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Abstract

This paper describes our contribution to the
SEPP-NLG Shared Task in multilingual sen-
tence segmentation and punctuation prediction.
The goal of this task consists in training NLP
models that can predict the end of sentence
(EOS) and punctuation marks on automatically
generated or transcribed texts. We show that
these tasks benefit from crosslingual transfer
by successfully employing multilingual deep
language models. Our multilingual model
achieves an average F'-score of 0.94 for EOS
prediction on English, German, French, and
Italian texts and an average F}-score of 0.78
for punctuation mark prediction.

1 Introduction

The prediction of EOS and punctuation marks in
automatically generated or transcribed texts is a rel-
atively novel task. While sentence segmentation is
a core, and low-level, natural language processing
(NLP) task, punctuation has, in the past, primar-
ily been studied in the context of error correction
and the normalisation of automatic speech recogni-
tion (ASR) output. However, with the recent rise
of conversational agents and other NLP systems
that are able to generate new texts, the injection
of punctuation and EOS marks has gained wider
interest. This is hardly surprising because punctu-
ation affects the readability of the text produced
by the NLP system and, thus, its perceived overall
performance. The SEPP-NLG Shared Task offers
two subtasks, namely:

e Subtaskl — Sentence segmentation: Full-
stop prediction on fully unpunctuated, low-
ercased documents.

e Subtask 2 — Punctuation prediction: Pre-
diction of all punctuation marks on fully un-
punctuated, lowercased documents, where the

possible punctuation marks are members of
the set p = {: —, 7.0}, with 0 indicating no
punctuation.

The task is carried out on the German, English,
French, and Italian sections of the Europarl corpus
(Koehn, 2005), since it offers transcripts of spoken
texts for multiple languages. We developed models
for both tasks based on the Transformers library by
Wolf et al. (2020). These models and our code are
publicly available !

2 Related Work

Earlier studies on EOS and punctuation prediction
reflect the various fields of application of this tech-
nology. The task is mostly modeled as token-wise
prediction. Over the last few years, consistent per-
formance improvements have — unsurprisingly —
been achieved with the help of neural network ap-
proaches and large-scale neural language models.

The work by Attia et al. (2014) constitutes a
rather traditional approach to spelling and punc-
tuation correction, in this case for Arabic. The
authors report that in their data set, punctuation
errors constitute 40 % of all errors. The task is
modeled as token-wise classification with context
windows varying between 4-8 words. Classifica-
tion is carried out with Support Vector Machines
and Conditional Random Field (CRF) classifiers,
using part-of-speech (POS) and morphological in-
formation. The authors obtain the best result, an
F1-score of 0.56, with the CRF classifier and a
window size of five tokens.

Che et al. (2016) experiment with three differ-
ent neural network architectures, using pretrained
GloVe (Pennington et al., 2014) embeddings as
inputs. Since their goal is to predict punctuation
marks specifically on ASR output, they evaluate
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their models on ASR transcripts of TED talks. Pre-
dicting the positions of commas, periods, and ques-
tion marks, their best result in this 4-class classifi-
cation task is an F}-score of 0.54.

Treviso et al. (2017) study sentence segmenta-
tion — not punctuation — in narrative transcripts
that were generated in the context of examining
patients for symptoms of language-impairing de-
mentia. They work on three different Portuguese
data sets. Input data is modeled by means of POS
features, word embeddings, and prosodic informa-
tion. They then combine convolutional and recur-
rent neural network layers, achieving F}-scores
between 0.7 and 0.8 on two evaluation data sets.

Schweter and Ahmed (2019) also experiment
with the Europarl corpus, however, their task is
different from the task presented here, i.e. they
model only sentence segmentation by predicting,
at each full stop in the input text, whether it is an
EOS marker or forms a part of another linguistic
unit (for instance, it could mark an abbreviation).
Predictions are produced by character-level models
that are fed not only the token to disambiguate, but
also local contexts in the form of context windows.
Working on a wide variety of languages — includ-
ing often overlooked languages such as Bosnian,
Greek, or Romanian, — they achieve F}-scores be-
tween 0.98 and 0.99, with their BILSTM model
performing best on average.

