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Abstract

This paper presents the contribution of
ZHAW-CAI to the Shared Task ”Swiss
German Speech to Standard German Text”
at the SwissText 2021 conference. Our ap-
proach combines three models based on
the Fairseq, Jasper and Wav2vec architec-
tures trained on multilingual, German and
Swiss German data. We applied an ensem-
bling algorithm on the predictions of the
three models in order to retrieve the most
reliable candidate out of the provided trans-
lations for each spoken utterance. With the
ensembling output, we achieved a BLEU
score of 39.39 on the private test set, which
gave us the third place out of four contrib-
utors in the competition.

1 Introduction

Speech-to-Text (STT) enables transcribing spoken
utterances into text. For successfully performing
a transformation from speech to a text, the exis-
tence of a standardised writing system of the target
language is of prime importance. This is where
Swiss German 1 poses a substantial challenge: it
does not have a standardised orthography since it
functions as the default spoken language in both
formal and informal situations, while for writing,
the Standard German language is used. This phe-
nomenon, called “medial diglossia” (Siebenhaar
and Wyler, 1997), occurs in the entire German-
speaking part of Switzerland, which is additionally
characterised by a high dialect diversity. Swiss Ger-
man is increasingly used for writing in informal
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1To be precise, there is no single ”Swiss German” lan-
guage, but rather a collection of many different regional di-
alects that are subsumed with this term.

contexts, but since there is no single standard writ-
ing system, Swiss German speakers usually write
phonetically in their local dialect in informal sit-
uations (Siebenhaar, 2003). On formal occasions
such as work meetings and political debate, speech
is typically transcribed into Standard German. As
there is a considerable linguistic distance between
Swiss German dialects and Standard German, de-
veloping a model for transcribing Swiss German
speech into Standard German text actually involves
Speech Translation, which combines STT with Ma-
chine Translation (MT) (Bérard et al., 2016).

As a response to the Shared Task “Swiss Ger-
man Speech to Standard German Text” organised
at Swisstext 2021, we provided a solution consist-
ing of three models based on different architectures:
Fairseq (Wang et al., 2020a), Jasper (Li et al., 2019)
and Wav2vec XLSR-5 (Baevski et al., 2020) which
were trained with various data sets, both in Stan-
dard German and Swiss German. Their predictions
were subsequently fed into a majority voting al-
gorithm with the aim to select the most reliable
translation.

The remainder of this paper is structured as fol-
lows: Section 2 provides the description of the
Shared Task and Section 3 discusses relevant liter-
ature. In Section 4 we present the systems which
make up our final solution, their architecture and
the applied training data. In section 5 we provide an
overview of all experiments performed with these
models and their outputs. Section 6 lays out the
ensembling approach and section 7 presents the
post-processing experiments we performed on the
predictions of the models. The paper ends with a
conclusion presented in section 8.

2 Shared Task Description

The goal of the Shared Task was to build a system
for translating speech in any Swiss German dialect
into Standard German text (Plüss et al., 2021).

The organisers provided a labelled data set con-



taining 293 hours of audio recordings, mostly in
the Bernese dialect, transcribed in Standard Ger-
man. Since the alignment between the recordings
and the transcripts was done automatically, each ut-
terance has an Intersection over Union (IoU) score
reflecting its alignment quality. Additionally, there
was an unlabelled data set consisting of 1208 hours
of recordings, mostly in the Zurich dialect. The so-
lutions were evaluated based on a 13 hours test set,
which contains recordings of speakers coming from
all German-speaking parts of Switzerland. The di-
alect distribution of the test set is close to the actual
Swiss German dialect distribution in Switzerland.

The translation accuracy of the provided solu-
tions is measured using BLEU, a standard metric
for automatic evaluation of machine translation (Pa-
pineni et al., 2002). The approach consists in count-
ing n-grams in the candidate translation matching
n-grams in the reference translation without taking
the word order into account. The metric ranges
from 0 to 100. A perfect match results in a score
of 100. A score of 0 occurs if there are no matches.
The tool used by the organisers for evaluating so-
lutions is the NLTK implementation of the BLEU
score with default parameters2. Prior to evaluation,
both the references and the translations are nor-
malised: the utterances are lowercased, the punctu-
ation is removed, the numbers are spelled out and
all non-ASCII characters except for the letters ”ä”,
”ö”, ”ü” are removed.

