
Conceptual Modelling of Log Files:
From a UML-based Design to JSON Files?

Evelina Rakhmetova1, Carlo Combi1, and Andrea Fruggi2

1 University of Verona, Str. le Grazie, 15, 37134 Verona, Italy
evelina.rakhmetova@univr.it; carlo.combi@univr.it

2 SIA s.r.l., Verona, Italy
andrea.fruggi@sia.eu

Abstract. In this paper, we describe an application of a recently pro-
posed comprehensive UML-based (Unified Modeling Language) approach
to the conceptual modelling of log files. On the real example, we built an
ad hoc UML-based (class) diagram to represent the key features of the
logs nested structure and generated an artifact (a template in JSON)
based on ECS (Elastic Common Schema). We also describe plans for
designing a specialized tool through a conjunction of the already de-
veloped artifacts. Presented work is a part of a broader study on the
proposed initiative for the general concept of log files standardization.
A clear structure of log data would allow more systematic development
and more straightforward implementation and employment of the latest
information systems, minimize anomalies, errors, and time delays.

Keywords: Conceptual Modelling · UML · JSON · Log Files · Elastic
Common Schema · Modelling Tool.

1 Introduction

The stable work of information systems, with the constantly increasing complex-
ity, and security of a tremendous amount of data, they are processing, profoundly
rely on log files management. A log message is a piece of information produced
during the work of the computer system or software, generated as a response to a
running process or an action. The information pulled out of the log message pro-
vides an idea of the log message meaning and the reason for it being generated.
Despite that modern log files management systems are powerful mechanisms
for resolving issues of the IT industry generally, a growing number of custom
solutions make every case rather particular [1].

Nowadays the practice of fast development and customization of applications
leads to the situation when logs semantics is not always clear. Such messages do

? Our work is performed with the support and in the interests of the company SIA
s.r.l., the provider of information technology solutions in the banking domain. The
authors are particularly thankful to Daniele Spinelli (daniele.spinelli@sia.eu).
Copyright © 2021 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).



14 Rakhmetova, E., Combi, C., Fruggi, A.

not give a distinct perception of processes and interfere with further analysis,
hence, are not quite valuable. Even more challenging to keep track of different
log file formats in large heterogeneous systems in which software and devices are
dynamic in nature [2].

We declare an intention to limit heterogeneity in log files management by
proposing a standardization of the log files through developing a conceptual
modelling approach and a suitable tool. Conceptual data modelling provides
analysts and designers with a high-level representation of the real world and
an efficient way to communicate with each other. Such data models promote
understanding of the real-world domain and enhance the ability to meet users’
requirements [1, 3]. A key problem in log file design is the absence of a widely
accepted conceptual model.

Based on the study and scientific literature review, we have determined a lack
of studies on conceptual log files modelling [1, 2, 7]. There are standardized log
files of systems and widely used commercial schemes, but there is no accepted
methodology for the development of a log-based system, which could be applied
everywhere [4].

In this paper we describe a comprehensive general approach to conceptual
modelling of log data with a UML-like [5] graphical representation compati-
ble with ELK stack (Elasticsearch, Logstash, Kibana) [6], elaborate on the first
stages of work and then discuss the usage of the UML-based modelling approach
and the developed python script (for generating logs templates and documenta-
tion). We also outline the future tasks for the tool development.

2 Applied Approach and Features to Conceptual
Modelling Log Files

Our choice to establish log files conceptual modelling on extended UML-based
(class) diagrams and on JSON is based on the following motivations:

– The UML graphical notation is commonly used over decades; it is structured
and easily understandable by various users.

– Recently the JSON format has widely emerged as the most convenient stan-
dardized format for structuring data such as log files.

– JSON is relatively (with respect to other structured formats) compact, flexi-
ble, as almost every programming language can parse it, and human-readable.

2.1 Requirements for Logs

Since log files are mostly created automatically, as a minimum log data must in-
clude date/time stamp, description of the event and information unique to that
event, in order to provide information to benefit further analysis, troubleshoot-
ing processes or data breach investigation. Information must be structured and
suitable for running data analysis with the use of various tools.



Conceptual Modelling of Log Files 15

2.2 JSON Log Files Formation

JSON logging provides more flexibility to the current logging system, especially
when migration from the text logging format (as most common and unsettled
format) to JSON can be simply performed. There is currently a vast number of
frameworks and programming language drivers that support the translation of
log data in JSON format if it was not initially the case. This shows the tendency
of the industry to a standardized format for structuring such kinds of data.

One of the advantages - JSON is simple to implement in languages with-
out built-in JSON functionality. It is important to highlight that on the meta-
data level ECS (Elastic Common Schema) [6] is specified through YAML format
documentation (git repository), following, we will transform this for usability
purposes in JSON format.

2.3 An Ad Hoc UML-based Diagram Modelling Approach

An application of the recently proposed approach [7] allows the representation of
log files data structure in a more powerful way, thus providing a sound description
of log-based systems. The extended UML-based modelling approach considers
the use of suitable stereotypes to extend class diagrams [5] to represent the
(mainly nested) structure of a log record.

A log record is composed of attributes and field sets, which group in their
turn attributes related to the same feature the field set is representing. This
gives extensive and clear to any user representation with a possibility to imple-
ment both top-down and bottom-up strategies on system development and/or
adjustments.

Model Features The concepts of the class diagram model were taken as a basis
[5]. Added features and extensions provide the support for an ad-hoc represen-
tation of log data. We explicitly highlight in the conceptual model that field sets
and attributes partly coming from the ECS specification [6].