Sunkara et al. (2020) also work in the clinical
domain, more precisely, on the output of medi-
cal ASR systems. They jointly model punctuation
and truecasing by first predicting a punctuation se-
quence and then the case of each input word. The
authors use a pretrained transformer model (De-
vlin et al., 2019; Liu et al., 2019) in combination
with subword embeddings to overcome lexical spar-
sity in the medical domain. They also carry out a
fine-tuning step on medical data and a task adapta-
tion step — randomly masking punctuation marks
in the text — before training the actual model. Pre-
dicting fullstops and commas, the authors achieve
Fi-scores of 0.81 (for commas) and 0.92 (for full-
stops) with Bio-BERT (Lee et al., 2019), which
was trained on biomedical corpora.

3 Task and Data

The task consists in predicting EOS and punctua-
tion marks on unpunctuated lowercased text. The
organizers of the SeppNLG shared task provided
470 MB of English, German, French, and Italian

text. This data set consists of a training and a de-
velopment set. For system ranking, a test set with
in-domain and a surprise set with out-of-domain
texts were used.

Figure 1 shows the distribution of the punctu-
ation labels for subtask 2, for all languages. As
can be seen from the Figure, the distribution of the
labels is quite skewed, even if we disregard that
the majority of tokens in each data set has the la-
bel ”0” (omitted in Figure 1 for better readability).
All languages follow the same distribution pattern,
however, they exhibit subtle differences. For in-
stance, the difference in frequency between com-
mas and fullstops is particularly pronounced for
German and German, in general, has a higher pro-
portion of commas, indicating complex sentence
structures. For other language pairs, we observe
slight differences in the distribution of hyphens and
colons.

Earlier versions of subtask 2 also required pre-
dictions for the punctuation marks ”!” and ”;”. Dur-
ing the training phase, the task organizers mapped
these symbols to the fullstop to account for strongly
skewed distributions and potential HTML artefacts.
Sentences containing other punctuation symbols
than those already mentioned — parentheses, for
instance — were removed by the task organizers
because not all instances of parentheses were well-
formed (i. e. not for every opening parenthesis
there also was a closing parenthesis). These issues
leave avenues for future research.

4 Models

4.1 Baselines and Model Selection

The transformer architecture (Vaswani et al., 2017)
and transfer learning with transformer-based lan-
guage models (Devlin et al., 2019) have led to no-
table performance gains for many NLP tasks. For
this reason, we have focused our research on a
transformer-based architecture, exploring a num-
ber of recent language models and multilingual
transfer learning. Following earlier work, we have
modelled the task as token-wise prediction.
However, to assess the performance gain enabled
by a transformer-based language model, we also
trained (for German sentence segmentation) a first,
non-neural baseline: a CRF model on the basis of
bag-of-words, POS and local context (+/- 2 tokens)
features. This model seemed to perform much
better than the spaCy? baseline provided for sub-

https://spacy.io/.
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Figure 1: Distribution of punctuation labels for the four languages on the training sets of task 2. Mean document
length varies between 10,378 (for Italian) and 12,275 words (for French).

task 13, however, since it was outperformed by all
transformer-based models by a large margin, we
decided to not explore this direction any further.

As a second baseline, we trained a vanilla multi-
lingual Bert model and explored techniques to im-
prove this baseline. In particular, we focused on
three different options, namely data augmentation,
hyperparameter optimization, and the selection of
different architectures and pre-trained models. We
have also tested various preprocessing steps to re-
move special characters and HTML artefacts, but
this had no significant effect on our results.