The test set was split into a public and a private
subset of equal sizes. For all evaluations presented
in this paper, the public test set was used.

3 Related Work

Speech Translation (ST) is the task of translating
spoken text in a source language to text or speech
in a target language. The approaches to solve this
problem can be put into two categories: cascading
approaches and end-to-end approaches (Sperber
and Paulik, 2020).

Cascaded Approaches work by splitting the
task into two steps: first, an STT model transcribes
speech of the source language to text in the tar-
get language, and then a machine translation (MT)
module translates the generated text into the target
language (Waibel et al., 1991). The main issue
with the cascaded approach is the fact that errors

2https://www.nltk.org/api/nltk.
translate.html#nltk.translate.bleu_score.
corpus_bleu

made by the STT module are propagated to the
MT module (Ney, 1999). Thus, efforts are put into
coupling the STT and MT modules to prevent error
propagation, for instance, by generating multiple
hypotheses of the STT system via n-best search
or the creation of lattices (Woszczyna et al., 1993;
Schultz et al., 2004).

End-to-End Approaches model ST as a single
task, where input is speech in the source language,
and the output consists of text or speech in the
target language. The main issue with this mod-
elling approach is the lack of sufficient training
data. Whereas data for STT typically consists of
several hundreds of hours of transcribed data, most
ST datasets contain only a fraction of this amount.
For instance, the Europarl-ST corpus contains on
average only 42 hours of transcribed data per lan-
guage pair (Iranzo-Sánchez et al., 2020), whereas
the Librispeech STT corpus contains around 1000
hours of transcribed data (Panayotov et al., 2015).
For this reason, end-to-end approaches nowadays
rely on leveraging multi-task learning and single
language pre-training of the STT and MT submod-
ules and use the ST dataset for fine-tuning (Wang
et al., 2020b).

Most cascading approaches rely on data where
access to both the source language transcript and
its target language translation is needed. However,
in our scenario, we do not have access to written
text of the source language since Swiss German
is a spoken language, and thus, often directly tran-
scribed into Standard German (see 1 for more de-
tails). Thus, our models follow the End-to-End
approach.

4 Systems Description

This section describes the architecture of the three
models which build the foundation for the experi-
ments presented in Section 5 and are components of
the final solution which combines the three models’
outputs in an ensembling algorithm. The section
also explains what data was used for training the
models.

4.1 Fairseq

4.1.1 Model
Fairseq is based on the transformer architecture for
Speech-to-Text provided by Fairseq S2T Toolkit
(Wang et al., 2020a), which combines the tasks
of STT and ST under the same encoder-decoder

https://www.nltk.org/api/nltk.translate.html#nltk.translate.bleu_score.corpus_bleu
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architecture (Changhan Wang, 2020). The exper-
iments were trained with the small transformer
model with 256 dimensions, 12 Layers encoder, 6
Layers decoder, 27M parameters, Adam optimiser,
and inverse square root for the learning rate sched-
uler. Decoding is executed with a character-based
SentencePiece model (Taku Kudo, 2018) using an
n-best decoding strategy with n=5. The acoustic
model (encoder) can be pre-trained with the same
transformer architecture as described above.

4.1.2 Data
The audios were extracted to 80-dimensional log
mel-scale filterbank features (windows with 25 ms
size and 10 ms shift) and saved in NumPy format
for the training. To alleviate overfitting, speech
data transforms SpecAugment (Park et al., 2019),
adopted by Fairseq S2T, were applied. For text
normalisation we used the script provided by the
task organisers. Additional numbers were spelled
out using num2words3. We use three additional
datasets:

• SwissDial (Pelin Dogan-Schönberger, 2021):
26 hours of Swiss German

• ArchiMob (Tanja Samardzic, 2016): 80 hours
of Swiss German

• Common Voice German v4: 483 hours of Ger-
man4

The SwissDial dataset consists of 26 hours of au-
dios in 8 different Swiss dialects with correspond-
ing transcriptions in Swiss dialect and Standard
German translations. The Swiss German transcrip-
tion rules differ between dialects. ArchiMob con-
tains 70 hours of audios in 14 different Swiss di-
alects with transcription in Swiss German, where
each word is additionally provided with a Standard
German normalisation. The transcription rules are
normalised and are equal for all dialects (Dieth
transcription, (Dieth and Schmid-Cadalbert, 1986)).
Common Voice German v4 consists of 483 hours
of audios in Standard German with corresponding
transcriptions.