Composition associations are used to represent a proper nesting, where the
nested parts may appear also within other parts, i.e., they are reusable. Field sets
are represented through a class-like shape, where we distinguish three different
sub-boxes, for core, extended and custom fields, respectively. An ad-hoc notation
is also introduced for local nesting of field set. Other aspects considered in the
conceptual data model for log files are types for attributes, associations between
attributes, enumeration types, ECS metadata as categorization events, and an
array of values.

For a demonstration, we show our extended diagram model obtained from the
common log file record. It helps understanding complex data transformations.
Fig. 1 shows a UML-based diagram for a single batch log of the custom appli-
cation in the banking domain created with the implementation of the proposed
conceptual model.

It is fair to highlight that the application is in use and currently acquiring
log files are presented in text form, not structured accordingly, have numerous



16 Rakhmetova, E., Combi, C., Fruggi, A.

Fig. 1. Log file record of the bank batch application: graphical representation through
the ad hoc UML-based conceptual modelling.

issues and completely unsuitable for proper monitoring and especially analysis.
Applying our approach, together with an application owner, we succeeded to
design a set of suitable log files records for the batch processes.

3 Towards the Implementation Process

As for the usability of the conceptual approach, we started by considering some
real-world domains, from bank applications. Indeed, such kind of application
covers various general event logging.

3.1 Python Script for ECS

The raw data were taken from the ECS repository opened for contribution at
https://github.com/elastic/ecs. Originally ECS provides excessively many
fields for log records, and only a few of them are needed to be populated for a
certain case. Repository collects various files and tool templates, yet they do not
provide universal applicability to any system.

We have chosen to maintain customizations by taking into consideration the
tools provided by ECS and creating our own generator (python script, input
and output files) to create relevant artefacts for the unique set of data sources.
The script is running through the command line. Here are the main steps of the
working process:

– As an input file, the current version of the ECS log fields set in YAML format
is converted into JSON.



Conceptual Modelling of Log Files 17

– Users can select the log fields from the set and include custom fields relevant
to the project if it is needed.

– As an output, the artifact in the format of JSON file is obtained; it represents
a sample template for a log record for the particular system.

Notwithstanding that the script is still in active improvement, it is already
has been in use for several test cases of batch log files modelling. Fig. 2 provides
an example of the case used as well for the UML-based diagram demonstration.

Fig. 2. The window with an artifacts generator code (right part), input file (the upper
left corner; already formatted in JSON with all available fields in accordance with the
current ECS version) and generated output file (the low left corner; the template for
the custom log record in JSON format).

This script is a preliminary development for the future tool and has not been
published in open source yet. It is one of the parts with the following that must
relate to the UML-based graphical representation part.

3.2 Further Steps on Tool Prototype Development

At this point work not only propose the tool and step for its development but
provides preliminary solutions. All together the organizational flow and concep-
tual model of possible architecture are showed on Fig. 3.

The tool is aimed at artifacts creation: log files structural templates (in JSON
format according to defined fields from the YAML doc) and related documenta-
tion (which includes extended UML-based (class) diagrams).

The tool is aimed to provide for the conceptual modelling of log files from
the beginning of system modelling or act as a supportive solution for redefining
system logs. Yet in the second case, it is necessary to integrate loggers i.e. plugins



18 Rakhmetova, E., Combi, C., Fruggi, A.

Fig. 3. An overall concept of the proposed tool architecture.

for the application (system) logging library to format logs into compatible JSON
format.

4 Conclusion

As the result, we provided a comprehensive overview of our work on log-files
modelling schema (in form of extended UML-based (class) diagrams) and de-
veloped preliminary instruments (python script) for log file modelling in JSON
format (according to the predefined structure). In addition, we demonstrated our
intention and actual steps for developing a comprehensive tool build based on the
proposed conceptual log file models, which will provide both ad hoc UML-based
diagrams as documentation and JSON formatted templates for log records.

References

1. Chuvakin, A., Schmidt, K. and Phillips, C. ”Logging and Log Management: The
Authoritative Guide to Understanding the Concepts Surrounding Logging and Log
Management”, 2012.

2. Nimbalkar, P., Mulwad, V., Puranik, N., Joshi, A. and Finin, T., ”Semantic Inter-
pretation of Structured Log Files,” 2016 IEEE 17th International Conference on
Information Reuse and Integration (IRI), 2016, pp. 549-555.

3. Combi, C., Oliboni, B., Pozzi, G., Sabaini, A. and Zimányi, E., “Enabling instant-
and interval-based semantics in multidimensional data models: the T+MultiDim
Model.” Inf. Sci. 518, 2020, pp. 413-435.

4. Zhang, H., Lou, J.-G., Zhang, Y. and Chen, X., ”Log clustering based problem
identification for online service systems”, 38th International Conference on Software
Engineering Companion - ICSE’16, Austin, Texas, 2016, pp. 102–111.

5. OMG Unified Modelling Language (OMG UML), version 2.5.1, December 2017.
6. ”Elastic Common Schema (ECS) Reference [master]”, [Online], Available:

https://www.elastic.co/guide/en/ecs/master/ecs-custom-fields-in-ecs.html, [Ac-
cessed: 10 June 2021].

7. Rakhmetova, E., Combi, C. and Fruggi, A., “A UML-based Approach to the Con-
ceptual Modelling of Log Files”, Technical Report Department of Computer Science
University of Verona, 2021, in press.