As a first step towards model selection, we
trained a set of mono- and multilingual models
on 10% of the training data for each task. We then
selected the best models per language and the best
multilingual model and trained them on the full
training data set. This approach helped us to iterate
quickly by avoiding long training times (up to 20
hours on a single GPU) just for model selection.
We then selected the following architectures for our

Shttps://sites.google.com/view/
sentence—-segmentation/.

tests:

e Bert (Devlin et al., 2019)

Distillbert (Sanh et al., 2019)

Electra (Clark et al., 2020)

Roberta (Liu et al., 2019)
e XIL.M-Roberta (Conneau et al., 2020)
e Camembert (Martin et al., 2020)

First experiments with data augmentation and hy-
perparameter optimization showed that these tech-
niques had only a minor effect on the models’ per-
formance. All of our 10% and full models were
trained for 3 epochs using Adafactor (Shazeer and
Stern, 2018) and a learning rate of 4e > and batch
size of 8. Furthermore we used 16-bit-precision
training to improve training speed. We did run
hyperparamter optimizations with limited success,
for more information please see our ablations in
section 7. We then focused on the selection of
architectures and pretrained models.



Base Model Task 1 F} Task 2 Fy
English
distilbert-base-uncased 0.849048 0.581294
google/electra-base-generator 0.867502  0.426554
google/electra-small-generator 0.872033  0.590815
bert-base-uncased 0.885560  0.647669
google/electra-large-generator 0.901298  0.558433
bert-large-uncased 0.903943  0.699679
roberta-base 0.921170  0.719705
xIlm-roberta-large 0.932057 0.740402
roberta-large 0.935672 0.742778
German
bert-base-multilingual-uncased 0.931668  0.708220
dbmdz/bert-base-german-uncased 0.943437  0.746249
deepset/gbert-base 0.943571  0.753979
german-nlp-group/electra-base-german-uncased 0.950070 0.759387
French
bert-base-multilingual-uncased 0.881648 0.658968
camembert-base 0.914799  0.702187
camembert/camembert-large 0.935436  0.756594
Italian
dbmdz/electra-base-italian-xxl-cased-generator 0.866070  0.496291
bert-base-multilingual-uncased 0.867798  0.586234
dbmdz/bert-base-italian-cased 0.897765 0.658520
dbmdz/bert-base-italian-xxl-uncased 0.910585 0.693615
multilingual
bert-base-multilingual-uncased 0.887909  0.683688
xlm-roberta-base 0.915930 0.716822
xlm-roberta-large 0.935946 0.753770

Table 1: We trained all base models in this Table on 10% of the language-specific data or on 10% of all languages
for the multilingual models. All models were trained for 3 epochs using Adafactor and a learning rate of 4e~°. For
Task 1 we report the F score of the EOS class. For task 2 the macro average F} of all classes is shown.

We trained a 10 % and 100 % model for all
architecture types to ensure that the architectures
scale well with the increased data. Comparing
the results from Table 1 and 2, we found that the
models for task 1 gain between 0.1 % to 1 % by
scaling from 10% to 100% and the model for task
2 gain between 3 % to 5 %.

4.2 Windowing Approach

All selected architectures are limited with respect
to the number of tokens they can process, typically
512. Since most documents are longer than this
limit (see Figure 1), we needed a strategy to handle
longer sequences.

The simplest method to achieve that is by split-
ting the text into chunks of 200 words before pro-
cessing. The number of 200 words was chosen
empirically to account for the fact that words get

tokenized into more than one token. The disadvan-
tage of this approach is that it is inefficient since
most sequences will not utilize the full 512-token
capacity of the model.

Overlapping Tokens F} Score Task 1
0 0.87893
10 0.87933
100 0.88556
200 0.88375

Table 2: We found that an overlap of 100 tokens be-
tween consecutive sequences improves the models per-
formance.