4.2 Jasper
4.2.1 Model
We used the Jasper (Li et al., 2019) configuration
corresponding to our best submission in the pre-

3https://pypi.org/project/num2words/
4https://commonvoice.mozilla.org/en/

datasets/

decessor of this Shared Task (Büchi et al., 2020).
The Acoustic Model as per Büchi et al. (2020) con-
sists of 10x5 blocks and was pre-trained on 537
hours of Standard German data (see Büchi et al.
(2020), Table 2). In all reported experiments, we
fine-tuned five blocks on the Shared Task data as
described in Section 5.2 below. We used last year’s
extended language model, a 6-gram model trained
with KenLM, without further fine-tuning on this
year’s data. For the data sources, see Table 2 in
Büchi et al. (2020). Decoding was done using beam
search with a beam size of 1024.

4.2.2 Data
We extracted the audios to 64-dimensional mel-
filterbank features with 20ms window size and
10ms overlap as input to the Jasper acoustic model.
The reference texts were preprocessed as described
in Büchi et al. (2020). No additional Swiss German
audio data was used for training Jasper.

4.3 Wav2vec XLSR-53

4.3.1 Model
Wav2vec XLSR-53 is a cross-lingual extension of
wav2vec 2.0 as per Baevski et al. (2020). Pre-
trained on 53 different languages, it attempts to
learn a quantisation of the latent representations
shared across languages by solving a contrastive
task over masked speech representations. In the
experiment below, we fine-tuned wav2vec XLSR-
53 on the Shared Task data. No explicit language
model was used to conduct the experiment.

4.3.2 Data
The labelled data used for fine-tuning XLSR-53
was based on the task training data. However, it
was further pre-processed removing all utterances
which contained special characters or were detected
as not being in German using langdetect5. Numeric
values were replaced by strings using num2words6.

5 Experiments on Individual Models

Sections 5.1 through 5.3 present the experiments
we performed to improve the individual models and
provide the BLEU scores achieved in each experi-
ment. We also discuss approaches to improve the
model outputs with the use of ensembling (Section
6) and post-processing (Section 7).

5https://github.com/Mimino666/
langdetect

6https://pypi.org/project/num2words/
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5.1 Fairseq
Below we describe the different models and exper-
imental results obtained with Fairseq. All Exper-
iments are trained with the same configuration as
described in Section 4.1 and can be divided into
three groups: extension of training data, inclusion
of a pre-trained encoder and ensembling.

5.1.1 Extending the training data
Fairseq F-SP-0.9 For F-SP-0.9 we trained
the model from scratch on the Shared Task train-
ing data. We used 176 hours, corresponding to an
Intersection over Union (IoU) greater or equal to
0.9.

Fairseq F-SP-All We noted that the model
F-SP-0.9 generalises very poorly, so for
F-SP-Allwe trained a new model with the entire
task training data, which corresponds to 293 hours.
Despite partially poorly aligned translations, the
model benefits from the new data: the BLEU score
is improved by about 4.32 points.

Fairseq F-SP-SD We decided to extend the train-
ing data with the SwissDial Corpus. For this, we
trained a new model F-SP-SD with the entire task
training data plus all data from SwissDial. This
data extension improves the score by an additional
4.81 BLEU points in comparison to F-SP-All.

5.1.2 Including pre-trained encoder
Fairseq F-SP-DE We also investigated how to
improve the encoder (acoustic model). We pre-
trained a Standard German (DE) encoder on the
Common Voice German v4 dataset. For F-SP-DE,
we added the pre-trained encoder and trained the
model on the entire Shared Task training data. In-
cluding the DE encoder improves the score by 3.36
BLEU points in comparison to F-SP-All.

Fairseq F-SP-SD-DE Since both models
F-SP-SD and F-SP-DE improved the BLEU
score, we decided to bring the two approaches
together. We trained a new model F-SP-SD-DE
with the entire Shared Task training data, Swiss-
Dial data and include the pre-trained DE encoder
in the training. This brings an improvement of 8.37
BLEU points in comparison to F-SP-All.

Fairseq F-SP-AM-DE In this model we used the
entire task training data plus the data from Archi-
Mob. For the training we included the pre-trained
DE encoder. This setup improves the BLEU score
by 14.01 in comparison to F-SP-All.

