerwise Decay 1.0 0.925
Batch size 12 8
Loss function Cross-Entropy Cross-Entropy
Binary Loss Weight 1 1
Punctuation Loss Weight 1 2
Dropout 0.1 0.125
FP precision 32 16

Table 1: Hyper-parameters used in our final submission
compared with the baseline hyper-parameters from
Guerreiro et al. (2021).

6 Results

Table 2 shows that, as expected, using a larger
encoder improves our results. Also, by using OP-
TUNA, we were able to further improve our results
which means that the models presented by Guer-
reiro et al. (2021) are under-tuned and could be
further improved with a better selection of hyper-
parameters.

Looking into the results for individual punctua-
tion marks we can observe that our final submission
has a high F1 for commas, full stops and question
marks, 96%, 94% and 89% respectively. Yet, the
model seems to struggle at predicting dashes and
colons (63% and 39% F1 respectively). By look-
ing at Figure 5, we can observe that, as expected,
dashes and colons are frequently confused with
commas and full stops, respectively. These marks
can often be interchanged without loss of meaning.
This is further evidence to support the rationale
of some proposed approaches to solve this task
(Tilk and Alumäe, 2015; Che et al., 2016; Guer-
reiro et al., 2021), in which dashes and colons tend
to be aggregated with the commas and full stops
labels, respectively.

7 Conclusions and future work

We have described a multilingual model that is
able to simultaneously detect sentence boundaries,
and to predict 5 different punctuation marks over
4 different languages (English, German, French
and Italian). The model was adapted from (Guer-
reiro et al., 2021), and used by the Unbabel &
INESC-ID team for the 1st Shared Task on Sen-
tence End and Punctuation Prediction in NLG Text
(SEPP-NLG 2021), achieving one of the top re-
sults. The results confirm that it is possible to
achieve state-of-the-art results using a single mul-
tilingual model for both tasks and multiple lan-
guages. This result supports what was already
observed in the experiments performed by (Guer-
reiro et al., 2021). The code used to produce the
results is publicly available at: https://github.

com/Unbabel/caption/tree/shared-task.
In the future, we plan to extend this work to

include other language families, such as Semitic
and Slavic languages. Moreover, we would like to
extend our setup to be capable of simultaneously
solving the capitalization task too. Having one
single multilingual model that is capable of identi-
fying sentence boundaries, punctuation marks and
proper capitalization would constitute a major step



Development Models SER↓ Binary F1↑ Macro F1↑ Macro x Binary↑
Baseline (Guerreiro et al., 2021) 0.265 0.926 0.399 0.369

XLM-R large (default) 0.243 0.944 0.411 0.388
XLM-R large OPTUNA 0.214 0.944 0.444 0.419

Table 2: Results of our models on the shared task development data. Our baseline model is trained with the exact
same setup as the multilingual models from Guerreiro et al. (2021). Then we decided to replace XLM-R base by
XLM-R large. Finally to further improve our results we used OPTUNA to search over the hyper-parameters space
described in Section 5.3. Note that these experiments were performed using the shared task corpus V1.

towards recovering from ASR recognition errors
and translation errors from MT systems.
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