We therefore chose to first tokenize each doc-
ument and then split it into sequences of 512 to-
kens. However, this approach, just like the first



one, can produce sequences that start with the last
word of a sentence or end with the first word of
a sentence, giving the model no context for the
prediction. To address this issue, we used a slid-
ing window approach and ran experiments with
different step sizes similar to the stride parame-
ter in convolutional neural networks. This method
ensures that the model has additional context for
making predictions. For training, we ran a grid
search to find the optimal length of the overlapping
window, using an English Bert base model on 10%
of the data. Based on the results shown in Table
2, we choose an overlapping window size of 100
for training our models. The loss was calculated
for the whole sequence, including the overlapping
part. Since this method also generates new training
sequences, it also acts as a data-augmentation.

5 Results

Table 1 shows the results of the 10% model compar-
ison training. All the models that performed best on
task 1 also performed best on task 2. For English,
we selected two models, XLLM RoBERTa Large
and RoBERTa Large since their scores were about
even. An Electra-based model achieved the best
results for the German language, whereas, surpris-
ingly, English and Italian Electra models scored
below baseline Bert models. For French, we se-
lected Camembert large, a 335 million parameters
RoBERTa-based model which scores notably better
than Camembert base using 110 million parame-
ters. The digital library team at the Bavarian State
Library (dbmdz) published two different Italian
Bert-based models, the XXL version of the model
was trained on the larger corpus and achieved the
best result. The multilingual XILM RoBERTa base
model achieved better scores than the older multi-
lingual Bert model using the same number of pa-
rameters. The larger 335 million parameter version
of this model achieved the best multilingual model
score, on par with the language-specific models.
Note that the scores of the multilingual models are
evaluated on a multilingual development set.

We trained the selected models on the full train-
ing set for each task and evaluated them on the de-
velopment sets. The results of this evaluation can
be found in Table 3 for both subtasks 1 and 2. For
both tasks, the large multilingual XLLM RoBERTa
outperformed all language-specific models. There-
fore we submitted our XLLM RoBERTa based mod-
els for task 1 and 2. For the Italian language, the

XLM-RoBERTa-based model scored notably better
than the best language-specific model. However,
for the other languages, the performance gains are
not that significant. The scores of the German
Electra-based model are comparable to those of
XLM RoBERTa, despite using 110 million param-
eters in contrast to the 550 million parameters of
XLM RoBERTza large. This indicates that there is
room for possible performance improvements.

5.1 Final Models and Evaluation

Since the multilingual models outperformed
almost all monolingual models, we selected these
for subtasks 1 and 2. Furthermore, we submitted
one smaller monolingual model to evaluate its
performance on the test set and out-of-domain test
set (surprise test).

FullStop Multilingual Task 1: This model
is based on the 550-million-parameter XLM
RoBERTa large model and was trained on the
labeled data of task 1. Across all four languages
this model archived an average F score of 0.94 on
the test set and an average F) score of 0.78 on the
surprise test set.

FullStop German Task 1: This model is
based on the 110-million-parameter German
Electra base model. It was trained on the labeled
data for task 1 and an additional data set consisting
of data from speeches of the German parliament
(Bundestag, 134 MB*%) and a text crawl from the
Leipzig corpora collection (245 MB?), containing
a mixture of news texts and Wikipedia articles. For
the German language, this model archived an F}
score of 0.95 on the test set and an F} score of
0.80 on the surprise test set.

FullStop Multilingual Task 2: This model is also
based on XLM RoBERTa large and was trained on
the labeled data for task 2. As shown in Figure
2 and Table 4, the model performs well on EOS
marks across all languages. In contrast, the perfor-
mance for colons and hyphens is lower. We suspect
that this is due to the properties of the data set as
described in section 3. We have seen that hyphens
and colons are not only infrequent in the training
data for all languages, they also exhibit unstable

“https://github.com/Datenschule/offenesparlament-data
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Model Test Language F) Score Task 1  F} Score Task 2
roberta-large EN 0.941992 0.772326
xlm-roberta-large EN 0.938764 0.765496
electra-base-german-uncased DE 0.953894 0.795759
electra-base-german-uncased with data augmentation DE 0.954782 -
camembert-large FR 0.937222 0.778617
bert-base-italian-xxl-uncased IT 0.919729 0.732624
EN 0.945746 0.774601
xim-roberta-large DE 0.958591 0.813861
FR 0.941974 0.781834
IT 0.934144 0.761775

Table 3: All models for subtasks 1 and 2 where trained on the full data set for each languages. For tasks 1, we
report the F score of the sentence end class and for task 2 the macro average F} score.