Fairseq F-SP-SD-CH In order to further im-
prove the acoustic model, we trained an encoder
in Swiss German (CH) on the SwissDial and
ArchiMob dataset. We trained a new model
F-SP-SD-CH with the entire Shared Task train-
ing data and SwissDial and included the pre-trained
CH encoder in the training. The BLEU score in
comparison to F-SP-All is improved by 12.54
points.

5.1.3 Ensembling
Fairseq Ensemble F-SP-SD & F-SP-DE (F-E1)
In this experiment, we ensembled the models
F-SP-SD and F-SP-DE. F-E1 achieves a BLEU
score of 28.74 . Ensembling is done with the imple-
mentation provided by the Fairseq S2T Toolkit7. In
comparison to F-SP-SD-DE, which combines in
the training setup the same training dataset Swiss-
Dial as F-SP-SD and the same DE encoder as
F-SP-DE, the ensembling performs slightly bet-
ter. In comparison to F-SP-All the BLEU score
improves by 9.94 points.

Fairseq Ensemble F-SP-AM-DE & F-SP-SD-
CH (F-E2) After the good performance of
F-E1, we decided to ensemble F-SP-AM-DE
and F-SP-SD-CH. This ensembling improves
the BLEU score in comparison to F-SP-All by
17.00 points.

Fairseq F-E2 extended (F-E3) Finally, we
trained a model on the entire available data for
Swiss German (task, SwissDial and ArchiMob)
and used this model to perform ensembling on top
of F-E2. For time reasons, we were not able to
complete the training and the output of this model
could not been included in the final solution pre-
sented in 6. We only evaluated an intermediate
status of the model and achieved a score of 36.83
BLEU points. In comparison to F-SP-All, it
improves the score by 18.03 points.

Table 1 shows the public BLEU scores ob-
tained with the Fairseq models on the Shared
Task public part of the test set. The table contains
additional information about applied train sets and
encoders. F-E3 achieved the best performance
with a BLEU score of 36.83 on the public part of
the test set (37.4 on the private part). In addition
to ensembling, the inclusion of a CH encoder in

7https://github.com/pytorch/fairseq/
issues/223
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the training process as well as the extension of the
training data with the ArchiMob corpus benefited
the model performance most.

Table 1: Fairseq results.

Model Train set Encoder BLEU
F-SP-0.9 task 0.9 training 14.48
F-SP-All task all training 18.8
F-SP-SD task, SwissDial training 23.61
F-SP-DE task DE 22.16
F-SP-SD-DE task, SwissDial DE 27.17
F-SP-AM-DE task, ArchiMob DE 32.81
F-SP-SD-CH task, SwissDial CH 31.34
F-E1 - - 28.74
F-E2 - - 35.80
F-E3 - - 36.83

5.2 Jasper

Below we describe the different models and exper-
imental results obtained with Jasper.

Jasper-FT For Jasper-FT we fine-tune the
pre-trained Standard German model on the Shared
Task training data. We used 169 hours, sampled
from the set with an IoU greater or equal to 0.9,
which were augmented to 507 hours using 90% and
110% speed perturbation as in Büchi et al. (2020).

Jasper-PL We noted that the task test set dif-
fers acoustically from the training data since dif-
ferent dialects are present and the audio quality
tends to be lower. This motivated the creation of
Jasper-PL, where we used pseudo-labeling on
the test set. More precisely, we used the hypothe-
ses of Jasper-FT on the task test set to fine-tune
Jasper-FT for 20 additional epochs.

Jasper-PL-E We decided to further work on the
(comparatively) low-quality audio of the task test
set and used the Dolby Media Enhance API v1.18

to create an ”enhanced” version of the task test
set. The Enhance API automatically improves the
quality of audio files, e.g. by correcting the volume
and reducing noise and hum. We then fine-tuned
Jasper-FT on this data, this time using the hy-
potheses provided by Jasper-PL as labels since
these achieve a higher BLEU score.