Label EN DE FR IT

) 0.819 0945 0.831 0.798
- 0425 0435 0431 0.421
. 0.948 0961 0945 0.942
0 0991 0.997 0.992 0.989
: 0.575 0.652 0.620 0.588
? 0.890 0.893 0.871 0.832
macro avg 0.775 0.814 0.782 0.762

Table 4: Per class F} scores for the FullStop Multilin-
gual Task 2 model on the dev data set.

distribution patterns across languages. Intuitively,
this is not surprising as hyphens and colons, in
many cases, are optional in the sense that they can
be substituted by either a comma or a full stop,
i. e. the rules for their usage are not only grammat-
ical and syntactic, but also stylistic. Performance
increases might be achieved through targeted train-
ing with adversarial examples. The model achieves
an average F) of 0.78 on the test set. Similar to
the other models, the performance degrades to an
average F7 of 0.61 for the out-of-domain surprise
set.

Inference on the complete test and surprise set
(470 MB) takes about 1 hour for each multilingual
FullStop model using an Nvidia 3090 GPU.

6 Key Findings

The type and amount of data used for pretrain-
ing has a significant impact on the final model’s
performance. Table 1 shows that, for Italian, there
is a 5% difference for task 2 between the two mono-
lingual Bert-based models. Both models use the
same 110 million parameters of the Bert architec-
ture, but were trained on different corpus sizes.
The “’bert-base-italian-uncased” model was trained

on a 13GB corpus and the “bert-base-italian-xxI-
uncased” model was trained on a 81 GB corpus.
The positive effect of larger corpus sizes on model
performance has also been verified for other trans-
former architectures, for instance by Conneau et al.
(2020) and Clark et al. (2020).

Model architectures do not work equally well
for different languages. Electra is the best-
performing monolingual German model, but for
English and Italian, results obtained with Electra
are well behind those obtained from mono- and
multilingual Bert models. We conducted a series of
tests with different hyperparameters for the English
Electra models, but could not further improve the
results.

Both Tasks benefit from multilingual models
and training data. To our surprise, the multilin-
gual XLLM-Roberta-based model outperformed all
monolingual models, even though earlier multi-
lingual Bert models were, in most cases, outper-
formed by their language-specific counterparts. We
suspected that this could be explained by the much
larger number of parameters used by XLM-Roberta
large. To test this hypothesis, we trained a monolin-
gual English model based on XLM-RoBERTa and
another English model based on the monolingual
RoBERTa. As shown in Table 3, both models are
outperformed by the XLM-RoBERTa model, show-
ing that the model benefits from multilinguality.
Although we have no direct explanation for the su-
perior performance of the multilingual model, we
would like to accentuate that it is in line with earlier
work (Muller et al., 2021) confirming (for mBERT)
that the lower layers of multilingual models act
as multilingual encoders by representing linguistic
knowledge for various languages. If this is true here
as well, the larger number of multilingual training
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Figure 2: Confusion matrices for the XLM RoBERTa-based multilingual FullStop model for task 2. Note that all

values are rounded.

examples might indeed improve performance for
the punctuation task. Our successful pruning exper-
iments also point towards this direction. However,
these hypotheses need empirical validation.

Punctuation patterns are domain-specific and
robust punctuation prediction requires training
on diverse data sets. The data set that we trained
on (Europarl) consists of data from a single do-
main, i. e. political speeches. As our scores on
the surprise set revealed, the performance of our
models degrades on texts from other domains. The
performance of our task-1 model drops from 0.94
(average across all languages) on the in-domain test
set to an F of 0.78 on the out-of-domain surprise
set. The other models participating in the shared
task suffer from similar performance degradations.