8https://dolby.io/developers/
media-processing/api-reference/enhance

Table 2 shows the public BLEU scores obtained
with the Jasper models on the two different test
sets (Jasper-PL-Ewas only evaluated on the en-
hanced test set). The best-performing Jasper model
is Jasper-PL with a BLEU score of 32.97 on
the public part of the test set. Using the enhanced
audio data does not confer any advantage on either
prediction or pseudo-label fine-tuning compared
to the as-is data. We can, however, see the bene-
fit of rather naive pseudo-labelling in this setting
where training and testing data are quite different.
Future work could expand on the use of pseudo-
labelling by using more advanced setups, such as
confidence-based (Kahn et al., 2020) or iterative
(Xu et al., 2020) pseudo-labelling.

Table 2: Jasper results.

Model Test set BLEU
Jasper-FT task 30.8
Jasper-FT enhanced 26.4
Jasper-PL task 32.97
Jasper-PL enhanced 31.92
Jasper-PL-E enhanced 32.92

5.3 Wav2vec XLSR-53
Below we describe the model and experimental
results obtained with wav2vec XLSR-53.

wav2vec XLSR-53 FT For wav2vec
XLSR-53 FT we fine-tuned the pre-trained
baseline (as published on HuggingFace9) on the
Shared Task training data. We used 227 hours,
corresponding to an IoU greater or equal than 0.8.
The data was pre-processed as outlined in Section
4.3.2.

Table 3: wav2vec XLSR-53 result.

Model Train set BLEU
wav2vec XLSR-53 FT task 0.8 30.39

6 Ensembling

Having trained and evaluated the three models de-
scribed in Sections 4.1, 4.2 and 4.3, we performed
experiments with two ensembling methods: ma-
jority voting and a hybrid technique combining
majority voting with perplexity calculation. We
used the outputs of the best-performing models
of each of the three systems, aiming to select the

9https://huggingface.co/facebook/
wav2vec2-large-xlsr-53

https://dolby.io/developers/media-processing/api-reference/enhance
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most reliable translation for each utterance from
among them. The best-performing models were
F-E2 (BLEU score of 35.8010), Jasper-PL
(BLEU score of 32.97) and wav2vec XLSR-53
FT (BLEU score of 30.4).

The models were first categorised based on their
BLEU scores into a primary, first auxiliary and sec-
ond auxiliary models. F-E2 with the highest score
was selected as the primary model, Jasper-PL
with the second best score was set as the first aux-
iliary model and wav2vec XLSR-53 FT was
used as the second auxiliary model.

In the first step, we aligned the hypotheses of the
three models and extracted text passages where all
three hypotheses agree, leaving only text excerpts
where the hypotheses disagree.

Majority Voting (MV) The majority voting con-
sisted in collecting votes for each text excerpt de-
fined in the previous step: a particular hypothesis
receives a vote for each word it has in common
with any other hypothesis. The hypothesis with the
most votes is chosen as the best candidate trans-
lation. If multiple hypotheses score the same, the
output of the model categorised higher in the hier-
archy (primary, first auxiliary, second auxiliary) is
selected.

Hybrid Ensembling (HE) The hybrid ensem-
bling method combines majority voting with per-
plexity calculation. If more than one hypothesis
scores maximum and the hypotheses with the max-
imum score are not equal, the perplexity of the hy-
potheses is calculated. To this end, we extended the
particular text excerpt with 3 context words preced-
ing and following the excerpt. For these text seg-
ments, we calculated perplexity with a pre-trained
uncased German BERT model11. The hypothesis
with the lower perplexity was selected.

The results of the experiments are presented in
Table 4. Out of the two algorithms we applied on
the data, better results could be achieved with the
majority voting. The BLEU score improved by 2.9
points from 35.80 to 38.70 when compared to the
result of the best model (F-E2).

10F-E3 as a last-minute submission could not be used for
ensembling

11https://github.com/dbmdz/berts#
german-bert

Table 4: Ensembling results. The BLEU score achieved
by each model separately and the BLEU score resulting
from applying ensembling methods on the models’ out-
puts (Majority Voting and Hybrid Ensembling)

F-E2 Jasper-
PL

wav2vec
XLSR-
53 FT

MV HE

35.80 32.97 30.39 38.70 37.62

7 Transcript Post-processing

Next to the Language Models for Speech Recogni-
tion, we evaluated an approach to using text-only
data by training a supervised ”spelling correction”
(SC) model to correct the errors made by the STT
model explicitly. Instead of predicting the likeli-
hood of emitting a word based on the surrounding
context, the SC model only needs to identify likely
errors in the STT model output and propose alter-
natives. Intuitively, this task highly depends on the
baseline model’s quality: if the model transcribes
very well, this task can be reduced to simply copy-
ing the input transcript directly to the output.