7 Ablations

What are the optimal hyperparameters for
each model? We ran a hyperparameter search for
the Adam optimizer using the Akiba et al. (2019)

framework with a budget of 200 trails on the Ger-
man Electra base model. For the hyperparameter-
search, we configured the following search space:
learning rates between 1-10~2and 1-107°, 1 to 5
training epochs, batch sizes from 22 to 27, a weight
decay from 1-10~! to 1- 10~'2 and Adam epsilon
from1-107%t01-10710.

We have compared these settings with Adafactor
(Shazeer and Stern, 2018), using a learning rate
of 4¢°. For both optimizers, we have trained mod-
els for task 1 and 2 on 10% of the training data.
The results of this comparison are shown in table
5. Adafactor matches the performance of Adam,
but eliminates the need for a time-consuming hy-
perparameter search, therefore we decided to use
Adafactor for all models.

Is it possible to use one model for both tasks?

The labels of task 2 are a super-set of the labels
for task 1, therefore one can use a model trained
for task 2 on task 1. We changed the classification
result of task 2 by mapping the sentence end labels
”” and 77 to label 1 and all other labels to label



Task Adafactor Adam diff in p.P.
1 0.95007 0.95087 -0.0008
2 0.75939 0.75587 +0,00352

Table 5: In a comparison between Adam with opti-
mized hyperparameters and Adafactor, we found only
minor differences in the resulting F score.

0. The results in Table 6 show that this method
decreases the final scores only marginally. For
many applications, it is sufficient to train one model
that processes all four languages for both tasks.
For this shared task, we trained and submitted two
different models, since a dedicated model for task
1 slightly improves the results.

Language Task 1 Model Task 2 Model
en 0.945746 0.941686
de 0.958591 0.955926
fr 0.941974 0.938254
it 0.934144 0.930851

Table 6: We compared the scores of the ’FullStop Mul-
tilingual Task 1”” model and the remapped output of the
“FullStop Multilingual Task 2” model to match the la-
bels of task 1. This approach leads to a slightly de-
creased F score.

Do we need a deep model for these tasks?

For the purpose of the shared task, we did not aim at
optimizing inference and training efficiency. How-
ever, we tested if it is necessary to use all the 12
Bert base layers. To this end, we trained a set of
models on 10% of the English data using 3,6, 9 and
10 layers on task 1. To keep the results compara-
ble, we used the same hyperparameters as with all
other models, described in section 4. The results
in Table 7 show that with this simple layer pruning
approach it is possible to retain 99% of the model’s
performance while removing 1/4 of the last layers.
We suggest to explor more advanced optimization
techniques in further studies.

Layers  Parameters Fj Score Task 1
3 45,102,338 0.74758
6 66,365,954 0.84408
9 87,629,570 0.87776
12 108,893,186 0.88556

Table 7: F) scores resulting from a pruned Bert base
model at various levels of pruning. Scores are for an
English model trained on 10% of the data.

8 Conclusion

In this paper, we have shown that transformer-
based architectures can be successfully applied to
the tasks of punctuation mark and sentence end
prediction. To our surprise, monolingual models
are outperformed by multilingual models, showing
that these models can transfer knowledge across
languages. For the future, we plan to improve on
two main aspects. Firstly, we want to reduce the
size of our models. Both “FullStop Multilingual”
models use 550 million parameters which leads
to computationally expensive inferencing. In our
ablations, we have demonstrated a first approach
to reducing the number of parameters. Secondly,
we would like to improve the out-of-domain perfor-
mance of our models. The shared task surpriseset
showed that there is a performance degradation on
texts from unseen domains. We will address this
issue in future research.

Acknowledgments

This research has been funded by the Euro-
pean Social Fund (ESF), SAB grant number
100339497 and the European Re-gional Develop-
ment Funds (ERDF) (ERDF-100346119). Anne-
Kathrin Schumann has received funding through
the SAB’s technology startup scholarship (Tech-
nologiegriinderstipendium).

References

Takuya Akiba, Shotaro Sano, Toshihiko Yanase,
Takeru Ohta, and Masanori Koyama. 2019. Op-
tuna: A next-generation hyperparameter optimiza-
tion framework. In Proceedings of the 25rd ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining.

Mohammed Attia, Mohamed Al-Badrashiny, and
Mona Diab. 2014. GWU-HASP: Hybrid Arabic
Spelling and Punctuation Corrector. In Proceedings
of the EMNLP 2014 Workshop on Arabic Natural
Language Processing (ANLP), pages 148—154. As-
sociation for Computational Linguistics.

Xiaoyin Che, Cheng Wang, Haojin Yang, and
Christoph Meinel. 2016. Punctuation Prediction
for Unsegmented Transcript Based on Word Vec-
tor. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation
(LREC 2016), pages 654-658. European Language
Resources Association (ELRA).

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: Pre-
training Text Encoders as Discriminators Rather
Than Generators. In ICLR.



Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzman, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stayanov. 2020. Unsupervised
Cross-lingual Representation Learning at Scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440—
8451. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers). Association for Computational Linguistics.

Philipp Koehn. 2005. Europarl: A Parallel Corpus for
Statistical Machine Translation. In Proceedings of
the 10th Machine Translation Summit, pages 79-86.
AAMT.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim,
Donghyeon Kim, Sunkyu Kim, Chan Ho So,
and Jaewoo Kang. 2019. BioBERT: a pre-
trained biomedical language representation model
for biomedical text mining. Bioinformatics,
36(4):1234-1240.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A Robustly Optimized BERT Pretraining
Approach. http://arxiv.org/abs/1907.11692.

Louis Martin, Benjamin Muller, Pedro Javier Ortiz
Suérez, Yoann Dupont, Larent Romary, Eric Ville-
mont de la Clergerie, Djamé Seddah, and Benoit
Sagot. 2020. Camembert: a Tasty French Language
Model. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 7203-7219. Association for Computa-
tional Linguistics.

Benjamin Muller, Yanai FElazar, Benoit Sagot, and
Djamé Seddah. 2021. First Align, then Predict: Un-
derstanding the Cross-Lingual Ability of Multilin-
gual BERT. In Proceedings of the 16th Conference
of the European Chapter of the Association for Com-
putational Linguistics: Main Volume, pages 2214—
2231. Association for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global Vectors for Word
Representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP 2014), pages 1532—1543. Asso-
ciation for Computational Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of BERT: smaller, faster, cheaper and lighter. CoRR,
abs/1910.01108.

Stefan Schweter and Sajawel Ahmed. 2019. Deep-
EOS: General-Purpose Neural Networks for Sen-
tence Boundary Detection. In Proceedings of the

15th Conference on Natural Language Processing
(KONVENS 2019), pages 251-255.

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
In Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pages 4596—4604.
PMLR.

Monica Sunkara, Srikanth Ronanki, Kalpit Dixit, Sra-
van Bodapati, and Katrin Kirchhoff. 2020. Robust
Prediction of Punctuation and Truecasing for Med-
ical ASR. In Proceedings of the 1st Workshop on
NLP for Medical Conversations, pages 53—62. Asso-
ciation for Computational Linguistics.

Marcos Vinicius Treviso, Christopher Shulby, and San-
dra Maria Aluisio. 2017. Sentence Segmentation
in Narrative Transcripts from Neuropsychological
Tests using Recurrent Convolutional Neural Net-
works. In Proceedings of the 15th Conference of the
European Chapter of the Association for Computa-
tional Linguistics: Volume 1, Long Papers, pages
315-325. Association for Computational Linguis-
tics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020.
Transformers: State-of-the-art natural language pro-
cessing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, pages 38—45, Online. Asso-
ciation for Computational Linguistics.