Most recent approaches for transcript post-
processing use a transformer-based method: (Liao
et al., 2021) use a modified RoBERTa structure
and show an increase of 17.53 BLEU points on
the self-augmented English Conversational Tele-
phone Speech data set. On the LibriSpeech dataset,
(Hrinchuk et al., 2019) show promising results us-
ing a pre-trained BERT as initialisation for their
spell correction model, while (Guo et al., 2019)
takes a different approach with a bidirectional
LSTM.

We compared different Transformer architec-
tures with their corresponding open-sourced pre-
trained models and other post-processing methods.

The objective for all transformer models was set
to next-sentence prediction (sequence to sequence
generation) with a vocabulary size of 30’000, batch
size of 16, and beam size for beam search set to 5.
The models were initialised with pre-trained Ger-
man embeddings and fine-tuned for up to 120’000
steps on the Shared Task training set described in
2.

• BERT (Devlin et al., 2018), having both en-
coder and decoder initialised with pre-trained
weights.

• DistilBERT (Sanh et al., 2020), the
lightweight alternative to BERT, reducing the
training time up to 60%.

https://github.com/dbmdz/berts#german-bert
https://github.com/dbmdz/berts#german-bert


• ELECTRA (Clark et al., 2020), which uses a
more sample-efficient pre-training approach
for the encoder, called replaced token detec-
tion.

• SymSpell (Garbe, 2020),which is a spelling
correction algorithm for correcting spelling er-
rors based on Damerau-Levenshtein distances,
stored in a pre-trained dictionary.

The following table shows the BLEU scores
on the public test set, when performing post-
processing on the output of the majority voting
algorithm as described in 6. The Baseline refers
to the BLEU score of the non-processed majority
voting output.

Table 5: Post-processing BLEU scores on the public
test set

System Baseline Post-processed
BERT 38.70 23.26
DistilBERT 38.70 26.66
ELECTRA 38.70 14.77
SymSpell 38.70 30.65

As the evaluations show, most post-processing
attempts decrease the overall BLEU score, with
SymSpell as the most straightforward approach per-
forming best. Compared with previous work in this
area, this could be explained by the limited amount
of data available for training the transformer mod-
els. Due to lack of performance, we exclude the
post-processing step in our final solution.

8 Conclusion

In this paper, we presented our contribution to the
Shared Task ”Swiss German Speech to Standard
German Text” at SwissText 2021. Our solution
combines the outputs of three models based on
Fairseq, Jasper and Wav2vec XLSR-53 architec-
tures. Because of time and resource constraints,
we used only the labeled data set. Out of the 21
experiments we performed with the models, includ-
ing transcript post-processing and ensembling, we
achieved the best result by applying an ensembling
method on the outputs of Fairseq model F-E2
(BLEU score of 35.80) as the primary model, and
Jasper-PL (32.97) and wav2vec XLSR-53
FT (30.39) as auxiliary models. We processed the
three models’ predictions with a majority voting
algorithm and this way retrieved the most reliable

candidate out of the provided translations for each
utterance in the public test set. With this solution,
we achieved a BLEU score of 39.39 on the private
test set, which resulted in the third place out of four
contributors in the competition.

Swiss German is a low-resource language, which
makes training an STT or a Speech Translation sys-
tem a challenging task. However, our experiments
show that applying ensembling both on various
models of the same architecture (as in Fairseq mod-
els F-E1, F-E2 and F-E3) and on models based
on various architectures (as implemented in our
final solution) trained with limited data can lead
to a score improvement of several BLEU points.
Pseudo-labeling is another approach which con-
tributes to model enhancement as we could observe
with the Jasper-PL model. We will be further
investigating these two methods aiming at improv-
ing the results despite the limited data currently
available for Swiss German.
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lian Mäder. 2021. SwissDial: Parallel Multidialectal
Corpus of Spoken Swiss German.

Michel Plüss, Lukas Neukom, and Manfred Vogel.
2021. SwissText 2021 Task 3: Swiss German
Speech to Standard German Text. In preparation.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2020. DistilBERT, a distilled version
of BERT: smaller, faster, cheaper and lighter.

Tanja Schultz, S. Jou, S. Vogel, and S. Saleem. 2004.
Using Word Lattice Information for a Tighter Cou-
pling in Speech Translation Systems. In INTER-
SPEECH.

Beat Siebenhaar. 2003. Sprachgeographische Aspekte
der Morphologie und Verschriftung in schweiz-
erdeutschen Chats. Linguistik online, 15(3).

Beat Siebenhaar and Alfred Wyler. 1997. Dialekt und
Hochsprache in der deutschsprachigen Schweiz. Pro
Helvetia.

Matthias Sperber and Matthias Paulik. 2020. Speech
Translation and the End-to-End Promise: Taking
Stock of Where We Are. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 7409–7421.

John Richardson Taku Kudo. 2018. SentencePiece: A
simple and language independent subword tokenizer
and detokenizer for Neural Text Processing.

Elvira Glaser Tanja Samardzic, Yves Scherrer. 2016.
ArchiMob - A Corpus of Spoken Swiss German.

A. Waibel, A.N. Jain, A.E. McNair, H. Saito, A.G.
Hauptmann, and J. Tebelskis. 1991. JANUS: a
speech-to-speech translation system using connec-
tionist and symbolic processing strategies. In [Pro-
ceedings] ICASSP 91: 1991 International Confer-
ence on Acoustics, Speech, and Signal Processing,
pages 793–796 vol.2.

Changhan Wang, Yun Tang, Xutai Ma, Anne Wu,
Dmytro Okhonko, and Juan Pino. 2020a. fairseq
S2T: Fast Speech-to-Text Modeling with fairseq.

Chengyi Wang, Yu Wu, Shujie Liu, Zhenglu Yang, and
Ming Zhou. 2020b. Bridging the Gap between Pre-
Training and Fine-Tuning for End-to-End Speech
Translation. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pages 9161–
9168.

M. Woszczyna, N. Coccaro, A. Eisele, A. Lavie, A. Mc-
Nair, T. Polzin, I. Rogina, C. P. Rose, T. Sloboda,
M. Tomita, J. Tsutsumi, N. Aoki-Waibel, A. Waibel,
and W. Ward. 1993. Recent Advances in Janus: A
Speech Translation System. In Proceedings of the
Workshop on Human Language Technology, HLT
’93, page 211–216, USA. Association for Compu-
tational Linguistics.

Qiantong Xu, Tatiana Likhomanenko, Jacob Kahn,
Awni Hannun, Gabriel Synnaeve, and Ronan Col-
lobert. 2020. Iterative Pseudo-Labeling for Speech
Recognition. In Proceedings of Interspeech 2020,
pages 1006–1010.

https://github.com/wolfgarbe/symspell
https://github.com/wolfgarbe/symspell
http://arxiv.org/abs/1902.07178
http://arxiv.org/abs/1902.07178
http://arxiv.org/abs/1902.07178
http://arxiv.org/abs/1910.10697
http://arxiv.org/abs/1910.10697
https://doi.org/10.1109/ICASSP40776.2020.9054626
https://doi.org/10.1109/ICASSP40776.2020.9054626
http://arxiv.org/abs/2102.11114
http://arxiv.org/abs/2102.11114
http://arxiv.org/abs/2102.11114
https://doi.org/10.1109/ICASSP.1999.758176
https://doi.org/10.1109/ICASSP.1999.758176
https://doi.org/10.1109/ICASSP.2015.7178964
https://doi.org/10.1109/ICASSP.2015.7178964
http://arxiv.org/abs/1904.08779
http://arxiv.org/abs/1904.08779
http://arxiv.org/abs/2103.11401v1
http://arxiv.org/abs/2103.11401v1
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1808.06226
http://arxiv.org/abs/1808.06226
http://arxiv.org/abs/1808.06226
https://www.aclweb.org/anthology/L16-1641
https://doi.org/10.1109/ICASSP.1991.150456
https://doi.org/10.1109/ICASSP.1991.150456
https://doi.org/10.1109/ICASSP.1991.150456
http://arxiv.org/abs/2010.05171
http://arxiv.org/abs/2010.05171
https://doi.org/10.1609/aaai.v34i05.6452
https://doi.org/10.1609/aaai.v34i05.6452
https://doi.org/10.1609/aaai.v34i05.6452
https://doi.org/10.3115/1075671.1075718
https://doi.org/10.3115/1075671.1075718

